We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
http://www.editorialmanager.com/aeroj/default.aspx.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In order to know the characteristics of reducing the exhaust gas infrared signal of the lobed mixer according to the external air mixing ratio, an infrared signal and temperature distribution measurement using a micro-turbojet engine is performed. A certain amount of compressed air is supplied through an external duct mounted on the micro-turbojet engine exhaust to simulate bypass flow, which is mixed with high-temperature core air and ejected to the atmosphere. The exhaust nozzle used in the experiment is a lobed mixer with a lobe of sinusoidal shape and is designed to have a penetration of 0.2. Exhaust gas temperature and infrared signal are measured according to distance from nozzle outlet under conditions of bypass ratio of 0.5, 1.0 and 1.4. Infrared reduction rates are compared to data without compressed air supply. As a result of the experiment, as the bypass ratio increased, the infrared signal of the exhaust gas and the temperature decrease with bypass ratio increase, and in the case of a bypass ratio of 1.4, the effect of reducing the temperature is observed even at a long distance. In addition, we compared the results of previous studies of a simple cone shape without mixer with infrared reduction effect. The results show that the lobed mixer has a greater effect on reducing the temperature of the exhaust gas and reducing the infrared signal than the cone nozzle. The structure of the mixed jet flow is also studied through Schlieren visualisation and 3D temperature distribution.
This paper proposes an alternating elliptical impingement chamber in the leading edge of a gas turbine to restrain the cross flow and enhance the heat transfer, and investigates the detailed flow and heat transfer characteristics. The chamber consists of straight sections and transition sections. Numerical simulations are performed by solving the three-dimensional (3D) steady Reynolds-Averaged Navier–Stokes (RANS) equations with the Shear Stress Transport (SST) k–
$\omega$
turbulence model. The influences of alternating the cross section on the impingement flow and heat transfer of the chamber are studied by comparison with a smooth semi-elliptical impingement chamber at a cross-flow Velocity Ratio (VR) of 0.2 and Temperature Ratio (TR) of 1.00 in the primary study. Then, the effects of the cross-flow VR and TR are further investigated. The results reveal that, in the semi-elliptical impingement chamber, the impingement jet is deflected by the cross flow and the heat transfer performance is degraded. However, in the alternating elliptical chamber, the cross flow is transformed to a pair of longitudinal vortices, and the flow direction at the centre of the cross section is parallel to the impingement jet, thus improving the jet penetration ability and enhancing the impingement heat transfer. In addition, the heat transfer in the semi-elliptical chamber degrades rapidly away from the stagnation region, while the longitudinal vortices enhance the heat transfer further, making the heat transfer coefficient distribution more uniform. The Nusselt number decreases with increase of VR and TR for both the semi-elliptical chamber and the alternating elliptical chamber. The alternating elliptical chamber enhances the heat transfer and moves the stagnation point up for all VR and TR, and the heat transfer enhancement is more obvious at high cross-flow velocity ratio.
New alternative jet fuels have provided many advantages in the aviation industry, especially in terms of economics and environment. However, fuel–seal compatibility is one of the major issues that restricts alternative fuel advancement into the market. Thus, to help understand and solve the problem, this study examines the swelling effect of prepared and non-prepared O-rings in different fuels and aromatic species. Stress relaxation experiments were carried out to evaluate seal compatibility under compression, which mimics engine operation conditions. Seals were compressed and immersed in a variety of fuels and their blends for about 90h while maintaining a constant temperature 30°C and constant compression force of 25% seal thickness. The two types of elastomers investigated were fluorosilicone and nitrile O-rings, which are predominantly used in the aviation industry. Meanwhile, three different fuels and aromatic species were utilised as the variables in the experiments. The fuels used were Jet-A1, SPK and SHJFCS, while the aromatic species added were propyl benzene, tetralin and p-xylene. The swelling effects were determined from the P/Po value. Results indicate that Jet-A1 has the highest swelling effect, followed by SHJFCS and SPK. It was observed that the higher the percentage of aromatics in fuel, the higher the rate of swelling. Furthermore, prepared seals had a lower swelling rate than did non-prepared seals. Meanwhile, the intensity of the swelling effect in the Jet-A1-SHJFCS blends was in the order of 60/40, 85/15 and 50/50 blend. The work done in this study will aid in the selection of suitable aromatic species in future fuels. The novelty of this research lies in the determination of the appropriate amount of aromatic content as well as the selection of type of aromatic and its mixture fuel. Moreover, the various proportions of fuel blends with aromatic are investigated. The primary aim of this study is to understand the behaviour of prepared and non-prepared seals, and their compatibility with alternative fuels.
Particulate deposits in aero-engine turbines change the profile of blades, increase the blade surface roughness and block internal cooling channels and film cooling holes, which generally leads to the degradation of aerodynamic and cooling performance. To reveal particle deposition effects in the turbine, unsteady simulations were performed by investigating the migration patterns and deposition characteristics of the particle contaminant in a one-stage, high-pressure turbine of an aero-engine. Two typical operating conditions of the aero-engine, i.e. high-temperature take-off and economic cruise, were discussed, and the effects of particle size on the migration and deposition of fly-ash particles were demonstrated. A critical velocity model was applied to predict particle deposition. Comparisons between the stator and rotor were made by presenting the concentration and trajectory of the particles and the resulting deposition patterns on the aerofoil surfaces. Results show that the migration and deposition of the particles in the stator passage is dominated by the flow characteristics of fluid and the property of particles. In the subsequential rotor passage, in addition to these factors, particles are also affected by the stator–rotor interaction and the interference between rotors. With higher inlet temperature and larger diameter of the particle, the quantity of deposits increases and the deposition is distributed mainly on the Pressure Side (PS) and the Leading Edge (LE) of the aerofoil.
This paper presents a performance analysis on a novel engine concept, currently under development, in order to achieve hybrid air-breathing rocket technology. A component-level approach has been developed to simulate the performance of the engine at Mach 5, and the thermodynamic interaction of the different working fluids has been analysed. The bypass ramjet duct has also been included in the model. This facilitates the improved evaluation of performance parameters. The impact of ram drag induced by the intake of the engine has also been demonstrated. The whole model is introduced into a multi-platform application for aeroengine simulation to make it accessible to the interested reader. Results show that the bypass duct modelling increases the overall efficiency by approximately 7%. The model calculates the specific impulse at approximately 1800 seconds, which is 4 times higher than any chemical rocket.