Skip to main content Accessibility help
×
Hostname: page-component-788cddb947-m6qld Total loading time: 0 Render date: 2024-10-18T10:23:58.820Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 January 2015

Sergio Cecotti
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati, Trieste
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Supersymmetric Field Theories
Geometric Structures and Dualities
, pp. 394 - 407
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abbott, L.F., and Deser, S. 1982. Stability of gravity with a cosmological constant. Nucl. Phys., B195, 76.CrossRefGoogle Scholar
[2] Adams, J. F. 1996. Lectures on Exceptional Lie Groups. University of Chicago Press.Google Scholar
[3] Aharony, O., Bergman, O., Jafferis, D.L., and Maldacena, J. 2008. N = 6 superconformal Chern–Simons–matter theories, M2-branes and their gravity duals. JHEP, 0810, 091.CrossRef
[4] Akhiezer, D. N. 1990. Homogeneous complex manifolds. Pages 148–244. of: Several Complex Variables IV. (Encyclopaedia of Mathematical Sciences, vol. 10). Springer.CrossRefGoogle Scholar
[5] Alekseeskii, D. V. 1975. Classification of quaternionic spaces with transitive solvable group of motion. Ozv. Akad. Nauk. SSSR Ser. Math., 39, 315–362.Google Scholar
[6] Alekseev, A., Malkin, A., and Meinjrenken, E. 1998. Lie group valued momentum maps. J. Differential Geom., 48, 445–195.CrossRefGoogle Scholar
[7] Alvarez-Gaumé, L. 1983. Supersymmetry and the Atiyah–Singer index theorem. Commun. Math. Phys., 90, 161–173.CrossRefGoogle Scholar
[8] Alvarez-Gaumé, L., and Freedman, D. 1983. Potentials for the supersymmetric non–linear σ-models. Commun. Math. Phys., 91, 87.CrossRefGoogle Scholar
[9] Alvarez-Gaumé, L., and Freedman, D. Z. 1980. Kähler geometry and the renormalization of supersymmetric sigma models. Phys. Rev., D22, 846.Google Scholar
[10] Alvarez-Gaumé, L., and Freedman, D. Z. 1981. Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model. Commun. Math. Phys., 80, 443.CrossRefGoogle Scholar
[11] Alvarez-Gaumé, L., and Witten, E. 1983. Gravitational anomalies. Nucl. Phys., B234, 269–330.Google Scholar
[12] Alvarez-Gaumé, L., Freedman, D. Z., and Mukhi, S. 1981. The background field method and the ultraviolet structure of the supersymmetric nonlinear sigma model. Ann. Phys., 134, 85.CrossRefGoogle Scholar
[13] Ambrose, W., and Singer, I. M. 1953. A theorem on holonomy. Trans. Amer. Math. Soc., 79, 428–443.Google Scholar
[14] Andrianopoli, L., Bertolini, M., Ceresole, A., D'Auria, R., Ferrara, S., Fré, P., and Magri, T. 1997. N =2 supergravity and N = 2 superYang–Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys., 23, 111–189.CrossRefGoogle Scholar
[15] Andrianopoli, L., Cordaro, F., Fré, P., and Gualtieri, L. 2001. Nonsemisimple gaugings of D = 5 N = 8 supergravity and FDA.s. Class. Quant. Grav., 18, 395–414.CrossRefGoogle Scholar
[16] Andrianopoli, L., D'Auria, R., Ferrara, S., and Lledo, M. A. 2002a. Duality and spontaneously broken supergravity in flat backgrounds. Nucl. Phys., B640, 63–77.Google Scholar
[17] Andrianopoli, L., D'Auria, R., Ferrara, S., and Lledo, M. A. 2002b. Gauging of flat groups in four-dimensional supergravity. JHEP, 0207, 010.CrossRefGoogle Scholar
[18] Arnold, V. I. 1989. Mathematical Methods of Classical Mechanics. (Graduate Texts in Mathematics, vol. 60). Springer.CrossRefGoogle Scholar
[19] Arnold, V. I., and Givental, A. B. 2001. Symplectic geometry. In: Dynamical Systems. IV. (Encyclopaedia of Mathematical Sciences, vol. 4). Springer.CrossRefGoogle Scholar
[20] Atiyah, M. 1988a. Collected Works. Vol. 3. Index Theory. Oxford Science Publications; Oxford University Press.Google Scholar
[21] Atiyah, M. 1988b. Collected Works. Vol. 4. Index Theory: 2. Oxford Science Publications; Oxford University Press.Google Scholar
[22] Atiyah, M. F. 1984. The momentum map in symplectic geometry. Pages 43–51. of: Durham Symposium on Global Riemannian Geometry. Ellis Horwood Ltd.Google Scholar
[23] Atiyah, M. F., and Bott, R. 1966. A Lefschetz fixed point formula for elliptic differential operators. Bull. Amer. Math. Soc., 12, 245.CrossRefGoogle Scholar
[24] Atiyah, M. F., and Bott, R. 1982. Yang–Mills equations over Riemann surfaces. Phil. Trans. R. Soc. Lond., A308, 523–615.Google Scholar
[25] Atiyah, M. F., and Bott, R. 1984. The momentum map and equivariant cohomology. Topology, 23, 1–28.CrossRefGoogle Scholar
[26] Atiyah, M. F., Bott, R., and Shapiro, A. 1964. Clifford modules. Topology, 3, 3–38.CrossRefGoogle Scholar
[27] Awada, M., and Townsend, P. K. 1986. Gauged N = 4, d = 6 Maxwell–Einstein supergravity and “antisymmetric-tensor Chern–Simons” forms. Phys. Rev., D33(Mar), 1557–1562.Google Scholar
[28] Baez, J. C. 2002. The octonions. Bull. Amer. Math. Soc., 39, 145–205.Google Scholar
[29] Bagger, J., and Lambert, N. 2007. Modeling Multiple M2's. Phys. Rev., D75, 045020.Google Scholar
[30] Bagger, J., and Lambert, N. 2008. Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev., D77, 065008.Google Scholar
[31] Bagger, J., and Witten, E. 1983. Matter couplings in N = 2 supergravity. Nucl. Phys., B222, 1.CrossRefGoogle Scholar
[32] Banks, T., and Seiberg, N. 2011. Symmetries and strings in field theory and gravity. Phys. Rev., D83, 084019.Google Scholar
[33] Bar, Ch. 1993. Real Killing spinors and holonomy. Commun. Math. Phys., 154, 509–521.CrossRefGoogle Scholar
[34] Baum, H. 2002. Conformal Killing spinors and special geometric structures in Lorentzian geometry – a survey. arXiv:math/0202008 [math.DG].
[35] Baum, H. 2008. Conformal Killing spinors and the holonomy problem in Lorentzian geometry – A survey of new results. In: Symmetries and Overdetermined Systems of Partial Differential Equations. Springer.Google Scholar
[36] Baum, H. 2011. Holonomy groups of Lorentzian manifolds – a status report. Available at the author's webpage: http://www.mathematik.hu-berlin.de/baum/publikationen-fr/Publikationen-ps-dvi/Baum-Holono-my-report-final.pdf. Accessed August 13, 2014.
[37] Baum, H., and Kath, I. 1999. Parallel spinors and holonomy groups on pseudo'Riemannian spin manifolds. Ann. Global Anal. Geom., 17, 1–17.CrossRefGoogle Scholar
[38] Baum, H., Friedrich, T., Grunewald, R., and Kath, I. 1991. Twistor and Killing Spinors on Riemannian Manifolds. (Teubner–Texte zur Mathematik, vol. 124). Teubner-Verlag.Google Scholar
[39] Berard-Bergery, L., and Ikenakhen, A. 1993. On the holonomy of Lorentzian manifolds. In: Differential Geometry: Geometry in Mathematical Physics and Related Topics. American Mathematical Society.Google Scholar
[40] Berg, M., Haak, M., and Samtleben, H. 2003. Calabi–Yau fourfolds with flux and supersymmetry breaking. JHEP, 04, 3–38.Google Scholar
[41] Berger, M. 1955. Sur les groupes d'holonomie des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France., 83, 279–330.Google Scholar
[42] Berger, M. 2000. A Panoramic View of Riemannian Geometry. Springer.Google Scholar
[43] Berger, M., Gauduchon, P., and Mazet, E. 1971. Le spectre d'une varieté riemannienne. (Lectures Notes in Mathematics, vol. 194). Springer.CrossRefGoogle Scholar
[44] Bergman, S. 1950. The Kernel Function and Conformal Mapping. (Mathematical Surveys and Monographs, vol. 5). America Mathematical Society.CrossRefGoogle Scholar
[45] Bergshoeff, E., Koh, I. G., and Sezgin, E. 1985. Coupling YangéMills to N = 4 d = 4 supergravity. Phys. Lett., B155, 71–75.Google Scholar
[46] Bergshoeff, E., Cecotti, S., Samtleben, H., and Sezgin, E. 2010. Superconformal sigma models in three dimensions. Nucl. Phys., B838, 266–297.Google Scholar
[47] Bergshoeff, E. A., de Roo, M., and Hohm, O. 2008a. Multiple M2-branes and the embedding tensor. Class. Quant. Grav., 25, 142001.CrossRefGoogle Scholar
[48] Bergshoeff, E. A., Hohm, O., Roest, D., Samtleben, H., and Sezgin, E. 2008b. The superconformal gaugings in three dimensions. JHEP, 0809, 101.CrossRefGoogle Scholar
[49] Berndt, R. 2001. An Introduction to Symplectic Geometry. (Graduate Studies in Mathematics, vol. 26). American Mathematical Society.Google Scholar
[50] Bershadsky, M., Cecotti, S., Ooguri, H., and Vafa, C. 1994. Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys., 165, 311–428.CrossRefGoogle Scholar
[51] Besse, A. L. 1987. Einstein Manifolds. Springer.CrossRefGoogle Scholar
[52] Birmingham, D., Blau, M., Rakowski, M., and Thompson, G. 1991. Topological field theory. Phys. Rep., 209, 129–340.CrossRefGoogle Scholar
[53] Blau, M., and Thompson, G. 1995. Localization and diagonalization: a review of functional integral techniques for low-dimensional gauge theories and topological field theories. J. Math. Phys., 36, 2192–2236.CrossRefGoogle Scholar
[54] Blencowe, M. P., and Duff, M. J. 1988. Supermembranes and the signature of space-time. Nucl. Phys., B310, 387–404.Google Scholar
[55] Borel, A. 1949. Some remarks about Lie groups transitive on spheres and tori. Bull. Amer. Math. Soc., 55, 580–587.CrossRefGoogle Scholar
[56] Borel, A. 1950. Le plan projectif des octaves et les sphéres comme espaces homogènes. C. R. Acad. Sci. Paris, 230, 1378–1380.Google Scholar
[57] Borel, A. 1960. On the curvature tensor of Hermitian symmetric manifolds. Ann. Math., 71, 508–521.CrossRefGoogle Scholar
[58] Born, M., and Infeld, L. 1934. Foundations of the new field theory. Proc. R. Soc., A144, 425–451.Google Scholar
[59] Bott, R. 1957. Homogeneous vector bundles. Ann. Math., 66, 203–248.CrossRefGoogle Scholar
[60] Bott, R., and Wu, L. W. 1982. Differential Forms in Algebraic Topology. (Graduate Texts in Mathematics, vol. 82). Springer.CrossRefGoogle Scholar
[61] Bourbaki, N. 1989. Elements of Mathematics. Lie Groups and Lie Algebras. Chapt. 1–3. Springer.Google Scholar
[62] Boyer, C., and Galicki, K. 2008. Sasakian Geometry. (Oxford Mathematical Monographs). Oxford University Press.Google Scholar
[63] Boyer, C. P., and Galicki, K. 1999. 3–Sasakian manifolds. Surveys Diff. Geom., 7, 123.Google Scholar
[64] Boyer, C. P., Galicki, K., and Mann, B. M. 1993. Quaternionic reduction and Einstein manifolds. Commun. Anal. Geom., 1, 229–279.CrossRefGoogle Scholar
[65] Bröker, T., and tom Dieck, T. 1985. Representations of Compact Lie Groups. (Graduate Texts in Mathematics vol. 98). Springer.CrossRefGoogle Scholar
[66] Bryant, R., and Griffiths, P. 1983. Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle. Pages 77–102. of: Artin, M. and Tate, J. (eds.), Arithmetic and Geometry. Papers dedicated to I.R. Shafarevich. Vol. II. Birkhäuser.Google Scholar
[67] Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., and Griffiths, P. A. 1991. Exterior Differential Systems. (Mathematical Sciences Research Institute Publications, vol. 18). Springer.
[68] Bump, D. 1997. Automorphic Forms and Representations. (Studies in Advanced Mathematics, vol. 55). Cambridge University Press.CrossRefGoogle Scholar
[69] Bump, D. 2000. Lie Groups. (Graduate Texts in Mathematics, vol. 225). Springer.Google Scholar
[70] Cahen, M., and Wallach, N. 1970. Lorentzian symmetric spaces. Bull. AMS, 76, 585–591.CrossRefGoogle Scholar
[71] Calabi, E., and Vesentini, E. 1960. On compact, locally symmetric Kahler manifolds. Ann. Math., 71, 472–507.CrossRefGoogle Scholar
[72] Campbell, L. C., and West, P. C. 1984. N =2, d = 2 nonchiral supergravity and its spontaneous compactification. Nucl. Phys., B243, 112–124.Google Scholar
[73] Candelas, P. 1988. Yukawa couplings between (2,1) forms. Nucl. Phys., B298, 458.
[74] Candelas, P., Horowitz, G. T., Strominger, A., and Witten, E. 1985. Vacuum configurations for superstrings. Nucl. Phys., B 258, 46–74.Google Scholar
[75] Candelas, P., De La Ossa, X. C., Green, P. S., and Parkes, L. 1991. A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys., B 359, 21–74.Google Scholar
[76] Cannas da Silva, A. 2008. Lectures on Symplectic Geometry. (Lecture Notes in Mathematics, vol. 1764). Springer.CrossRefGoogle Scholar
[77] Carlson, J., Müller-Stach, S., and Peters, C. 2003. Period Mappings and Period Domains. (Cambridge Studies in Advanced Mathematics, vol. 85). Cambridge University Press.Google Scholar
[78] Cartan, E. 1935. Sur les domaines bornés homogènes de l'espace de n variables complexes. Abh. Math. Semin. Univ. Hamb., 11, 116–162.CrossRefGoogle Scholar
[79] Castellani, L., Ceresole, A., D'Auria, R., Ferrara, S., Fre, P., and Maina, E. 1985. σ Models, duality transformations and scalar potentials in extended supergravities. Phys. Lett., B161, 91.CrossRefGoogle Scholar
[80] Castellani, L., Ceresole, A., D'Auria, R., Ferrara, S., Fré, P., and Maina, E. 1986a. The complete N = 3 matter coupled supergravity. Nucl. Phys., B268, 376–382.Google Scholar
[81] Castellani, L., Ceresole, A., Ferrara, S., D'Auria, R., Fré, P., and Maina, E. 1986b. The complete N = 3 matter coupled supergravity. Nucl. Phys., B268, 317.CrossRefGoogle Scholar
[82] Castellani, L., D'Auria, R., and Fré, P. 1991. Supergravity and Superstrings: A Geometrical Perspective, vols. 1, 2 … 3. World Scientific.CrossRefGoogle Scholar
[83] Cecotti, S. 1988. Homogeneous Kähler manifolds and flat potential N = 1 supergravities. Phys. Lett., B215, 489–490.Google Scholar
[84] Cecotti, S. 1989. Homogeneous Kähler manifolds and T algebras in N = 2 super-gravity and superstrings. Commun. Math. Phys., 124, 23–55.CrossRefGoogle Scholar
[85] Cecotti, S. 1991. Geometry of N = 2 Landau–Ginzburg families. Nucl. Phys., B 355, 755–776.Google Scholar
[86] Cecotti, S., and Girardello, L. 1982. Functional measure, topology and dynamical supersymmetry breaking. Phys. Lett., B110, 39.CrossRefGoogle Scholar
[87] Cecotti, S., and Vafa, C. 1991. Topological antitopological fusion. Nucl. Phys., B367, 359–461.Google Scholar
[88] L., Lusanna (ed.). 1985. John Hopkins workshop on current problems in particle theory 9: new trends in particle theory. Singapore: World Scientific.
[89] Cecotti, S., Girardello, L., and Porrati, M. 1986. Constraints on partial superHiggs. Nucl. Phys., B268, 295–316.Google Scholar
[90] Cecotti, S., Ferrara, S., and Girardello, L. 1988. Hidden noncompact symmetries in string theories. Nucl. Phys., B308, 436.CrossRefGoogle Scholar
[91] Cecotti, S., Ferrara, S., and Girardello, L. 1989. Geometry of type II superstrings and the moduli of superconformal field theories. Int. J. Mod. Phys., A4, 2475.CrossRefGoogle Scholar
[92] Chapline, G., and Manton, N. S. 1983. Unification of Yang–Mills theory and super-gravity in ten dimensions. Phys. Lett., B120, 124–134.Google Scholar
[93] Chern, S. S. 1943. On the Curvatura Integra in a Riemannian manifold. Ann. Math., 46, 674–684.Google Scholar
[94] Chern, S. S. 1979. Complex Manifolds without Potential Theory (with an Appendix in the Geometry of Characteristic Classes). Springer.CrossRefGoogle Scholar
[95] Chow, B., Chu, S.-C., Glickestein, D.Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., and Ni, L. 2007. The Ricci Flow: Techniques and Applications. Part I: Geometric Aspects. (Mathematical Surveys and Monographs vol. 135). American Mathematical Society.Google Scholar
[96] Coleman, S., and Mandula, J. 1967. All possible symmetries of the S-matrix. Phys. Rev., 159, 1251.CrossRefGoogle Scholar
[97] Cordaro, F., Fré, P., Gualtieri, L., Termonia, P., and Trigiante, M. 1998. N = 8 gaugings revisited: an exhaustive classification. Nucl. Phys., B532, 245–279.Google Scholar
[98] Cremmer, E., and Julia, B. 1979. The SO(8) supergravity. Nucl. Phys., B159, 141–212.Google Scholar
[99] Cremmer, E., and Van Proeyen, A. 1985. Classification of Kähler manifolds in N = 2 vector multiplet supergravity couplings. Class. Quant. Grav., 2, 445.CrossRefGoogle Scholar
[100] Cremmer, E., Julia, B., Scherk, J., Ferrara, S., Girardello, L., and van Nieuwen-huizen, P. 1979. Spontaneous symmetry breaking and Higgs effect in supergravity without cosmological constant. Nucl. Phys., B147, 105.CrossRefGoogle Scholar
[101] Cremmer, E., Ferrara, S., Kounas, C., and Nanopoulos, D. V. 1983a. Naturally vanishing cosmological constant in N = 1 supergravity. Phys. Lett., B133, 61.CrossRefGoogle Scholar
[102] Cremmer, E., Ferrara, S., Girardello, L., and Van Proeyen, A. 1983b. Yang-Mills theories with local supersymmetry: Lagrangian, transformation laws and super-Higgs effect. Nucl. Phys., B212, 413.CrossRefGoogle Scholar
[103] de Boer, J., Manshot, J., Papadodimas, K., and Verlinde, E. 2009. The chiral ring of AdS3/CFT and the atractor mechanism. JHEP, 0903, 030.CrossRefGoogle Scholar
[104] de Roo, M. 1985. Matter coupling in N = 4 supergravity. Nucl. Phys., B255, 515–531.Google Scholar
[105] de Roo, M., van Holten, J. W., de Wit, B., and Van Proeyen, A. 1980. Chiral super-fields in N = 2 supergravity. Nucl. Phys., B173, 175.CrossRefGoogle Scholar
[106] de Wit, B. 1979. Properties of SO(8) extended supergravity. Nucl. Phys., B158, 189–212.Google Scholar
[107] de Wit, B. 1982. Conformal invariance in extended supergravity. Pages 267–312. of: Supergravity 1981. Cambridge University Press.Google Scholar
[108] de Wit, B. 2002. Supergravity. Lectures at the 2001 Le Houches Summer School. arXiv:hep-th/0212245.
[109] de Wit, B., and Freedman, D. Z. 1977. On SO(8) extended supergravity. Nucl. Phys., B130, 105–113.Google Scholar
[110] de Wit, B., and Nicolai, H. 1982. N = 8 supergravity. Nucl. Phys., B208, 323–364.Google Scholar
[111] de Wit, B., and Samtleben, H. 2005. Gauged maximal supergravities and hierarchies of nonabelian vector—tensor systems. Fortsch. Phys., 53, 442–449.CrossRefGoogle Scholar
[112] de Wit, B., and Samtleben, H. 2008. The end of the p-form hierarchy. JHEP, 0808, 015.CrossRefGoogle Scholar
[113] de Wit, B., and van Nieuwenhizen, P. 1989. Rigidly and locally supersymmetric two-dimensional non-linear σ-models with torsion. Nucl. Phys., B2, 58–94.Google Scholar
[114] de Wit, B., and Van Proeyen, A. 1984. Potentials and symmetries of general gauged N = 2 supergravity–Yang–Mills models. Nucl. Phys., B245, 89–117.Google Scholar
[115] de Wit, B., and Van Proeyen, A. 1992. Special geometry, cubic polynomials and homogeneous quaternionic spaces. Commun. Math. Phys., 149, 307–334.Google Scholar
[116] de Wit, B., van Holten, J. W., and van Proeyen, A. 1981. Structure of N =2 super-gravity. Nucl. Phys., B184, 77.CrossRefGoogle Scholar
[117] de Wit, B., Lauwers, P. G., Philippe, R., Su, S. Q., and Van Proeyen, A. 1984. Gauge and matter fields coupled to N = 2 supergravity. Phys. Lett., B134, 37.CrossRefGoogle Scholar
[118] de Wit, B., Lauwers, P. G., and Van Proeyen, A. 1985. Lagrangians of N = 2 super-gravity – matter systems. Nucl. Phys., B255, 569.CrossRefGoogle Scholar
[119] de Wit, B., Tollsten, A. K., and Nicolai, H. 1993. Locally supersymmetric D = 3 nonlinear sigma models. Nucl. Phys., B 392, 3–38.Google Scholar
[120] de Wit, B., Herger, I., and Samtleben, H. 2003a. Gauged locally supersymmetric D = 3 nonlinear sigma models. Nucl. Phys., B671, 175–216.Google Scholar
[121] de Wit, B., Samtleben, H., and Trigiante, M. 2003b. On Lagrangians and gaugings of maximal supergravities. Nucl. Phys., B655, 93–126.Google Scholar
[122] de Wit, B., Samtleben, H., and Trigiante, M. 2004. Gauging maximal supergravities. Fortsch. Phys., 52, 489–496.CrossRefGoogle Scholar
[123] de Wit, B., Nicolai, H., and Samtleben, H. 2008. Gauged supergravities, tensor hierarchies, and M-theory. JHEP, 0802, 044.CrossRefGoogle Scholar
[124] Denef, F. 2008. Les Houches Lectures on Constructing String Vacua. e-print arXiv:0803.1194.
[125] Deser, S., and Zumino, B. 1976. Consistent supergravity. Phys. Lett., 62B, 335–337.Google Scholar
[126] Deser, S., Jackiw, R., and Templeton, S. 1982. Topologically massive gauge theories. Ann. Phys., 140, 373–411.CrossRefGoogle Scholar
[127] Dieudonné, J. 1975. Eléments d'Analyse. Tome 5. Gauthier—Villars.Google Scholar
[128] Dirac, P.A.M. 1931. Quantised singularities in the electromagnetic field. Proc. R. Soc., A133, 60–73.Google Scholar
[129] Donagi, R., and Witten, E. 1996. Supersymmetric Yang–Mills theory and integrable systems. Nucl. Phys., B460, 299–334.Google Scholar
[130] Donagi, R.Y., and Wendland, K (eds.). 2008. From Hodge Theory to Integrability and TQFT: tt*-geometry. American Mathematical Society.
[131] Duistermaat, J. J., and Heckman, G. J. 1982. On the variation in the cohomology in the symplectic form of the reduced phase space. Invent. Math., 69, 259–268.CrossRefGoogle Scholar
[132] Dumitrescu, T. T., and Seiberg, N. 2011. Supercurrents and brane currents in diverse dimensions. JHEP, 1107, 095.CrossRefGoogle Scholar
[133] Dumitrescu, T. T., Festuccia, G., and Seiberg, N. 2012. Exploring curved superspace. JHEP, 1208, 141.CrossRefGoogle Scholar
[134] Eisenhart, L. P. 1997. Riemannian Geometry. Princeton University Press.Google Scholar
[135] Faddeev, L. D., and Reshetikhin, N. Yu. 1986. Integrability of the principal chiral field model in (1+1)-dimension. Ann. Phys., 167, 227.CrossRefGoogle Scholar
[136] Farkas, H. M., and Kra, I. 1992. Riemann Surfaces. (Graduate Texts in Mathematics, vol. 71). Springer.CrossRefGoogle Scholar
[137] Feger, R., and Kephart, T. W. 2012. LieART – A Mathematical application for Lie algebras and Representation Theory. arXiv:1206.6379 [math-ph].
[138] Ferrara, S., and Sabharwal, S. 1990. Quaternionic manifolds for type II superstring vacua of Calabi–Yau spaces. Nucl. Phys., B 332, 317–332.Google Scholar
[139] Ferrara, S., and Savoy, C. A. 1982. Representations of extended supersymmetry on one and two-particle states. Pages 47–84.of: Supergravity 1981. Cambridge University Press.Google Scholar
[140] Ferrara, S., and Van Proeyen, A. 1989. A theorem on N = 2 special Kahler product manifolds. Class. Quant. Grav., 6, L243.CrossRefGoogle Scholar
[141] Figueroa-O'Farrill, J. M., Kohl, C., and Spence, B. J. 1997. Supersymmetry and the cohomology of (hyper) Kahler manifolds. Nucl. Phys., B503, 614–626.Google Scholar
[142] Fischbacher, T., Nicolai, H., and Samtleben, H. 2004. Nonsemisimple and complex gaugings of N = 16 supergravity. Commun. Math. Phys., 249, 475–496.CrossRefGoogle Scholar
[143] Fomenko, A. T. 1995. Symplectic Geometry. 2nd ed. (Advanced Studies in Contemporary Mathematics, vol. 5). Gordon and Breach.Google Scholar
[144] Fré, P. 2013. Gravity, a Geometrical Course. Vol 2. Springer.Google Scholar
[145] Freed, D. S. 1999. Special Kähler manifolds. Commun. Math. Phys., 203, 31–52.CrossRefGoogle Scholar
[146] Freedman, D. Z., and van Proeyen, A. 2012. Supergravity. Cambridge University Press.CrossRefGoogle Scholar
[147] Freedman, D. Z., van Nieuwenhuizen, P., and Ferrara, S. 1976. Progress toward a theory of supergravity. Phys. Rev., D13, 3214–3218.Google Scholar
[148] Freund, P.G.O. 1988. Introduction to Supersymmetry. Cambridge Monographs on Mathematical Physics. Cambridge University Press.Google Scholar
[149] Fritzsche, K., and Grauert, H. 2002. From holomorphic functions to complex manifolds. Graduate Texts in Mathematics, vol. 213. Springer.CrossRefGoogle Scholar
[150] Gaillard, M. K., and Zumino, B. 1981. Duality rotations for interacting fields. Nucl. Phys., B193, 221–244.Google Scholar
[151] Gaiotto, D., and Witten, E. 2010. Janus configurations, Chern-Simons couplings, and the theta-angle in N=4 Super Yang-Mills Theory. JHEP, 1006, 097.CrossRefGoogle Scholar
[152] Gaiotto, D., and Yin, X. 2007. Notes on superconformal Chern-Simons-Matter theories. JHEP, 0708, 056.CrossRefGoogle Scholar
[153] Galaev, A. 2006. Isometry groups of Lobachewskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups. Rend. Circ. Mat. Palermo, 79, 87–97.Google Scholar
[154] Galicki, K. and Lawson, H. B. 1988. Quaternionic reduction and quaternionic orbifolds. Math. Ann., 282, 1–21.CrossRefGoogle Scholar
[155] Galicki, K. 1987. A generalization of the momentum mapping construction for quaternionic Kahler manifolds. Commun. Math. Phys., 108, 117–138.CrossRefGoogle Scholar
[156] Garrett, P.Volume of SL(n, ℤ)\SL(n,ℝ) and Spn(ℤ)\Spn(ℝ). Available at http://www.users.math.umn.edu/∼garrett/m/v/volumes.pdf. Accessed August 13, 2014.
[157] Gates, S. J., Grisaru, M. T., Rocek, M., and Siegel, W. 2001. Superspace, or One Thousand and One Lessons in Supersymmetry. Free electronic version of the 1983 book (with corrections). Availableas arXiv:hep-th/0108200.Google Scholar
[158] Giani, F., and Pernici, M. 1984. N = 2 supergravity in ten dimensions. Phys. Rev., D30, 325–333.Google Scholar
[159] Gibbons, G. W., and Hull, C. M. 1982. A Bogomolny bound for general relativity and solitons in N = 2 supergravity. Phys. Lett., B 109, 190.CrossRefGoogle Scholar
[160] Gibbons, G. W., Hull, C. M., and Warner, N. P. 1983. The stability of gauged super-gravity. Nucl. Phys., B218, 173.CrossRefGoogle Scholar
[161] Gindikin, S. G., Pjateckii-Sapiro, I.I. and Vinberg, E. B. 1965. Classification and canonical realization of complex bounded homogeneous domains. Pages 404–437. of: Transactions of the Moscow Mathematical Society for the Year 1963. American Mathematical Society.Google Scholar
[162] Giveon, A., Porrati, M., and Rabinovici, E. 1994. Target space duality in string theory. Phys. Rep., 244, 77–202.CrossRefGoogle Scholar
[163] Goldberg, S. I. 1982. Curvature and Homology. Dover.Google Scholar
[164] Goldberg, S. I. 1960. Conformal transformations of Kahler manifolds. Bull. Amer. Math. Soc., 66, 54–58.CrossRefGoogle Scholar
[165] Goldfeld, D. 2006. Automorphic Forms and L-functions for the Group GL(n, ℝ). (Cambridge Studies in Advanced Mathematics, vol. 99). Cambridge University Press.Google Scholar
[166] Gomis, J., Milanesi, G., and Russo, J. G. 2008. Bagger–Lambert Theory for general Lie algebras. JHEP, 0806, 075.CrossRefGoogle Scholar
[167] Gorbatsevich, V. V., Onishchik, . L., and Vinberg, E. B. 1994. Structure of Lie groups and Lie algebras. In: Lie Groups and Lie Algebras III. (Encyclopaedia of Mathematical Sciencesm, vol. 41). Springer.CrossRefGoogle Scholar
[168] Grauert, H., and Remmert, R. 1979. Theory of Stein Spaces. Springer.CrossRefGoogle Scholar
[169] Green, M. B., Schwarz, J. H., and West, P. C. 1985. Anomaly free chiral theories in six-dimensions. Nucl. Phys., B254, 327.CrossRefGoogle Scholar
[170] Green, M. B., Schwarz, J. H., and Witten, E. 2012. Superstring Theory. (Cambridge Monographs on Mathematical Physics). Cambridge University Press (2 volumes).Google Scholar
[171] Griffiths, P., and Harris, J. 1978. Principles of Algebraic Geometry. Wiley Interscience.Google Scholar
[172] Griffiths, P., and Schmid, W. 1969. Locally homogeneous complex manifolds. Acta Math., 123, 145–166.CrossRefGoogle Scholar
[173] Griffiths, P. A. 1984. Topics in Transcendental Algebraic Geometry. (Annals of Mathematical Studies.) Princeton University Press.Google Scholar
[174] Gross, D. J., Harvey, J. A., Martinec, E. J., and Rohm, R. 1985. Heterotic string theory. 1. The free heterotic string. Nucl. Phys., B256, 253.CrossRefGoogle Scholar
[175] Gross, D. J., Harvey, J. A., Martinec, E. J., and Rohm, R. 1986. Heterotic string theory. 2. The interacting heterotic string. Nucl. Phys., B267, 75.CrossRefGoogle Scholar
[176] Gross, M., Huybrechts, D., and Joyce, D. 2003. Calabi–Yau Manifolds and Related Geometries. (Universitext). Springer.CrossRefGoogle Scholar
[177] Guillemin, V., and Sternberg, S.. 1990. Symplectic Techniques in Physics. Cambridge University Press.Google Scholar
[178] Guillemin, V. W., and Sternberg, S. 1999. Supersymmetry and Equivariant de Rham Theory. Springer.CrossRefGoogle Scholar
[179] Gunaydin, M., Sierra, G., and Townsend, P. K. 1983. Exceptional supergravity theories and the MAGIC square. Phys. Lett., B133, 72.CrossRefGoogle Scholar
[180] Gunaydin, M., Romans, L. J., and Warner, N. P. 1986. Compact and noncompact gauged supergravity theories in five dimensions. Nucl. Phys., B272, 598.CrossRefGoogle Scholar
[181] Gunning, R. C., and Rossi, H. 1965. Analytic Functions of Several Complex Variables. Prentice-Hall.Google Scholar
[182] Haag, R., Lopuszanski, J. T., and Sohnius, M. 1975. All possible generators of supersymmetries of the S-matrix. Nucl. Phys., B88, 257.CrossRefGoogle Scholar
[183] Hawking, S. W. 1983. The boundary conditions for gauged supergravity. Phys. Lett., B126, 175–177.Google Scholar
[184] Helgason, S. 2001. Differential Geometry, Lie Groups, and Symmetric Spaces. (Graduate Studies in Mathematics, vol. 34). American Mathematical Society.Google Scholar
[185] Hirsch, M. W. 1976. Differential Topology. (Graduate Texts in Mathematics, vol. 33). Springer.CrossRefGoogle Scholar
[186] Hirzebruch, F. 1995. New Topological Methods in Algebraic Geometry. (Classics in Mathematics). Springer.Google Scholar
[187] Hiwaniec, H., and Kowalski, E. 2004. Analytic Number Theory. (Colloquium Publications, vol. 53). American Mathematical Society.Google Scholar
[188] Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., and Zaslov, E. 2003. Mirror Symmetry. (Clay Mathematics Monographs, vol. 1). American Mathematical Society.Google Scholar
[189] Hosomichi, K., Lee, K.-M., Lee, S., Lee, S., and Park, J. 2008a. N = 4 superconformal Chern–Simons theories with hyper and twisted hyper multiplets. JHEP, 0807, 091.CrossRefGoogle Scholar
[190] Hosomichi, K., Lee, K.-M., Lee, S., Lee, S., and Park, J. 2008b. N = 5,6 superconformal Chern–Simons theories and M2-branes on orbifolds. JHEP, 0809, 002.
[191] Howe, P. and West, P. C. 1984. The complete N = 2, d = 10 supergravity. Nucl. Phys., B238, 181–219.Google Scholar
[192] Hull, C. M. 1983. The positivity of gravitational energy and global supersymmetry. Commun. Math. Phys., 90, 545.CrossRefGoogle Scholar
[193] Hull, C. M. 1984a. A new gauging of N = 8 supergravity. Phys. Rev., D30, 760.Google Scholar
[194] Hull, C. M. 1984b. More gaugings of N = 8 supergravity. Phys. Lett., B148, 297–300.Google Scholar
[195] Hull, C. M. 1984c. Noncompact gaugings of N = 8 supergravity. Phys. Lett., B142, 39.Google Scholar
[196] Hull, C. M. 1984d. The spontaneous breaking of supersymmetry in curved space-time. Nucl. Phys., B239, 541.CrossRefGoogle Scholar
[197] Hull, C. M. 1985. The minimal couplings and scalar potentials of the gauged N = 8 supergravities. Class. Quant. Grav., 2, 343.CrossRefGoogle Scholar
[198] Hull, C. M. 2003. New gauged N = 8, D = 4 supergravities. Class. Quant. Grav., 20, 5407–5424.CrossRefGoogle Scholar
[199] Hull, C. M., and Townsend, P. K. 1995. Unity of superstring dualities. Nucl. Phys., B438, 109–137.Google Scholar
[200] Hull, C. M., and Witten, E. 1985. Supersymmetric sigma models and the heterotic string. Phys. Lett., 160 B, 398–402.Google Scholar
[201] Husemöller, D. 1994. Fibre Bundles. (Graduate Texts in Mathematics, vol. 20). American Mathematical Society.CrossRefGoogle Scholar
[202] Husemoaller, D. 2004. Elliptic Curves. 2nd ed. (Graduate Texts in Mathematics, vol. 111). Springer.Google Scholar
[203] Huybrechts, D. 2005. Complex Geometry. An Introduction. (Universitext). Springer.Google Scholar
[204] Intriligator, K., and Seiberg, N. 2013. Aspects of 3d N = 2 Chern–Simons–matter theories. JHEP, 1307, 079.CrossRefGoogle Scholar
[205] Israel, W., and Nester, J. M. 1981. Positivity of the Bondi gravitational mass. Phys. Lett., A85, 259–260.Google Scholar
[206] Jeffrey, L. C., and Kirwan, F. C. 1993. Localization for non-Abelian gauge actions. arXiv:alg-geom/9307001 [math.AG].
[207] Ji, L. 2005. Lectures on locally symmetric spaces and arithmetic groups. Pages 87–146 of: Lie Groups andAutomorphic Forms. American Mathematical Society.Google Scholar
[208] Joyce, D. D. 2000. Compact Manifolds with Special Holonomy. (Oxford Mathematical Monographs). Oxford University Press.Google Scholar
[209] Joyce, D. D. 2007. Riemannian Holonomy Groups and Calibrated Geometry. (Oxford Graduate Texts in Mathematics, vol. 12). Oxford University Press.Google Scholar
[210] Julia, B. 1981. Group disintegration. In: Hawking, S. W., and Rocek, M. (eds.). Superspace and Supergravity. Cambridge University Press.Google Scholar
[211] Kac, V.G. 1977. Lie superalgebras. Adv. Math., 26, 8.CrossRefGoogle Scholar
[212] Kao, H. C., and Lee, K. M. 1992. Self—dual Chern—Simons systems with N = 3 extended supersymmetry. Phys. Rev., D46, 4691–4697.Google Scholar
[213] Katz, S. 2006. Enumerative Geometry and String Theory. (Student Mathematical Library, vol. 32). American Mathematical Society.
[214] Kobayashi, S. 1995. Transformation Groups in Differential Geometry. (Classics in Mathematics). Springer.Google Scholar
[215] Kobayashi, S., and Nomizu, K. 1963. Foundations of Differential Geometry. Vol. 1. Wiley.Google Scholar
[216] Kodaira, K. 1954. On Käahler varieties of the restricted type (an intrinsic characterization of algebraic varieties). Ann. Math., 60, 28–48.CrossRefGoogle Scholar
[217] Kodaira, K. 1986. Complex Manifolds and Deformation of Complex Structures. (Comprehensive Studies in Mathematics, vol. 283). Springer.CrossRefGoogle Scholar
[218] Kodaira, K., and Spencer, D. C. 1958. On deformations of complex analytic structures, I–II. Ann. Math., 67, 328–466.Google Scholar
[219] Kostant, B. 1955. Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold. Trans. Amer. Math. Soc., 80, 528–542.CrossRefGoogle Scholar
[220] Kugo, T., and Townsend, P. K. 1983. Supersymmetry and the division algebras. Nucl. Phys., B221, 357–380.Google Scholar
[221] Kumar, V., Morrison, D. R., and Taylor, W. 2010. Global aspects of the space of 6D N = 1 supergravities. JHEP, 1011, 118.CrossRefGoogle Scholar
[222] Labastida, J.M.F., and Llatas, P. M. 1991. Potentials for topological sigma models. Phys. Lett., B271, 101–108.Google Scholar
[223] Lahanas, A., and Nanopoulos, D. V. 1987. The road to no–scale supergravity. Phys. Rep., 145, 1.CrossRefGoogle Scholar
[224] Lang, S. 1995. Differential and Riemannian Manifolds. (Graduate Texts in Mathematics, vol. 160). Springer.CrossRefGoogle Scholar
[225] Lang, S. 1999. Fundamentals of Differential Geometry. Graduate Texts in Mathematics, vol. 191). Springer.CrossRefGoogle Scholar
[226] Langlands, R. P. 1966. Volume of the fundamental domain for some arithmetical subgroup of Chevalley groups. Pages 235–257. of: Algebraic Groups and Discontinuous Subgroups. Proc. Symp. Pure Math. Vol. IX. American Mathematical Society.Google Scholar
[227] Leistner, T. 2007a. Towards a classification of Lorentzian holonomy groups. J. Differential Geom., 76, 423–484.CrossRefGoogle Scholar
[228] Leistner, T. 2007b. Towards a classification of Lorentzian holonomy groups. Part II: Semisimple, non-simple weak-Berger algebras. J. Differential Geom., 76, 423–484.Google Scholar
[229] Libermann, P., and Marle, C. M. 1987. Symplectic Geometry and Analytical Mechanics. Reider.CrossRefGoogle Scholar
[230] Margulis, G. A. 1991. Discrete Subgroups of Semisimple Lie Groups. Springer.CrossRefGoogle Scholar
[231] Mariño, M. 2005. Chern–Simons Theory, Matrix Models, and Topological Strings. (International Series of Monographs on Physics, vol. 131). Oxford University Press.CrossRefGoogle Scholar
[232] McLenaghan, R. G. 1974. On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I: Derivation of necessary conditions. Ann. Inst. H. Poincari, A20, 153–188.Google Scholar
[233] Merkulov, S., and Schwachhöfer. 1999. Classification of irreducible holonomies of torsion–free affine connections. Ann. Math., 150, 77–150.CrossRefGoogle Scholar
[234] Meyers, S. B., and Steenrod, N. 1939. The group of isometries of a Riemannian manifold. Ann. Math., 40, 400–416.Google Scholar
[235] Milnor, J., and Stasheff, J. 1974. Characteristic Classes. (Annals of Mathematical Studies, vol. 76). Princeton University Press.Google Scholar
[236] Mohaupt, T. 2001. Black hole entropy, special geometry and strings. Fortsch. Phys., 49, 3–161.3.0.CO;2-#>CrossRefGoogle Scholar
[237] Montgomery, D., and Samelson, H. 1943. Transformations groups on spheres. Ann. Math., 44, 454–470.CrossRefGoogle Scholar
[238] Moore, G. W. 2011. A Minicourse on Generalized Abelian Gauge Theory, Self–Dual Theories, and Differential Cohomology. Available at the author's webpage: http://www.physics.rutgers.edu/gmoore/SCGP-Minicourse.pdf. Accessed August 13, 2014.
[239] Morgan, J., and Tian, G. 2007. Ricci Flow and the Poincare Conjecture. (Clay Mathematics Monographs, vol. 3). American Mathematical Society.Google Scholar
[240] Morozov, A. 1994. Integrability and matrix models. Phys. Usp., 37, 1–55.CrossRefGoogle Scholar
[241] Morris, D.W. 2001. Introduction to Arithmetic Groups. Available as arXiv:math/0106063.
[242] Morse, M. 1934. The Calculus of Variations in the Large. (Colloquium Publications, vol. 18). American Mathematical Society (10th printing 2001).Google Scholar
[243] Narain, K. S. 1986. New heterotic string theories in uncompactified dimension < 10. Phys. Lett., B169, 41.CrossRefGoogle Scholar
[244] Narain, K. S., Sarmadi, M. H., and Witten, E. 1987. A note on toroidal compactification of heterotic string theory. Nucl. Phys., B279, 369.CrossRefGoogle Scholar
[245] Nester, J. A. 1981a. A new gravitational energy expression with a simple positivity proof. Phys. Lett., A83, 241–242.Google Scholar
[246] Nester, J. A. 1981b. Positivity of the Bondi gravitational mass. Phys. Lett., A85, 259–260.Google Scholar
[247] Nester, J. M. 1981c. A new gravitational energy expression with a simple positivity proof. Phys. Lett., A83, 241–242.Google Scholar
[248] Nicolai, H., and Samtleben, H. 2001a. Compact and noncompact gauged maximal supergravities in three-dimensions. JHEP, 0104, 022.CrossRefGoogle Scholar
[249] Nicolai, H., and Samtleben, H. 2001b. Maximal gauged supergravity in three dimensions. Phys. Rev. Lett., 86, 1686–1689.CrossRefGoogle ScholarPubMed
[250] Nicolai, H., and Samtleben, H. 2003. Chern–Simons versus Yang–Mills gaugings in three dimensions. Nucl. Phys., B668, 167–178.Google Scholar
[251] Nijenhuis, A. 1953. On the holonomy group of linear connections. Indag. Math., 15, 233–249.Google Scholar
[252] Nishino, H., and Sezgin, E. 1984. Matter and gauge couplings of N = 2 supergravity in six dimensions. Phys. Lett., B144, 187–192.Google Scholar
[253] Novikov, S., Munakov, S. V., Pitaevsky, L. P., and Zakharov, V. E. 1984. Theory of Solitons: The Inverse Scattering Method. (Contemporary Soviet Mathematics). Plenum.Google Scholar
[254] Olmos, C. 2005. A geometric proof of the Berger holonomy theorem. Ann. Math., 161, 579–588.CrossRefGoogle Scholar
[255] Ooguri, H., and Vafa, C. 2007. On the geometry of the string landscape and the swampland. Nucl. Phys., B766, 21–33.Google Scholar
[256] Pernici, M., Pilch, K., and van Nieuwenhuizen, P. 1984. Gauged maximally extended supergravity in seven dimensions. Phys. Lett., B143, 103.CrossRefGoogle Scholar
[257] Petrov, V. I. 1969. Einstein Spaces. Princeton University Press.CrossRefGoogle Scholar
[258] Polchinski, J. 1998. String Theory. (Cambridge Monographs on Mathematical Physics). Cambridge University Press (2 volumes).Google Scholar
[259] Poletskiǐ, E.A., and Shabat, B. V. 1989. Invariant metrics. In: Several Complex Variables, III. (Encyclopaedia of Mathematical Sciences, vol. 9). Springer.Google Scholar
[260] Polyakov, A. M. 1981. Quantum geometry of fermionic strings. Phys. Lett., B103, 211–213.Google Scholar
[261] Polyakov, A.M., and Wiegmann, P. B. 1983. Theory of nonabelian Goldstone bosons. Phys. Lett., B131, 121–126.Google Scholar
[262] Postnikov, M. M. 1994. Lectures in Geometry: Lie Groups and Lie Algebras. Editorial URSS.Google Scholar
[263] Postnikov, M. M. 2001. Geometry VI. Riemannian Geometry. (Encyclopaedia of Mathematical Sciences, vol. 91). Springer.Google Scholar
[264] Pyatetskiǐ-Shapiro, I. I. 1960. Automorphic Functions and the Geometry of Classical Domains. Gordon and Breach.Google Scholar
[265] Romans, L. J. 1986. Self–duality for interacting fields: covariant field equations for six-dimensional chiral supergravities. Nucl. Phys., B276, 71–92.Google Scholar
[266] Salam, A., and Sezgin, E. 1989. Supergravity in Diverse Dimensions, vols. 1 & 2. World Scientific.CrossRefGoogle Scholar
[267] Salamon, S. 1989. Riemannian Geometry and Holonomy Groups. Longman Scientific and Technical.Google Scholar
[268] Schoen, R., and Yau, S.-T. 1979a. Positivity of the total mass of a general space-time. Phys.Rev. Lett., 43, 1457–1459.CrossRefGoogle Scholar
[269] Schoen, R., and Yau, S.-T. 1981. Proof of the positive mass theorem. 2. Commun. Math. Phys., 79, 231–260.CrossRefGoogle Scholar
[270] Schoen, R., and Yau, S. T. 1979b. On the proof of the positive mass conjecture in General Relativity. Commun. Math. Phys., 65, 45–76.CrossRefGoogle Scholar
[271] Schoen, R. M., and Yau, S.-T. 1979c. Proof of the positive action conjecture in quantum gravity. Phys. Rev. Lett., 42, 547–548.CrossRefGoogle Scholar
[272] Seiberg, N., and Taylor, W. 2011. Charge lattices and consistency of 6D supergravity. JHEP, 1106, 001.CrossRefGoogle Scholar
[273] Seiberg, N., and Witten, E. 1994a. Electric–magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang–Mills theory. Nucl. Phys., B426, 19–52.Google Scholar
[274] Seiberg, N., and Witten, E. 1994b. Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD. Nucl. Phys., B431, 484–550.Google Scholar
[275] Seiberg, N., and Witten, E. 1996. Comments on string dynamics in six-dimensions. Nucl. Phys., B471, 121–134.Google Scholar
[276] Serre, J. P. 1973. A Course in Arithmetic. (Graduate Texts in Mathematics, vol. 7). Springer.CrossRefGoogle Scholar
[277] Sezgin, E., and Tanii, Y. 1995. Superconformal sigma models in higher than two dimensions. Nucl. Phys., B443, 70–84.Google Scholar
[278] Simons, J. 1962. On transitivity of holonomy systems. Ann. Math., 76, 213–234.CrossRefGoogle Scholar
[279] Slansky, R. 1981. Group theory for unified model building. Phys. Rep., 79C, 1–118.Google Scholar
[280] Sternberg, S. 1983. Lectures on Differential Geometry. Chelsea Pub. Co.Google Scholar
[281] Strathdee, J. 1987. Extended Poincare supersymmetry. Int. J. Mod. Phys., A2, 273–300.Google Scholar
[282] Swann, A. F. 1991. Hyperkähler and quaternionic Kähler geometry. Math. Ann., 289, 421–450.CrossRefGoogle Scholar
[283] Tanii, Y. 1984. N = 8 supergravity in six dimensions. Phys. Lett., B147, 47–51.Google Scholar
[284] Terras, A. 1988. Harmonic Analysis on Symmetric Spaces and Applications. II. Springer.CrossRefGoogle Scholar
[285] Tian, G. 1987. Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Petersson–Weil metric. Pages 629–645. of: Yau, S. T. (ed.), Mathematical Aspects of String Theory. World Scientific.Google Scholar
[286] Townsend, P. K. 1984. A new anomaly free chiral supergravity from compactification on K3. Phys. Lett., B139, 283–287.Google Scholar
[287] Vafa, C. 2005. The String Landscape and the Swampland. e-print arXix:hep-th/0509212.
[288] van Leeuwen, M.A.A., Cohen, A.M., and Lisser, B. 1992. LiE, A Package for Lie Group Computations. Computer Algebra Nederland.Google Scholar
[289] Van Nieuwenhuizen, P. 1981. Supergravity. Phys. Rep., 68, 189–398.CrossRefGoogle Scholar
[290] van Proeyen, A. 1999. Tools for Supersymmetry. (Lectures at the Spring School in Calimananesti, Romania). arXiv:hep-th/9910033.
[291] van Proyen, A. 1983. Superconformal tensor calculus in N = 1 and N = 2 super-gravity. In: Supersymmetry and Supergravity 1983. World Scientific.Google Scholar
[292] Vinberg, E. B. 1965. The theory of convex homogeneous cones. Pages 340–403. of: Transactions of the Moscow Mathematical Society for the Year 1963. American Mathematical Society.Google Scholar
[293] Voisin, C. 2007a. Hodge Theory and Complex Algebraic Geometry I. (Cambridge Studies in Advanced Mathematics, vol. 76). Cambridge University Press.Google Scholar
[294] Voisin, C. 2007b. Hodge Theory and Complex Algebraic Geometry II. (Cambridge Studies in Advanced Mathematics, vol. 77). Cambridge University Press.
[295] Wang, M. Y. 1989. Parallel spinors and parallel forms. Ann. Global Anal. Geom., 7, 59–68.CrossRefGoogle Scholar
[296] Weinberg, S. 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley.Google Scholar
[297] Wess, J., and Bagger, J. 1992. Supersymmetry and Supergravity (Revised edn.). (Princeton Series in Physics). Princeton University Press.Google Scholar
[298] West, P. 1990. Introduction to Supersymmetry and Supergravity. (Revised and extended second edn.). World Scientific.CrossRefGoogle Scholar
[299] Witten, E. 1979. Dyons of charge eθ/2π. Phys. Lett., B86, 283–287.Google Scholar
[300] Witten, E. 1981. A new proof of the positive energy theorem. Commun. Math. Phys., 80, 381–402.CrossRefGoogle Scholar
[301] Witten, E. 1982a. Constraints on supersymmetry breaking. Nucl. Phys., B202, 253.CrossRefGoogle Scholar
[302] Witten, E. 1982b. Supersymmetry and Morse theory. J. Differential Geom., 17, 661–692.CrossRefGoogle Scholar
[303] Witten, E. 1983a. Current algebra, baryons, and quark confinement. Nucl. Phys., B223, 433–444.Google Scholar
[304] Witten, E. 1983b. Global aspects of current algebra. Nucl. Phys., B223, 422–432.Google Scholar
[305] Witten, E. 1983c. Some inequalities among hadron masses. Phys. Rev. Lett., 31, 2351–2354.Google Scholar
[306] Witten, E. 1986. New issues in manifolds of SU(3) holonomy. Nucl. Phys., B283, 79.CrossRefGoogle Scholar
[307] Witten, E. 1987. Elliptic genera and quantum field theory. Commun. Math. Phys., 109, 525–536.CrossRefGoogle Scholar
[308] Witten, E. 1988a. 2+1 dimensional supergravity as an exactly soluble system. Nucl. Phys., B 311, 46–78.Google Scholar
[309] Witten, E. 1988b. Topological quantum field theory. Commun. Math. Phys., 117, 411–449.CrossRefGoogle Scholar
[310] Witten, E. 1988c. Topological σ-models. Commun. Math. Phys., 118, 411.CrossRefGoogle Scholar
[311] Witten, E. 1989. Quantum field theory and the Jones polynomial. Commun. Math. Phys., 121, 351.CrossRefGoogle Scholar
[312] Witten, E. 1992. Two–dimensional gauge theories revisited. J. Geom. Phys., 9, 303–368.CrossRefGoogle Scholar
[313] Witten, E. 1995a. On S-duality in Abelian gauge theory. Selecta Math., 1, 383.CrossRefGoogle Scholar
[314] Witten, E. 1995b. Some Comments on String Dynamics. e-preprint arXiv:hep-th/9507121.
[315] Witten, E. 1996. talk given at the Newton Institute for Mathematical Sciences, Cambridge.
[316] Witten, E. 1998. New ‘gauge’ theories in six dimensions. JHEP, 9801, 001.CrossRefGoogle Scholar
[317] Witten, E. 2005. Non—Abelian localization for Chern—Simons theory. J. Geom. Phys., 70, 183–323.Google Scholar
[318] Witten, E., and Bagger, J. 1982. Quantization of Newton's constant in certain super-gravity theories. Phys. Lett., B 115, 202.CrossRefGoogle Scholar
[319] Wolf, J. A. 1962. Discrete groups, symmetric spaces, and global holonomy. Amer. J. Math., 84, 527–542.CrossRefGoogle Scholar
[320] Wolf, J. A. 1965. Complex homogeneous contact manifolds and quaternionic symmetric spaces. J. Math. Mech., 14, 1033–1047.Google Scholar
[321] Wu, H. 1964. On the de Rham decomposition theorem. Ill. J. Math., 8, 291–310.Google Scholar
[322] Wu, H. 1967. Holonomy groups of indefinite metrics. Pac. J. Math., 20, 351–392.CrossRefGoogle Scholar
[323] Xu, Y. 2000. Theory of Complex Homogenous Bounded Domains. Science Press/Kluwer Academic Publishers.Google Scholar
[324] Yano, K. 1952. On harmonic and Killing vector fields. Ann. Math., 55, 38–45.CrossRefGoogle Scholar
[325] Yano, K. 2011. The Theory of Lie Derivatives and its Applications. Nabu Press.
[326] Yau, S. T. 1978. On the Ricci curvature of a compact Kahler manifold and the complex Monge—Ampere equation. I. Commun. Pure Appl. Math., 31, 339–411.CrossRefGoogle Scholar
[327] Zamolodchikov, A. B. 1986. Irreversibility of the flux of the renormalization group in a 2D field theory. JETP Lett., 43, 730–732.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Sergio Cecotti, Scuola Internazionale Superiore di Studi Avanzati, Trieste
  • Book: Supersymmetric Field Theories
  • Online publication: 05 January 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107284203.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Sergio Cecotti, Scuola Internazionale Superiore di Studi Avanzati, Trieste
  • Book: Supersymmetric Field Theories
  • Online publication: 05 January 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107284203.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Sergio Cecotti, Scuola Internazionale Superiore di Studi Avanzati, Trieste
  • Book: Supersymmetric Field Theories
  • Online publication: 05 January 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107284203.015
Available formats
×