Published online by Cambridge University Press: 27 July 2023
This chapter focuses on photonic analog of the spin-orbit coupling of electrons occurring inside a graded index medium. Section 9.1 describes two physical mechanisms that can produce changes in the state of polarization of an optical beam. The vectorial form of the wave equation is solved in Section 9.2 to introduce a path-dependent geometrical phase. The photonic analog of the spin-orbit coupling and its implications are also discussed in this section. Section 9.3 considers how the scalar LPlm modes change when the coupling term is taken into account. We treat this term first as a perturbation and then obtain the exact vector modes of a GRIN medium. A quantum approach is used in Section 9.4 to discuss various polarization-dependent effects.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.