Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-21T13:02:24.120Z Has data issue: false hasContentIssue false

3 - Carbon and Photochemical Oxidant Cycles

Published online by Cambridge University Press:  22 June 2020

William J. Manning
Affiliation:
University of Massachusetts, Amherst
Get access

Summary

Reradiative or greenhouse gases were reviewed in Chapter 2. Elevated carbon dioxide is considered to be the most persistent cause of global warming and climate change, having greatly exceeded the capacity of natural terrestrial and ocean sinks. Carbon dioxide is the bridge or link between the land and ocean sinks (Box 3.1). Previously these sinks functioned to keep carbon dioxide in the air at levels that did not result in appreciable global warming. Carbon moves in the environment in slow, intermediate, and relatively fast cycles. Understanding the nature of these cycles will enhance understanding of the important role of carbon and carbon dioxide in the environment.

Type
Chapter
Information
Trees and Global Warming
The Role of Forests in Cooling and Warming the Atmosphere
, pp. 47 - 80
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, D., Holloway, T., Kladar, R. M. et al. 2017. Response of power plant emissions to ambient temperatures in the Eastern United States. Environmental Science and Technology. doi: 10.1021/acs.est.6b06201.CrossRefGoogle Scholar
Archer, D., Eby, M., Brovkin, V., Ridgewell, A., Cao, L. et al. 2009. Atmospheric lifetime of fossil fuel carbon dioxide. Annual Review of Earth and Planetary Sciences 37: 117134. doi: 10.1146/annurev.earth.031208.100206.CrossRefGoogle Scholar
Ashmore, M. R. 2005. Assessing the future global impacts of ozone on vegetation. Plant, Cell and Environment 28: 949964.Google Scholar
Baccini, A., Walker, W., Carvalho, L. et al. 2017. Tropical forests are a net carbon source based on aboveground measurements of gain and and loss. Science. doi: 10.1126/science.aam5962.Google Scholar
Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P. and White, J. W. C. 2012. Increase in observed net carbon dioxide uptake by land and oceans during the last 50 years. Nature 488. doi: 10.1038/nature11299.CrossRefGoogle Scholar
Betts, R. A., Jones, C. D., Knight, J. R., Keeling, R. F. and Kennedy, J. J. 2016. El Nino and a record CO2 rise. Nature Climate Change 6: 806. doi: 10. 1038/nclimate3063.Google Scholar
Brimblecombe, P. 1986. Air Composition. Cambridge: Cambridge University Press.Google Scholar
Brinck, K., Fischer, R., Groenveld, J. et al. 2017. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nature Communications doi: 10.1038/ncomms14855.CrossRefGoogle Scholar
Campbell, J. E., Berry, J. A., Seibt, U. et al. 2017. Large historical growth in global terrestrial gross primary production. Nature 544 doi: 10.1038/nature22030.CrossRefGoogle ScholarPubMed
Canadell, J. G., Le Quéré, C., Raupach, M. R. et al. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity and efficiency of natural sinks. Proceedings of the National Academy of Sciences 104. doi: 10.1073/pnas.0702737104.Google Scholar
Carey, J. C., Tang, J., Templer, H. et al. 2016. Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences 113: 13797. doi: 10.1073/pnas.1605365113.Google Scholar
Churkina, G. 2016. The role of urbanization in the global carbon cycle. Frontiers in Ecology and Evolution. doi: 10.3389/fevo.2015.00144.Google Scholar
Cleveland, W. S. and Graedel, T. B. 1979. Photochemical air pollution in the Northeast United States. Science 204: 12731278. doi: 10.1126/science.204.4399.1273.Google Scholar
Collins, W. J., Stich, S. and Boucher, O. 2010. How vegetation impacts affect climate metrics for ozone precursors. Journal of Geophysical Research 115: D23308. doi: 10.1029/2010JD014187,2010.Google Scholar
Cooper, J. A. 1980. Environmental impact of residential wood combustion emissions and its implications. Journal of the Air Pollution Control Association 30: 855861. doi: 10.1080/00022470.1980.10465119.Google Scholar
Cornwall, W. 2017. The burning question. Wood as a carbon neutral fuel. Science 355: 1821.Google Scholar
Curran, J. C. and Curran, S. A. 2016a. Indications of positive feedback in climate change: possible reduction in biomass uptake of CO2. Weather 71. doi: 10.1002/wea.2715.Google Scholar
Curran, J. C. and Curran, S. A. 2016b. An estimate of the climate change significance of the decline in the Northern Hemisphere’s uptake of carbon dioxide in biomass. Weather 71. doi: 10.1002/wea.2762.Google Scholar
Davidson, E. A. and Janssens, I. A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440. doi: 10.1038/nature04514.CrossRefGoogle ScholarPubMed
Doutriaux-Boucher, M., Webb, M. J., Gregory, J. M. and Boucher, O. 2009. Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophysical Research Letters 36: L02703. doi: 10.1029/2008GL036273.CrossRefGoogle Scholar
Drouin, R. 2015. Wood pellets: green energy or new source of CO2 emissions? Yale Environment 360 https://e360.yale.edu/features/wood_pellets_green_energy_or_new_source_of_CO2_emissions (accessed 10/01/2018).Google Scholar
Falkowski, P., Scholes, R. J., Boyle, E. et al. 2000. The global carbon cycle: a test of our knowledge of Earth as a system. Science 290: 291296.Google Scholar
Fiore, A. M., Jacob, D. J., Bey, I. et al. 2002. Background ozone in the United States in the summer: origin, trend, and contribution to pollution episodes. Journal of Geophysical Research: Atmospheres 107: ACH 11-1-ACH 11-25.Google Scholar
Friedlingstein, P., Fung, I., Holland, E. et al. 1995. On the contribution of CO2 fertilization to the missing biospheric sink. Global Biogeochemical Cycles 9: 541556.Google Scholar
Friedman, T. L. 2016. Thank You for Being Late. An Optimist’s Guide to Thriving in the Age of Acceleration. New York: Farrar, Straus and Giroux.Google Scholar
Giardina, C. P., Litton, C. M., Crow, S. E. and Asner, G. P. 2014. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nature Climate Change. doi: 10.1038/nclimate2322.Google Scholar
Graven, H. D., Keeling, R. F., Piper, S. C. et al. 2013. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341: 10851089.Google Scholar
Griffin, K. L and Prager, C. 2017. Where does all the carbon go? Thermal acclimation of respiration and increased photosynthesis in trees at the temperate-boreal ecotone. Tree Physiology 37: 281284. doi: 10.1093/treephys/tpw133.Google Scholar
Hudiburg, T. W., Law, B. E., Wirth, C. and Luyssaert, S. 2011. Regional carbon dioxide implications of forest bioenergy production. Nature Climate Change 1: 419423. doi: 10.1038/nclimate1264.CrossRefGoogle Scholar
Hutyra, L. R., Duren, R., Gurney, K. R. et al. 2014. Urbanization and the carbon cycle: current capabilities and research outlook from the natural sciences perspective. Earth’s Future 2: 473495. doi: 10.1002/2014EF000255.Google Scholar
Jackson, R. B., Lajtha, K., Crow, S. E. et al. 2017. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution and Systematics 48: 419445. doi: 10.1146/annurev-ecolsys-112414-054234.Google Scholar
Jacob, D. J. and Winner, D. A. 2009. Effect of climate change on air quality. Atmospheric Environment 43: 5163.Google Scholar
Jacobson, M. Z. 2002. Atmospheric Pollution: History, Science, and Regulation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Jung, M., Reichstein, M., Schwalm, C. R. et al. 2017. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541: 516520. doi: 10.1038/nature20780.Google Scholar
Keeling, C. D., Chin, J. F. S. and Whorf, T. P. 1996. Increased activity of northern vegetation inferred from atmosphere CO2 measurements. Nature 382: 146.Google Scholar
Krupa, S. V. and Manning, W. J. 1988. Atmospheric ozone: formation and effects on vegetation. Environmental Pollution 50: 101137.CrossRefGoogle ScholarPubMed
Lauvaux, T., Miles, N. L., Richardson, S. J. et al. 2013. Urban emissions of CO2 from Davos, Switzerland: the first-real-time monitoring system using an atmospheric inversion technique. Journal of Applied Meteorology and Climatology 52: doi: 10.1175/JAMC-D-13-038.1.Google Scholar
Le Quéré, C., Andrew, R. M., Canadell, J. G. et al. 2016. Global carbon budget 2016. Earth System Science Data 8: 605649.Google Scholar
Lombardozzi, D., Levis, S., Bonan, G., Hess, P. G. and Sparks, J. P. 2015. The influence of chronic ozone exposure on global and water cycles. Journal of Climate. doi: 10.1175/JCLI-d-14-00223.1.Google Scholar
Luo, Y., Keenan, T. and Smith, M. 2015. Predictabilty of the terrestrial carbon cycle. Global Change Biology 21: 17371751. doi: 10.1111/gcb.12766.Google Scholar
Mackey, B., Prentice, I. C., Steffen, W. et al. 2013. Untangling the confusion around land carbon science and climate litigation policy. Nature Climate Change 3: 552557. doi: 10.1038/NCLIMATE 1804.CrossRefGoogle Scholar
Mahowald, N. M., Randerson, J. T., Lindsay, K. et al. 2016. Interactions between land use change and carbon cycle feedbacks. Global Biogeochemical Cycles. doi: 10.1002/2016GB005374.Google Scholar
Mann, M. E., Rahmstorf, S., Steinman, B.A., Tingley, M. and Miller, S. K. 2016. The likehood of recent record warmth. Scientific Reports 6: article number 19831. doi: 10.1038/srep19831.CrossRefGoogle Scholar
Mao, J., Ribes, A., Yan, B. et al. 2016. Human-induced greening of the northern extratropical land surface. Nature Climate Change 6. doi: 10.1038/nclimate3056.CrossRefGoogle Scholar
McDonald, J. D., Zielinskis, B., Fujia, E. M. et al. 2000. Fine particle and gaseous emission rates from residential wood. Environmental Science & Technology 34: 20180-20191. doi: 10.1021/es9909632.Google Scholar
McMahon, S. M., Parker, G. C. and Miller, D. R. 2010. Evidence for a recent increase in forest growth. Proceedings of the National Academy of Sciences 107. doi: 10.1073/pnas.0912376107.Google Scholar
Mellilo, J. M., Frey, S. D., DeAngelis, K. M. et al. 2017. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358. doi: 10.1126/science.aan2874.Google Scholar
Nabuurs, G.-J., Lindner, M., Verkerk, P. J. et al. 2013. First signs of carbon sink saturation in European forest biomass. Nature Climate Change. doi: 10.1038./NCLIMATE1853.Google Scholar
NASA. Chemistry in the sunlight: chemistry of ozone formation. https://earthobservatory.nasa.gov/Features/ChemistrySunlight/chemistry_sunlight3php (accessed 04/09/2017).Google Scholar
NASA 2019. Global Climate Change 2019. The relentless rise in carbon dioxide. http://climate.nasa.gov/climate_resources/24/graphic-the-relentless-rise-of-carbondioxide/.Google Scholar
Neumann, M., Mues, V., Moreno, A., Hasenauer, H. and Seidl, R. 2017. Climate variability drives recent tree mortality in Europe. Global Change Biology 23: 47884797. doi: 10.111/gcb.13724.Google Scholar
Nowak, D. J. and Crane, D. E. 2002. Carbon storage and sequestration by urban trees in the USA. Environmental Pollution 116: 381389. doi: 10.1016/S0269-7491(01)00214-7.Google Scholar
Okin, G. S. 2017. Environmental impacts of food consumption by dogs and cats. PLoS ONE 12. doi: 10.1371/journal.pone.0181301.Google Scholar
Pan, Y., Birdsey, R. A., Fang, J. et al. 2011. A large and persistent carbon sink in the world’s forests. Science 333: 988993.CrossRefGoogle ScholarPubMed
Prairie, Y. T. and Duarte, C. M. 2007. Direct and indirect metabolic CO2 release by humanity. Biogeosciences 4: 215217.Google Scholar
Prentice, I. C., Baines, P., Scholze, M. and Wooster, M. J. 2012. Fundamentals of climate change science. In: Understanding the Earth System: Global Change Science for Application, eds Cornell, S. E., Prentice, I. C., House, J. I. and Downey, C.. Cambridge: Cambridge University Press. Chapter 2, pp. 3971.Google Scholar
Reichstein, M., Bahn, M., Clais, P. et al. 2013. Climate extremes and the carbon cycle. Nature 500. doi: 10.1038/nature12350.Google Scholar
Riebeek, H. 2011. The carbon cycle. NASA. https://earthobservatory.nasa.gov/Features/CarbonCycle/ (accessed 01/04/2016).Google Scholar
Riley, W. J., Zhu, Q. and Tang, J. Y. 2018. Weaker climate feedbacks from nutrient uptake during photosynthesis-inactive periods. Nature Climate Change 8: 10021006. https://doi.org/10.1038/s41558-018-0325-4.Google Scholar
Royal Society of Chemistry. Carbon. www.rsc.org/periodictable/element/6/carbon (accessed 07/08/2016).Google Scholar
Ryan, M. G., Harmon, N. E., Birdsey, R. A. et al. 2010. A synthesis of the science on forests and carbon for U.S. forests. Issues in Ecology 13: 116.Google Scholar
Sawakuchi, H. O., Neu, V., Ward, N. D. et al. 2017. Carbon dioxide emissions along the Lower Amazon River. Frontiers in Marine Science 4 doi: 10.3389/fmars.2017.00076.Google Scholar
Sayer, E. J., Heard, M. S., Grant, H. K., Marthews, T. R. and Tanner, E. V. J. 2011. Soil carbon release enhanced by increased tropical forest litterfall. Nature Climate Change 1: 304307. doi: 10.1038/nclimate1190.Google Scholar
Schadel, C., Bader, M. K. F., Schurr, A. G. et al. 2016. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Climate Change 6: 950953. doi: 10.1038/nclimate3054.Google Scholar
Schimel, D. 2007. Carbon cycle conundrums. Proceedings of the National Academy of Sciences 104: 1835318354. www.pnas.org/cgi/doi/10.1073/pnas.0709331104.Google Scholar
Sitch, S., Cox, P. M., Collins, W. J. and Huntingford, C. 2007. Indirect radiative forcing of climate through ozone effects on the land-carbon sink. Nature. doi: 10.1038/nature06059.Google Scholar
Smith, W. K. 2015. Large divergence of satellite and earth system model estimates of global terrestrial CO2 fertilization. Nature Climate Change 7. doi: 10.1038/nclimate2879.Google Scholar
Solomon, S., Plattner, G.-K., Knutti, R. and Friedlingstein, P. 2009. Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences 106: 17041709.Google Scholar
Sulman, N., Phillips, R. P., Oishi, A. C., Shevliakova, E. and Pacala, S. W. 2014. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nature Climate Change 4. doi: 10.1038/NCLIMATE2436.Google Scholar
Sun, Y., Frenkenberg, J.D., Wood, J.D. et al. 2017. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence Science 358: 6360. doi: 10.1126/science.aam5747.Google Scholar
Tang, Y., Chen, A. and Zhao, S. 2016. Carbon storage and sequestration of urban street trees in Beijing. Frontiers in Ecology and Evolution 4 May 2016. doi: 10. 3389/fevo.2016.0005z3.Google Scholar
Unger, N. 2012. New directions: enduring ozone. Atmospheric Environment 55: 456458. doi: 10.1016/jatmosenv.2012.03.036.Google Scholar
Unger, N. 2014. Human land-use-driven reduction of forest volatiles cools global climate. Nature Climate Change doi: 10.1038/nclimate2347.Google Scholar
United Kingdom Forestry Commission. Ozone exposure indices. www.forestry.gov.uk/fr/infd-622kb5 (accessed 04/09/2017).Google Scholar
United Nations. 2017. World population prospects: the 2017 revision (accessed 24/08/2017).Google Scholar
US Energy Information Administration. 2017a. How much carbon dioxide is produced from burning gasoline and diesel fuel? www.eig.gov/tools/faq.php?id=307&t=11 (accessed 8/01/2018).Google Scholar
US Energy Information Administration. 2017b. How much carbon dioxide is produced when different fuels are burned? www.eia.gov/tools/faqs/fap.php?id=73&t=11 (accessed 8/01/2018).Google Scholar
US Environmental Protection Agency. 2015. National ambient air quality standards (NAAQS) for ozone. www.epa.gov/ground-level-ozone-pollution/2015-national-ambient-air-quality-standards-naaqs-ozone (accessed 19/04/2017).Google Scholar
van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y. and Hungate, B. A. 2014. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science Express 24 April 2014. doi: 10.1126/science.1249534.Google Scholar
van Straaten, O., Wolf, K., Tchienkousa, M. et al. 2015. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proceedings of the National Academy of Sciences 112: 99569960. doi: 10.1073/pnas.1504628112.Google Scholar
Velasco, E. and Roth, M. 2010. Cities as net sources of CO2: review of CO2 exchange in urban environments measured by eddy covariance technique. Geography Compass 4: 12381259. doi: 10. 1111/j.1749-8198.2010.00384.x.Google Scholar
Velasco, E., Roth, M., Borford, L. and Molima, L. T. 2016. Does urban vegetation enhance carbon sequestration? Landscape and Urban Planning 148: 99107.Google Scholar
Wang, G., Post, W. M. and Mayes, M. A. 2013. Development of a microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecological Applications 23: 255272. doi: 10.1890/12-0681.1.Google Scholar
West, T. O., Marland, G., Singh, N., Bhaduri, B. L. and Roddy, A. B. 2009. The human carbon budget: an estimate of the spatial distribution of metabolic carbon consumption and release in the United States. Biogeochemistry 94: 2941. doi: 10.1007/s10533-009-9306-z.Google Scholar
Weyhenmeyer, G. A., Kosten, S., Wallin, M. B. et al. 2015. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nature Geoscience 8: 933936. https://www.nature.com/articles/ngeo2582.Google Scholar
Wibe, S. 2012. Carbon dioxide emissions from wood fuels in Sweden 1980-2100. Journal of Forest Economics 18: 123130. doi: 10.1016/jfe.2011.11.003.Google Scholar
Wiedinmyer, C. 2014. Rubbish is a burning problem. Nature 512: 8. doi: 10.1038/512008a.Google Scholar
Wittig, V. E., Ainsworth, E., Naidul, S., Karnosky, D. and Long, S. 2008. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology. doi: 10.1111/j.1365-2486.2008.01774x.Google Scholar
Yakir, D. 2017. Large rise in carbon uptake by land plants. Nature 544: 3940.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×