Developmental Trends and Theory Baseline
Published online by Cambridge University Press: 29 October 2021
Within a short run, a novel class of mechanisms and systems has been created with parametric (elastic-dissipative) elements of sign-changing stiffness controlled in a range from positive to negative or quasi-zero values. A great deal of natural and hand-made designs on different physical bases appeared that could reveal such a phenomenon. These mechanisms and systems can cut the stiffness and provide a perfect vibration protection in a frequency range required. However, only some of them either are ready for to substitute or could be used in advanced hybrids in parallel with conventional vibration protection mechanisms and systems in certain types of machines and equipment. The main reason is very small travel where the negative or quasi-zero stiffness can be realized. A small error in passive control or a soft fault in an active one is enough to move such mechanisms and systems to performance degradation. A generic model of the parametric elements with negative and quasi-zero stiffness in small and a transition model to provide these effects in large are formulated. The model analysis led to important predictions on how to obtain an optimal trade-off between the dimensions and performance of the mechanisms and systems of novel class.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.