Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T21:25:42.678Z Has data issue: false hasContentIssue false

Depuration of domoic acid from different body compartmentsof the king scallop Pecten maximus grown in raft cultureand natural bed

Published online by Cambridge University Press:  25 November 2006

Juan Blanco
Affiliation:
Centro de Investigacións Mariñas, Pedras de Corón s/n, Aptdo. 13, 36620 Vilanova de Arousa, Spain
Carmen P. Acosta
Affiliation:
Centro de Investigacións Mariñas, Pedras de Corón s/n, Aptdo. 13, 36620 Vilanova de Arousa, Spain
Carmen Mariño
Affiliation:
Centro de Investigacións Mariñas, Pedras de Corón s/n, Aptdo. 13, 36620 Vilanova de Arousa, Spain
Susana Muñiz
Affiliation:
INTECMAR, Peirao de Vilaxoán, 36611 Vilagarcía de Arousa, Spain
Helena Martín
Affiliation:
Centro de Investigacións Mariñas, Pedras de Corón s/n, Aptdo. 13, 36620 Vilanova de Arousa, Spain
Ángeles Moroño
Affiliation:
INTECMAR, Peirao de Vilaxoán, 36611 Vilagarcía de Arousa, Spain
Jorge Correa
Affiliation:
INTECMAR, Peirao de Vilaxoán, 36611 Vilagarcía de Arousa, Spain
Fabiola Arévalo
Affiliation:
INTECMAR, Peirao de Vilaxoán, 36611 Vilagarcía de Arousa, Spain
Covadonga Salgado
Affiliation:
INTECMAR, Peirao de Vilaxoán, 36611 Vilagarcía de Arousa, Spain
Get access

Abstract

The depuration kinetics of the domoic acid from three body parts (i) digestive gland, (ii) adductor muscle+gonad+kidney+foot and (iii) gills+mantle of the scallop Pecten maximus was studied over 154 days. The scallops, which had accumulated the toxins during a Pseudo-nitzschia australis outbreak, were obtained from a natural bed and hung from a mussel raft in two locations (front and centre) and at three depths (2, 6 and 10 m). The time course of the depuration of domoic acid (DA), as well as the environmental variables, were monitored throughout the experiment. The whole body depurated the toxin very slowly (ca 0.007 day−1) decreasing its concentration from ca. 3200 µg DA g−1. Its kinetics was driven mostly by the digestive gland, which accounted for ca. 95% of the total toxin burden from the start of the experiment. Suspending the scallops from a raft increased the depuration rate of the whole body and digestive gland (ca. 30%) and of the edible tissues (15%). Increases of the depuration rate of domoic acid seem to be related to the pair of covariating variables temperature-salinity. Food amount does not seem to have a significant effect.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, D.W., Payne, B.S., Miller, A.C., 1995, Oxygen consumption, nitrogenous excretion, and filtration rates of Dreissena polymorpha at acclimation temperatures between 20 and 32 °C. Can. J. Fish. Aquat. Sci. 52, 1761-1767. CrossRef
Amzil, Z., Fresnel, J., Le Gal, D., Billard, C., 2001, Domoic acid accumulation in french shellfish in relation to toxic species of Pseudo-nitzschia multiseries and P. pseudodelicatissima. Toxicon 39, 1245-1251. CrossRef
Andreu, B., 1960, Ensayos sobre el efecto de la luz en el ritmo de crecimiento del mejillón (Mytilus edulis) en la Ría de Vigo. Bol. R. Soc. Esp. Hist. Nat. 58, 217-236.
Anonymous, 2002, Commission Decision 2002/226/EC of 15 March 2002 establishing special health checks for the harvesting and processing of certain bivalve molluscs with a level of annesic shellfish poison (ASP) exceeding the limit laid down by Council Directive 91/492/EEC. Off. J. Eur. Communities 16/03/02, L75, 65-66.
Arévalo F., Bermúdez de la Puente M., Salgado C., 1997, Seguimiento de biotoxinas marinas en las Rías Gallegas: control y evolución durante los años 1995-1996. In: Vieites J., Leira F. (Eds.) V Reunión Ibérica de Fitoplancton Tóxico y Biotoxinas. ANFACO-CECOPESCA, Vigo.
Bates, S.S., Bird, C.J., de Freitas, A.S.W., Foxall, R., Gilgan, M., Hanic, L.A., Johnson, G.R., McCulloch, A.W., Odense, P., Pocklington, R., Quilliam, M.A., Sim, P.G., Smith, J.C., Subba Rao, D.V., Todd, E.C.D., Walter, J.A., Wright, J.L.C., 1989, Pennate diatom Nitzschia pungens as the primary source of domoic acid, a toxin in shellfish from eastern Prince Edward Island, Canada. Can. J. Fish. Aquat. Sci. 46, 1203-1215. CrossRef
Bayne B.L., Newell R.C., 1983, Physiological energetics of marine molluscs. In: Saleuddin A.S.M., Wilbur K.M. (eds) The Mollusca. Vol. 5. Physiology part 1. Academic Press, New York, pp. 407-515.
Blanco, J., Acosta, C.P., Bermúdez de la Puente, M., Salgado, C., 2002a, Depuration and anatomical distribution of the amnesic shellfish poisoning (ASP) toxin domoic acid in the king scallop Pecten maximus. Aquat. Toxicol. 60, 111-121. CrossRef
Blanco, J., Bermúdez de la Puente, M., Arévalo, F., Salgado, C., Moroño, A., 2002b, Depuration of mussels (Mytilus galloprovincialis) contaminated with domoic acid. Aquat. Living Resour. 15, 53-60. CrossRef
Blanco, J., Moroño, A., Franco, J., Reyero, M.I., 1997, PSP detoxification kinetics in the mussel Mytilus galloprovincialis. One- and two-compartment models and the effect of some environmental variables. Mar. Ecol. Progr. Ser. 158, 165-175.
Blanco, J., Zapata, M., Moroño, A., 1996, Some aspects of the water flow through mussel rafts. Scient. Mar. 60, 275-282.
Bricelj V.M., Shumway S.E., 1991, Physiology: Energy acquisition and utilisation. In: Shumway S.E. (ed) Scallops: Biology, Ecology and Aquaculture. Elsevier, New York, pp. 305-346.
Burton R.F., 1983, Ionic regulation and water balance. In: Saleuddin A.S.M., Wilbur K.M. (Eds.) The Mollusca. Vol. 5. Physiology part 2. Academic Press, New York, pp. 291-352.
Campbell, D.A., Kelly, M.S., Busman, M., Bolch, C.J., Wiggins, E., Moeller, P.D.R., Morton, S.L., Hess, P., Shumway, S.E., 2001, Amnesic shellfish poisoning in the king scallop, Pecten maximus, from the west coast of Scotland. J. Shellfish Res. 20, 75-84.
Douglas, D.J., Kenchington, E.R., Bird, C.J., Pocklington, R., Bradford, B., Silvert, W., 1997, Accumulation of domoic acid by the sea scallop (Placopecten magellanicus) fed cultured cells of toxic Pseudo-nitzschia multiseries. Can. J. Fish. Aquat. Sci. 54, 907-913. CrossRef
Drum, A.S., Siebens, T.L., Crecelius, E.A., Elston, R.A., 1993, Domoic acid in the Pacific razor clam Siliqua patula (Dixon, 1789). J. Shellfish Res. 12, 443-450.
Fernández, L., Marco, J., Moreno, O., Santamaría, M., 2000, Ensayos de desintoxicación de ASP en Vieiras (Pecten spp.). In: Ildefonso Márquez (Coord.) VI Reunión Ibérica sobre Fitoplancton Tóxico y Biotoxinas. Junta de Andalucía, Sevilla, pp. 175-181.
Fernández M.L., Shumway S.E., Blanco J., 2003a, Management of shellfish resources. In: Hallegraeff G.M., Anderson A.D., Anderson D.M. (Eds.) Manual on Harmful Marine Microalgae. UNESCO Publishing, Paris, pp. 657-692.
Fernández M.L., Míguez A., Cacho E., Martínez A., 2003b, European approaches to marine toxin control. Towards harmonisation. In: Villalba A., Reguera B., Romalde J.L., Beiras R. (Eds.) Molluscan Shellfish Safety. Xunta de Galicia and IOC-UNESCO, Santiago de Compostela, pp. 150-167.
Gilgan M.W., Burns B.G., Landry G.J., 1990, Distribution and magnitude of domoic acid contamination of shellfish in Atlantic Canada during. In: Granéli E., Sundstrom B., Edler L., Anderson D.M. (Eds.) Toxic marine phytoplankton. Elsevier Sci. Publ. Co., Inc., New York., pp. 469-474.
Hallegraeff, G.M., 1993, A review of harmful algal blooms and their apparent global increase. Phycologia 32, 79-99. CrossRef
Heilmayer O., Honnen C., Jacob U., Chiantore M., Cattaneo-Vietti R., Brey T., 2005, Temperature effects on summer growth rates in the Antarctic scallop, Adamussium colbecki. Polar Biol. 28, 523-527,
Horner, R.A., Kusske, M.B., Moynihan, B.P., Skinner, R.N., Wekell, J.C., 1993, Retention of domoic acid by Pacific razor clams, Siliqua patula (Dixon 1789): preliminary study. J. Shellfish Res. 12, 451-456.
Kleinbaum, D.G., Kupper, L.L., Muller, K.E. Kleinbaum, D.G., Kupper, L.L., Muller, K.E., 1988, Applied regression analysis and other multivariable methods. 2nd edition. Belmont. California, Duxbury Press.
Laing, I., 2004, Filtration of king scallops (Pecten maximus). Aquaculture 240, 369-384. CrossRef
Lund, J.A.K., Barnett, H.J., Hatfield, C.L., Gauglitz, E.J., Wekell, J.C., Rasco, B., 1997, Domoic acid uptake and depuration in Dungeness crab (Cancer magister Dana, 1852). J. Shellfish Res. 16, 225-231.
MacKenzie A., White D.A., Sim P.G., Holland A.J., 1993, Domoic acid and the New Zealand Greenshell mussel (Perna canaliculus). In: Smayda T.J., Shimizu Y. (Eds.) Toxic phytoplankton blooms in the sea. Elsevier Sci. Publ. B.V, Amsterdam., pp. 607-612.
Moroño A., Pazos Y., Doval M.D., Maneiro J., 2004, Floraciones algales nocivas y condiciones oceanográficas en las rías gallegas durante los años 2001 y 2002. In: Norte M., Fernández J.J. (eds) VIII reunión Ibérica sobre fitoplancton tóxico y biotoxinas. Instituto de Bio-orgánica., La Laguna. Spain, pp. 195-210.
Navarro, J.M., Leiva, G.E., Martinez, G., Aguilera, C., 2000, Interactive effects of diet and temperature on the scope for growth of the scallop Argopecten purpuratus during reproductive conditioning. J. Exp. Mar. Biol. Ecol. 247, 67-83. CrossRef
Nielsen, M.V., Strömgren, T., 1985, The effect of light on the shell length growth and defaecation rate of Mytilus edulis (L.). Aquaculture 47, 205-221. CrossRef
Novaczek, I., Madhyastha, M.S., Ablett, R.F., Donald, A., Johnson, G., Nijjar, M.S., Sims, D.E., 1992, Depuration of domoic acid from live blue mussels (Mytilus edulis). Can. J. Fish. Aquat. Sci. 49, 312-318. CrossRef
Pazos Y., Moroño A., Miranda M., Maneiro J., 2003, Evolución de las condiciones oceanográficas y fitoplancton tóxico/nocivo en los años 1999-2000 en las Rías Gallegas. Actas de la VII Reunión Ibérica sobre fitoplancton tóxico y biotoxinas. Consellería de Agricultura, Pesca y Alimención. Generalitat de Valencia, Valencia, pp. 195-210.
Quilliam, M.A., Sim, P.G., McCulloch, A.W., McInnes, A.G., 1989, High-performance liquid chromatography of domoic acid, a marine neurotoxin, with application to shellfish and plankton. Internat. J. Environ. Anal. Chem. 36, 139-154. CrossRef
Salgado C., Maneiro J., Correa J., Pérez J.L., Arévalo F., 2003, ASP biotoxins in scallops: the practical application in Galicia of Commision Decision 2002/226/EC. In: Villalba A., Reguera B., Romalde J.L., Beiras R. (Eds.) Molluscan Shellfish Safety. Xunta de Galicia and IOC-UNESCO, Santiago de Compostela, pp. 169-177.
Shumway, S.E., Cembella, A.D., 1993, The impact of toxic algae on scallop culture and fisheries. Rev. Fish. Sci. 1, 121-150. CrossRef
Silvert, W., Subba Rao, D.V., 1992, Dynamic model of the flux of domoic acid, a neurotoxin, through a Mytilus edulis population. Can. J. Fish. Aquat. Sci. 49, 400-405. CrossRef
Vale, P., Sampayo, M.A.M., 2001, Domoic acid in Portuguese shellfish and fish. Toxicon 39, 893-904. CrossRef
Whyte J.N.C., Ginther N.G., Townsend T.D., 1995, Accumulation and depuration of domoic acid by the mussel, Mytilus californianus. In: Lassus P., Arzul G., Erard E., Gentien P., Marcaillou C. (Eds.) Harmful marine algal blooms. Technique et documentation-Lavoisier, Intercept Ltd, París, pp. 531-537.
Wohlgeschaffen, G.D., Mann, K.H., Subba Rao, D.V., Pocklington, R., 1992, Dynamics of the phycotoxin domoic acid: accumulation and excretion in two commercially important bivalves. J. Appl. Phycol. 4, 297-310. CrossRef