Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T17:23:34.189Z Has data issue: false hasContentIssue false

Further Problems in the Interpretation and Homology of the Insect Ovipositor

Published online by Cambridge University Press:  31 May 2012

G. G. E. Scudder
Affiliation:
Department of Zoology, University of British Columbia, Vancouver

Abstract

An attempt is made to re-evaluate the data on the origin of the ovipositor in insects and to explain its mode of development in living forms. Comparative developmental data from other groups of animals is cited to substantiate the claim that part of the insect ectodermal genitalia is appendicular rather than sternal in origin. It is suggested that the primary abdominal segmental appendages have provided a source of competent tissue which through subtle changes in selection, has evolved along many pathways, to form the gonocoxae, the pleuropodia, the pseudoplacenta and perhaps the prolegs in many different taxa.

It is shown, by aid of sections through the insect embryo and larval stages, that the primary embryonic segmental appendages on the abdomen, do not differentiate; there is no loss of tissue and it cannot be proven that such appendages have been lost in insect phylogeny. The fact that they are represented still in the modern embryo, indicates that they have been retained. To explain the observable developmental details, it is suggested that abdominal limb histogenesis is arrested or suppressed in normal development, but this limb tissue retains its competence to differentiate. Thus development may be initiated again at a later time in postembryonic life. In this manner, the original limb tissue is available for organ formation in the maturing insect.

The study has suggested that the appendages on the eighth and ninth segments of the abdomen initiate but do not complete their development in the polypod embryo. Possibly the potential limb tissue is arrested in development because it has not undergone some vital change as regards its capacity to respond (competence) to an inductor, perhaps the inductor is not available or perhaps it is not available in the correct form.

There is evidence to suggest that the developmental capacity of the limb anlagen are reduced with time, so that full limb formation is not possible in postembryonic life: this can explain the development of abdominal coxae in the Thysanura and hence gonocoxae in higher insects. It is noted that should Gustafson's suggestion that the eversible sacs and gonapophyses are homologous with primary segmental genitalic ampullae prove acceptable, then the female ectodermal genitalia in insects would appear to have a dual origin.

It is emphasized that the speculation expressed are being subjected to experimental study in an attempt to verify the suggested ontogeny and phylogeny.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. A. 1933. The early instars of the firebrat, Thermobia domestica (Packard) (Thysanura). Proc. Iowa Acad. Sci. 40: 217219.Google Scholar
Alexander, R. D., and Brown, W. L.. 1963. Mating behaviour and the origin of insect wings. Occ. Pap. Mus. Zool. Univ. Michigan 628: 119.Google Scholar
Allen, J. M. 1962. The molecular control of cellular activity. McGraw Hill, New York.Google Scholar
Balinsky, B. I. 1961. An introductoin to embryology. Saunders, Philadelphia.Google Scholar
Bekker, E. G. 1958. On the problem of the origin and development of the wing in insects. V. A contribution to the knowledge of ontogeny and phylogeny of the organs of flight in Orthoptera s. Saltatoria. Rev. ent. U.R.S.S. 37: 775784 [In Russian with English summary].Google Scholar
Bock, W. J. 1959. Preadaptation and multiple evolutionary pathways. Evolution 13: 194211.Google Scholar
Bodenstein, D. 1941. Investigations on the problem of metamorphosis. VIII. Studies on leg determination in insects. J. exp. Zool. 87: 3153.Google Scholar
Butler, E. G., and O'Brien, J. P.. 1942. Effects of localized X-radiations on regeneration of the Urodele limb. Anat. Rec. 84: 407413.Google Scholar
Cain, A. J. 1955. Names, homologies and the “Golgi” apparatus. J. R. micr. Soc. 74: 222225.Google Scholar
Campbell, F. L. (ed.). 1959. Physiology of insect development. Univ. Chicago Press, Chicago.Google Scholar
Cannon, H. G. 1956. An essay on evolution and modern genetics. J. Linn. Soc. (Zool.) 43: 117.Google Scholar
Crampton, G. C. 1917. A phylogenetic study of the terminal abdominal segments and appendages in some female apterygotan and lower pterygotan insects. J. N.Y. ent. Soc. 25: 225237.Google Scholar
Crampton, G. C. 1918. A phylogenetic study of the terminal abdominal structures and genitalia of male Apterygota, Ephemerids, Odonata, Plecoptera, Neuroptera, Orthoptera and their allies. Bull. Brooklyn ent. Soc. 13: 4968.Google Scholar
Crampton, G. C. 1929. The terminal abdominal structures of female insects throughout the orders from the standpoint of phylogeny. J. N.Y. ent. Soc. 37: 453496.Google Scholar
Davies, R. G. 1961. The postembryonic development of the female reproducitve system in Limothrips cerealium Haliday (Thysanoptera: Thripidae). Proc. zool. Soc. Lond. 136: 411437.Google Scholar
De Beer, G. 1958. Embryos and ancestors. Oxford Univ. Press, Oxford. 3rd edition.Google Scholar
Dewitz, H. 1875. Über Bau und Entwicklung des Stachels und der Legescheide einiger Hymenoptera und der grünen Heuschrecke. Z. wiss. Zool. 25: 174200.Google Scholar
DuPraw, E. J. 1961. A unique hatching process in the honeybee. Trans. Amer. micr. Soc. 80: 185191.Google Scholar
Finnegan, C. V. 1963. Observations of dependent histogenesis in salamander limb development. J. Embryol. exp. Morph. 11: 325338.Google Scholar
Flickinger, R. A. 1962. Sequential gene action, protein synthseis and cellular differentiation. Int. Rev. Cytol. 13: 7598.Google Scholar
Goodrich, E. S. 1930. Studies on the structure and development of vertebrates. Macmillan, London (Dover Reprint, 1958).CrossRefGoogle Scholar
Gupta, P. D. 1950. On the structure, development and homology of the female reproductive organs in Orthopteroid insects. Indian J. Ent. 10: 75123.Google Scholar
Gustafson, J. F. 1950. The origin and evolution of the genitalia of the insects. Microentomology 15: 3567.Google Scholar
Hagen, H. R. 1951. Embryology of the viviparous insects. Ronald Press, New York.Google Scholar
Hamburger, V. 1942. A manual of experimental embryology. Univ. Chicago Press, Chicago.Google Scholar
Hamilton, W. J., Boyd, J. D., and Mossman, H. W.. 1952. Human embryology (Prenatal development of form and function). Heffer & Sons, Cambridge.Google Scholar
Hermann, H. 1959. The embryonic cell as a protein forming system, pp. 171185. In Nickuson, J. (ed.), Biochemistry of morphogenesis. Pergamon Press, London.Google Scholar
Herrmann, H. 1960. Molecular mechanisms of differentiation. An inquiry into the protein forming system of developing cells, pp. 494545. In Nowinski, W. W. (ed.), Fundamental aspects of normal and malignant growth. Elsevier, Amsterdam.Google Scholar
Heymons, R. 1896. Über die abdominalen Körperanhänge der Insekten. Biol. Zbl. 16: 855864.Google Scholar
Heymons, R. 1896. Zur Morphologie der Abdominalanhänge bei den Insekten. Morph. Jb. 24: 178204.Google Scholar
Heymons, R. 1897. Bemerkungen zu den Anschauung Verhoeff's über die Abdominalanhänge der Insekten. Zool. Anz. 20: 401404.Google Scholar
Heymons, R. 1898. Bemerkungen zu dem Aufsatz Verhoeff's “Noch einige Worte über Segmentanhänge bei Insekten und Myriopoden”. Zool. Anz. 21: 173180.Google Scholar
Heymons, R. 1899. Der morphologische Bau des Insektenabdomens. Eine kritische Zusammenstellung auf anatomischen und embryologischen Gebiete. Zool. Zbl. 6: 537556.Google Scholar
Hinton, H. E. 1955. On the structure, function, and distribution of the prolegs of the Panorpoidea, with a criticism of the Berlese-Imms theory. Trans. R. ent. Soc. Lond. 106: 455545.CrossRefGoogle Scholar
Hussey, P. B. 1926. Studies on the pleuropodia of Belostoma flumineum Say and Ranatra fusca Palisot de Beauvois, with a discussion of these organs in other insects. Ent. Amer. 7: 180.Google Scholar
Hyman, L. H. 1942. Comparative vertebrate anatomy. Univ. Chicago Press, Chicago. 2nd edition.Google Scholar
Imms, A. D. 1957. A general textbook of entomology. 9th edition revised by Richards, O. W. and Davies, R. G.. Methuen & Co., London.Google Scholar
Johannsen, O. A., and Butt, F. H.. 1941. Embryology of insects and myriapods. McGraw-Hill, New York.Google Scholar
Jones, B. M. 1956. Endocrine activity during insect embryogenesis. Function of the ventral head glands in locust embryos (Locustana pardalnia and Locusta migratoria, Orthoptera). J. exp. Biol. 33: 174185.CrossRefGoogle Scholar
Jones, B. M. 1962. The cultivation of insect cells and tissues. Biol. Rev. 37: 512536.CrossRefGoogle ScholarPubMed
Korschelt, E., and Heider, K.. 1899. Text-book of embryology of invertebrates. Vol. III. Arachnida, Pentastomidae, Pantopoda, Tardigrada, Onychophora, Myriapoda, Insecta. Macmillan, New York.Google Scholar
Lees, A. D. 1959. The role of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphid Megoura viciae Buckton — I. The influence of these factors on apterous viginoparae and their progeny. J. Ins. Physiol. 3: 92117.Google Scholar
Lees, A. D. 1961. Clonal polymorphism in aphids, pp. 6879. In Kennedy, J. S. (ed.), Insect polymorphism. Symp. R. ent. Soc. Lond. 1.Google Scholar
Lees, A. D. 1963. The role of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphid Megoura viciae Buckton — III. Further properties of the maternal switching mechanism in apterous aphids. J. Ins. Physiol. 9: 153164.Google Scholar
Lindsay, E. 1940. The biology of the silverfish, Ctenolepisma longicaudata Esch. with particular reference to its feeding habits. Proc. roy. Soc. Vict. (n.s.) 52: 3583.Google Scholar
Matsuda, R. 1958. On the origin of the external genitalia of insects. Ann. ent. Soc. Amer. 51: 8494.CrossRefGoogle Scholar
Mellanby, H. 1936. The later embryology of Rhodnius prolixus. J. exp. Biol. 79: 142.Google Scholar
Novak, V. 1961. Aspects of phylogenesis in holometabolous insects as related to data on metamorphosis hormones. Ent. Rev. 40: 16 (A.I.B.S. translation).Google Scholar
O'Connor, R. J. 1939. Experiments on the development of the amphibian mesonephros. J. Anat. 74: 3444.Google Scholar
Perry, R. P. 1957. Changes in the ultraviolet absorption spectrum of parts of living cells following irradiation with an ultraviolet microbeam. Exp. Cell Res. 12: 546559.Google Scholar
Quadri, M. A. H. 1940. On the development of the genitalia and their ducts of orthopteroid insects. Trans. R. ent. Soc. Lond. 90: 121175.Google Scholar
Rakshpal, R. 1961. Structure and development of the reproductive organs of Gryllus veletis Alexander and Bigelow and G. pennsylvanicus Burmeister (Orthoptera: Gryllidae). Ind. J. ent. 23: 2339.Google Scholar
Rensche, B. 1959. Evolution above the species level. Methuen & Co., London.CrossRefGoogle Scholar
Roonwall, M. L. 1937. Studies on the embryology of the African migratory locust, Locusta migratoria migratorioides Reiche and Frm. (Orthoptera, Acrididae). II. Organogeny. Phil. Trans. (B) 227: 175244.Google Scholar
Rose, S. M. 1962. Tissue-are control of regeneration in the amphibian limb, pp. 153176. In Rudnick, D. (ed.), Regeneration. Ronald Press, New York.Google Scholar
Ross, H. H. 1956. A textbook of entomology. Wiley & Sons, New York. 2nd edition.Google Scholar
Roth, L. M., and Willis, E. R.. 1955. Intra-uterine nutrition of the “beetle-roach” Diploptera dytiscoides (Serv.) during embryogenesis, with notes on its biology in the laboratory (Blattaria: Diplopteridae). Psyche, Camb., Mass. 62: 5568.Google Scholar
Saxen, L., and Toivonen, S.. 1962. Primary embryonic induction. Logos Press, London.Google Scholar
Scudder, G. G. E. 1957a. Reinterpretation of some basal structures in the insect ovipositor. Nature, Lond. 180: 340341.Google Scholar
Scudder, G. G. E. 1957b. The ovipositor of the Thysanura and its interpretation in the higher insect orders Proc. R. ent. Soc. Lond. (C) 22: 4748.Google Scholar
Scudder, G. G. E. 1959. The female genitalia of the Heteroptera: morphology and bearing on classification. Trans. R. ent. Soc. Lond. 111: 405467.Google Scholar
Scudder, G. G. E. 1961a. The comparative morphology of the insect ovipositor. Trans. R. ent. Soc. Lond. 113: 2540.Google Scholar
Scudder, G. G. E. 1961b. The functional morphology and interpretation of the insect ovipositor. Canad. Ent. 93: 267272.Google Scholar
Shutts, J. H. 1952. Some characteristics of the hatching enzyme in the eggs of Melanoplus diffentialis. Proc. S. Dak. Acad. Sci. 31: 158163.Google Scholar
Silvestri, F. 1905. Thysanura, In Plate's Fauna Chilensis. Zool. Jb. Suppl. 6: 773806.Google Scholar
Slifer, E. H. 1937. The origin and fate of the membranes surrounding the grasshopper egg; together with some experiments on the source of the hatching enzyme. Quart. J. micr. Sci. 79: 493506.Google Scholar
Snodgrass, R. E. 1931. Morphology of the insect abdomen. Part I. General structure of the abdomen and its appendages. Smithson. misc. Coll. 85 (6): 1128.Google Scholar
Snodgrass, R. E. 1933. Morphology of the insect abdomen. Part II. The genital ducts and the ovipositor. Smithson. misc. Coll. 89(8): 1148.Google Scholar
Snodgrass, R. E. 1935. Principles of insect morphology. McGraw-Hill, New York.Google Scholar
Snodgrass, R. E. 1957. A revised interpretation of the external reproductive organs of male insects. Smithson. misc. Coll. 135(6): 160.Google Scholar
Spencer, G. J. 1924. Life history and control measures of the silver fish Thermobia domestica Pack. M.S. diss., Univ. Illinois (Unpubl.).Google Scholar
Stys, P. 1959. Reinterpretation of the theory on the origin of the pterygote ovipositor and notes on the terminology of the female ectodermal genitalia of insects. Acta Univ. Carolinae (Biol.) 1: 7585.Google Scholar
Verhoeff, C. 1896. Zur Morphologie der Segmentanhange bei Insekten und Myriopoden. Zool. Anz. 19: 378–383; 385388.Google Scholar
Verhoeff, C. 1897. Bemerkungen über abdominale Körperanhänge bei Insekten und Myriopoden. Zool. Anz. 20: 293300.Google Scholar
Verhoeff, C. 1898. Noch einige Worte über Segmentanhänge bei Insekten und Myriopoden. Zool. Anz. 21: 3239.Google Scholar
Verhoeff, K. W. 1902. Zur vergleichende Morphologie der Coxalorgane und Genitalanhänge der Tracheaten. Zool. Anz. 26: 6077.Google Scholar
Waddington, C. H. 1938. The morphogenetic function of a vestigial organ in the chick. J. exp. Biol. 15: 371376.Google Scholar
Walker, E. M. 1919. The terminal abdominal structures of orthopteroid insects: a phylogenetic study. Ann. ent. Soc. Amer. 12: 267316.Google Scholar
Wallace, H. 1962. Tail grafts involving anucleolate Xenopus embryos. Develop. Biol. 5: 252263.Google Scholar
Wellhouse, W. T. 1954. The embryology of Thermobia domestica Packard. Iowa St. Coil. J. Sci. 28: 416417.Google Scholar
Wigglesworth, V B. 1948. The functions of the corpus allatum in Rhodnius prolixus (Hemipetra). J. exp. Biol. 25: 114.Google Scholar
Wigglesworth, V. B. 1954. The physiology of insect metamorphosis. Cambridge Univ. Press, Cambridge.Google Scholar
Wigglesworth, V. B. 1958. Some methods for assaying extracts of the juvenile hormone in insects. J. Ins. Physiol. 2: 7384.Google Scholar
Wigglesworth, V. B. 1959. The control of growth and form: a study of the epidermal cell in an insect. Cornell Univ. Press, Ithaca.Google Scholar
Wigglesworth, V. B. 1963a. Origin of wings in insects. Nature, Lond. 197: 9798.Google Scholar
Wigglesworth, V. B. 1963b. The action of moulting hormone and juvenile hormone at the cellular level in Rhodnius prolixus. J. exp. Biol. 40: 231245.Google Scholar
Wigglesworth, V. B., Hinton, H. E., Johnson, C. G., and Leston, D.. 1963. The origin of flight in insects. Proc. R. ent. Soc. Lond. (C) 28: 1718.Google Scholar
Woodland, J. T. 1952. The styli of the firebrat, Thermobia domestica (Packard). Proc. Pa. Acad. Sci. 26: 2732.Google Scholar
Woodland, J. T. 1957. A contribution to our knowledge of lepismatid development. J. Morph. 101: 523578.Google Scholar
Willier, B. H., Weiss, P. A., and Hamburger, V.. 1955. Analysis of development. Saunders, Philadelphia.Google Scholar
Zirkle, R. E. 1957. Partial-cell irradiation. Adv. Biol. Med. Physics 5: 103146.Google Scholar