No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
Filaments are a global phenomenon and their formation, structure and dynamics are determined by magnetic fields. So they are an important signature of the solar magnetism. The central mechanism in traditional mean-field dynamo theory is the alpha effect and it is a major result of this theory that the presence of kinetic or magnetic helicities is at least favourable for the effect. Recent studies of the magnetohydrodynamic equations by means of numerical bifurcation-analysis techniques have confirmed the decisive role of helicity for a dynamo effect. The alpha effect corresponds to the simultaneous generation of magnetic helicities in the mean field and in the fluctuations, the generation rates being equal in magnitude and opposite in sign. In the case of statistically stationary and homogeneous fluctuations, in particular, the alpha effect can increase the energy in the mean magnetic field only under the condition that also magnetic helicity is accumulated there. Generally, the two helicities generated by the alpha effect, that in the mean field and that in the fluctuations, have either to be dissipated in the generation region or to be transported out of this region. The latter may lead to the appearance of helicity in the atmosphere, in particular in filaments, and thus provide valuable information on dynamo processes inaccessible to in situ measurements.