The aim of the current study was to investigate hearing loss and cochlear function in patients with systemic lupus erythematosus, using audiology, distortion product otoacoustic emissions and transient evoked otoacoustic emissions.
Study design:Prospective, case–control study.
Methods:The study included 26 randomised patients with systemic lupus erythematosus (52 ears) and 30 healthy control subjects (60 ears). Pure tone audiometry was performed at 250 and 500 Hz and at 1, 2, 4, 6, 8, 10, 12, 14 and 16 kHz. Distortion product otoacoustic emissions and transient evoked otoacoustic emissions were measured using Biologic System equipment with Scout Acoustic Emissions System software.
Results:The distortion product otoacoustic emission signal responses were significantly different only at 750 Hz, while the distortion product otoacoustic emission signal–noise ratios were significantly different at 750 Hz and 6 kHz (p < 0.05), comparing patients and controls. The transient evoked otoacoustic emission signal–noise ratios were significantly different at 2 and 3 kHz, comparing patients and controls (p < 0.05). The transient evoked otoacoustic emission total signal–noise ratios were significantly different, comparing patients and controls (p < 0.05). In addition, the pure tone audiometry thresholds were significantly different at 250 and 500 Hz and at 1, 2, 10 and 12 kHz, comparing patients and controls (p < 0.05).
Conclusion:Our findings do not completely agree with those of previous temporal bone histopathological studies. However, our results do support a general picture of low frequency hearing loss in systemic lupus erythematosus patients. We consider these results to be related to endolymphatic and cochlear hydrops, and we suggest that electrocochleography could be performed in further studies for clarification of this subject.