Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-21T14:24:02.905Z Has data issue: false hasContentIssue false

2 - The Gases That Cause the Greenhouse Effect

Published online by Cambridge University Press:  22 June 2020

William J. Manning
Affiliation:
University of Massachusetts, Amherst
Get access

Summary

The nature of global warming and climate change was introduced in Chapter 1. This chapter considers in detail the greenhouse effect and the reactive gases that cause it.

Type
Chapter
Information
Trees and Global Warming
The Role of Forests in Cooling and Warming the Atmosphere
, pp. 20 - 46
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, R. P. 2012. The role of water vapour in Earth’s energy flows. Surveys in Geophysics 33: 557564. doi: 10.1007/s10172-011-9157-8.CrossRefGoogle Scholar
American Chemical Society 2012a. It’s water vapor, not the CO2. www.acs.org/contents/acs/en/climatescience/climatenarratives/its-water-vapor-nottheCo2.html (accessed 1/05/2017).Google Scholar
American Chemical Society 2012b. Greenhouse gases and sinks. www.acs.org/content/acs/en/climatescience/greenhousesgases/sourcesandsinks.html (accessed 10/05/2017).Google Scholar
American Chemical Society 2012c. What are the properties of greenhouse gases? www.acs.org/content/acs/en/climatescience/greenhousegases/properties.html (accessed 10/05/2017).Google Scholar
Anthony, K. W., Daanen, R., Anthony, P. et al. 2016. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geoscience 9: 679. doi:10.1038/ngeo2795.Google Scholar
Archer, D., Eby, M., Brovkin, V. et al. 2009. Atmospheric lifetime of fossil fuel carbon dioxide. Annual Review Earth and Planetary Science 37: 117134. doi: 10.1146/annurev.earth.031208.10020.Google Scholar
Arneth, A., Sitch, S., Pongratz, J. et al. 2017. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience 10, 7984. doi: 10.1038/ngeo2882.Google Scholar
Ashmore, M. R. 2005. Assessing the future global impacts of ozone on vegetation. Plant, Cell and Environment 28: 949964.Google Scholar
Augenbraun, H., Matthews, E. and Sarma, D. 1997. Global Methane Inventory. NASA. https://icp.giss.nasa.gov/education/methane/intro/cycle.html (accessed 10/05/2017).Google Scholar
Betts, R. A., Jones, C. D., Knight, J. R., Keeling, R. F. and Kennedy, J. J. 2016. El Nino and a record CO2 rise. Nature Climate Change 6: 806. doi: 10.1038/nclimate3063.Google Scholar
Brazee, N. J., Marra, R. E., Gocke, L. and Van Wassenaer, P. 2011. Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedence tomography. Forestry 84: 3339. doi: 10.1093/forestry/cpq040.CrossRefGoogle Scholar
Canadell, J. G., Le Quere, C., Raupach, M. R. et al. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity and efficiency of natural sinks. Proceedings of the National Academy of Sciences 104. doi: 10.1073/pnas.0702737104.Google Scholar
Carmichael, M. J., Bernhardt, E. S., Brauer, S. L. and Smith, W. K. 2014. The role of vegetation in methane flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget? Biogeochemistry 119: 124. doi: 10.1077/s10533-014-9974-1.Google Scholar
Chung, E.-S., Soden, B., Sohn, B. J. and Shei, Li. 2014. Upper-tropospheric moistening in response to anthropogenic warming. Proceedings of the National Academy of Sciences 111: no. 32. www.pnas.org/cgl/doi/10.1073/pnas.1409659111.Google Scholar
Covey, K. R., Wood, S. A., Warren, R. J. II, Lee, X. and Bradford, M. A. 2012. Elevated methane concentrations in trees of an upland forest. Geophysical Research Letters 39: L15705. doi: 10.1029/2012GL052361, 2012.Google Scholar
Davy, R., Esau, I., Chernokulsky, A., Outten, S. and Zilitinkevich, S. 2016. Diurnal asymmetry to the observed global warming. International Journal of Climatology doi: 10.1002/joc.4688.Google Scholar
Doutriaux-Boucher, M., Webb, J., Gregory, J. M. and Boucher, O. 2009. Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophysical Research Letters 36: L02703. doi: 10.1029/2008GL036273.Google Scholar
Field, C. B., Jackson, R. B. and Mooney, H. A. 1995. Stomatal responses to increased CO2: implications from the plant to global scale. Plant, Cell and Environment 18: 12141225.Google Scholar
Fiore, A. M. 2014. No equatorial divide for a cleansing radical. Nature 513: 176178. doi: 10.1038/513176a.Google Scholar
Friedlingstein, P., Galeggo-Sala, A. V., Blyth, E. M. et al. 2012. The earth system feedbacks that matter for contemporary climate. In: Understanding the Earth System: Global Change Science for Application, eds Cornell, S. E., Prentice, I. C., House, J. I. and Downey, C.. Cambridge: Cambridge University Press. Chapter 4, pp. 102128.Google Scholar
Global Atmosphere Watch. 2017. Reactive Gases. World Meteorological Society www.wmo.int/pages/prog/arep/gaw/reactive_gases.html (accessed 18/05/2017).Google Scholar
Jacobson, M. Z. 2002. Atmospheric Pollution: History, Science, and Regulation. Cambridge: Cambridge University Press.Google Scholar
Karl, T. R. and Trenberth, K. E. 2003. Modern global climate change. Science 302: 17191723.Google Scholar
Keeling, R. E. 2008. Recording Earth’s vital signs. Science 319: 17711772.Google Scholar
Keppler, F., Hamilton, J. T. G., Brass, M. and Rockmann, T. 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature 439 doi: 10.1038/nature0420.Google Scholar
Khan, A. L., Wagner, S., Rudolph, J. et al. 2017. Dissolved black carbon in the global cryosphere: concentrations and chemical signatures. Geophysical Research Letters. doi: 10.1002/2017GL073485.Google Scholar
Kravchenko, A. N., Toosi, E. R., Gruber, A. K. et al. 2017. Hotspots of soil N2O emission enhanced through water absorption by plant residues. Nature Geoscience doi: 10.1038/ngeo2963.Google Scholar
Krupa, S. V. and Manning, W. J. 1988. Atmospheric ozone: formation and effects on vegetation. Environmental Pollution 50: 101137.Google Scholar
Lacis, A. A., Schmidt, G. A., Rind, D. and Ruedy, R. A. 2010. Atmospheric CO2: principal control knob governing Earth’s temperature. Science 330: 356359. doi: 10.1126/science.1190653.Google Scholar
Mao, J., Ribes, A., Yan, B. et al. 2016. Human-induced greening of the northern extratropical land surface. Nature Climate Change. doi: 10.1038/NCLIMATE3056.Google Scholar
Montzka, S. A., Dlugokencky, E. J. and Butler, J. H. 2011. Non-CO2 greenhouse gases and climate change. Nature 476: 4349.Google Scholar
NASA. 2015. Ozone and its precursors and sinks. https://tes.jpl.nasa.gov/mission/O3SourceSink/ (accessed 19/08/2017).Google Scholar
NASA. What’s in a name? Weather, global warming and climate change. https://climate.nasa.gov/resources/global-warming/.Google Scholar
National Snow and Ice Data Center. All about frozen ground. https:nsidc.org./cryosphere/frozenground/index.html (accessed 05/05/2017).Google Scholar
National Weather Service. Ten basic cloud types. www.srh.noaa.gov/jetstream/clouds/cloudwise/types.html (accessed 12/08/2017).Google Scholar
Pangala, S. R., Hornibrook, E. R. C., Gowing, D. J. and Gauci, V. 2015. The contribution of trees to ecosystem methane emissions in a temperate forested wetland. Global Change Biology 21: 26422654. doi: 10.1111/geb12891.Google Scholar
Pangala, S. R., Enrich-Prast, A., Basso, L. S. et al. 2017. Large emissions from floodplain trees close the Amazon methane budget. Nature. doi: 1038/nature24639.Google Scholar
Paoletti, E. and Grulke, N. E. 2005. Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. Environmental Pollution 137: 483493.Google Scholar
Parfitt, D., Hunt, J., Dockrell, D., Rogers, H. J. and Boddy, L. 2010. Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecology 3: 338346.CrossRefGoogle Scholar
Peng, S., Pio, S., Ciais, P. et al. 2013. Asymetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 501: 8892. doi: 10.1038/nature 12434.Google Scholar
Prentice, I. C., Baines, P. G., Scholze, M. and Wooster, M. J. 2012. Fundamentals of climate change science. In: Understanding the Earth System: Global Change Science for Application, eds Cornell, S. E., Prentice, I. C., House, J. I. and Downey, C.. Cambridge: Cambridge University Press. Chapter 2, pp. 3971.Google Scholar
Ramanathan, V. and Carmichael, G. 2008. Global and regional climate changes due to black carbon. Nature Geoscience 1: 221228.Google Scholar
Rice, A. L., Butenhoff, L., Shearer, M. J. et al. 2010. Emissions of anaerobically produced methane by trees. Geophysical Research Letters 37: L038..Google Scholar
Rigby, M., Montzka, S., Prinn, R. G. et al. 2017. Role of atmospheric oxidation in recent methane growth. Proceedings of the National Academy of Sciences 114: 53735377. www.pnas.org/cgi/doi/10.1073/pnas.1616426114.Google Scholar
Saunois, M., Jackson, R. B., Bousquet, P., Polter, B. and Canadell, J. G. 2016. The growing role of methane in anthropogenic climate change. Environmental Research Letters 11: 120207. doi: 10.1088/1748-9326/11/12/120207.Google Scholar
Schmidt, G. A., Ruedy, R., Miller, R. L. and Lacis, A. A. 2010. The attribution of the present-day greenhouse effect. Journal of Geophysical Research 115: D20106. doi: 10.1029/2010JO14287.CrossRefGoogle Scholar
Sitch, S., Cox, P. M., Collins, W. J. and Huntingford, C. 2007. Indirect radiative forcing of climate through ozone effects on the land-carbon sink. Nature. doi: 10.1038/nature06059.Google Scholar
Solomon, S., Daniel, J. S., Sanford, J. T. et al. 2010. Persistence of climate changes due to a range of greenhouse gases. Proceedings of the National Academy of Sciences 107: 1835418359.Google Scholar
Solomon, S., Plattner, G. K., Knutti, R. and Friedlingstein, P. 2009. Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences 106: 17041709.Google Scholar
Stocker, T. F. and 34 others. 2013. Technical Summary. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Sweeney, C. and 25 others. 2016. No significant increase in long-term CH4 emissions on North Slope of Alaska despite significant increases in air temperature. Geophysical Research Letters 43: 66046011. doi: 10.1002/2016GL0069292.CrossRefGoogle Scholar
Unger, N. 2012. New directions: enduring ozone. Atmospheric Environment 55: 456459.Google Scholar
US Environmental Protection Agency (EPA). 2017. Understanding global warming potentials. www.epa.gov/ghemissions/understanding-global-warming-potentials (accessed 17/07/2017).Google Scholar
US National Science Foundation. Clouds: the Wild Card of Climate Change. www.nsf.gov/news/special_reports/clouds/question.jsp (accessed 12/09/2017).Google Scholar
Vallier-Talbot, E. 1996. The atmosphere. In: The Weather, San Francisco: Fog City Press, pp. 2223.Google Scholar
Warner, D. L., Villarreal, S., McWilliams, K. M., Inamdar, S. and Vargas, R. 2017. Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest. Ecosystems. doi: 10.1007/s10021-016-0106-8.Google Scholar
Wen, Y., Corre, M. D., Rachow, C., Chen, L. and Veldkamp, E. 2017. Nitrous oxide emissions from stems of alder, beech and spruce in a temperate forest. Plant and Soil 2017: 420434. doi: 10.1007/s11104-017-3416-5.Google Scholar
Whitaker, R. 1996. What is weather? In: The Weather, San Francisco: Fog City Press, pp. 1617.Google Scholar
Wild, M., Ohmura, A. and Makowski, K. 2007. Impact of global dimming and brightening on global warming. Geophysical Research Letters 34: doi: 10.1029/2006GL028031.Google Scholar
World Meteorological Organization. 2016. The state of greenhouse gases in the atmosphere based on global observations through 2015. WMO Greenhouse Gas Bulletin: no. 12, 24 October 2016.Google Scholar
Yakir, D. 2017. Large rise in carbon uptake by land plants. Nature 544: 3940.Google Scholar
Zimmerman, P. R., Greenberg, J. P., Wandiga, S. O. and Crutzen, P. J. 1982. Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218: 563565.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×