Published online by Cambridge University Press: 14 August 2007
Recent experiments have shown intriguing regions of intense luminescence or ‘hotspots’ in the vicinity of triple-point shear layers in propagating gaseous detonation waves. Localized explosions have also been observed to develop in these fronts. These features were observed in higher effective activation energy mixtures, but not in lower effective activation energy mixtures. The increased lead shock oscillation through a cell cycle in higher activation energy mixtures may result in a significantly increased disparity in the induction time on either side of the triple-point shear layer, and thus an enhanced mixing between reacted and non-reacted streams supported by Kelvin–Helmholtz instability. The relation between the shear-layer instability and the mixture effective activation energy is analysed by carrying out a spatial linear stability study for three mixtures with different activation energies and injection conditions that correspond to the experimental conditions. The role of vortical structures associated with Kelvin–Helmholtz instability in the formation of localized ignition is investigated by performing two-dimensional Navier–Stokes simulations with detailed chemical kinetics and transport. In the low activation energy mixture, large-scale vortical structures are observed to occur downstream of the induction distance; these structures do not have a noticeable effect on the reaction. In higher effective activation energy mixtures, a thin transverse ignition front develops near the interface between the two gas streams and results in a combustion structure decoupled from the entrainment region. The decoupling leads to attenuation of the instability growth rate when compared to frozen calculations, and a reduced heat release in the high vorticity region. The analysis indicates the instability plays a modest role in ignition events for high activation energy mixtures. The formation of localized explosions observed in high activation energy systems is instead linked to the impossibility of a one-dimensional reactive combustion wave supported by the injection conditions. In the absence of curvature effects and stream-tube divergence, a system of shock waves is formed which spreads the ignition to the cold gas stream.