Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T23:24:41.444Z Has data issue: false hasContentIssue false

Section VI - Histiocytic Disorders and Neoplasms

Published online by Cambridge University Press:  25 January 2024

Xiayuan Liang
Affiliation:
Children’s Hospital of Colorado
Bradford Siegele
Affiliation:
Children’s Hospital of Colorado
Jennifer Picarsic
Affiliation:
Cincinnati Childrens Hospital Medicine Center
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Cline, MJ. Histiocytes and histiocytosis. Blood. 1994;84(9):2840–53.Google Scholar
Christie, LJ, Evans, AT, Bray, SE, Smith, ME, Kernohan, NM, Levison, DA, et al. Lesions resembling Langerhans cell histiocytosis in association with other lymphoproliferative disorders: a reactive or neoplastic phenomenon? Hum Pathol. 2006;37(1):32–9.Google Scholar
Shanmugam, V, Craig, JW, Hornick, JL, Morgan, EA, Pinkus, GS, Pozdnyakova, O. Cyclin D1 is expressed in neoplastic cells of Langerhans cell histiocytosis but not reactive Langerhans cell proliferations. Am J Surg Pathol. 2017;41(10):1390–6.CrossRefGoogle Scholar
Guilliams, M, Ginhoux, F, Jakubzick, C, Naik, SH, Onai, N, Schraml, BU, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14(8):571–8.Google Scholar
Ginhoux, F, Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44(3):439–49.CrossRefGoogle ScholarPubMed
Reid, C, Fryer, P, Clifford, C, Kirk, A, Tikerpae, J, Knight, S. Identification of hematopoietic progenitors of macrophages and dendritic Langerhans cells (DL-CFU) in human bone marrow and peripheral blood. Blood. 1990;76(6):1139–49.CrossRefGoogle ScholarPubMed
Allen, CE, Li, L, Peters, TL, Leung, HC, Yu, A, Man, TK, et al. Cell-specific gene expression in Langerhans cell histiocytosis lesions reveals a distinct profile compared with epidermal Langerhans cells. J Immunol. 2010;184(8):4557–67.Google Scholar
Durham, BH, Roos-Weil, D, Baillou, C, Cohen-Aubart, F, Yoshimi, A, Miyara, M, et al. Functional evidence for derivation of systemic histiocytic neoplasms from hematopoietic stem/progenitor cells. Blood. 2017;130(2):176–80.Google Scholar
Milne, P, Bigley, V, Bacon, CM, Neel, A, McGovern, N, Bomken, S, et al. Hematopoietic origin of Langerhans cell histiocytosis and Erdheim Chester disease in adults. Blood. 2017;130(2):167–75.Google Scholar
Schwentner, R, Jug, G, Kauer, MO, Schnöller, T, Waidhofer-Söllner, P, Holter, W, et al. JAG2 signaling induces differentiation of CD14(+) monocytes into Langerhans cell histiocytosis-like cells. J Leukoc Biol. 2019;105(1):101–11.Google Scholar
Lim, KPH, Milne, P, Poidinger, M, Duan, K, Lin, H, McGovern, N, et al. Circulating CD1c+ myeloid dendritic cells are potential precursors to LCH lesion CD1a+CD207+ cells. Blood Adv. 2020;4(1):8799.Google Scholar
Hoeffel, G, Ginhoux, F. Fetal monocytes and the origins of tissue-resident macrophages. Cellular Immunology. 2018;330:515.CrossRefGoogle ScholarPubMed
Bain, CC, Hawley, CA, Garner, H, Scott, CL, Schridde, A, Steers, NJ, et al. Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nature Communications. 2016;7(1):ncomms11852.Google Scholar
Boyette, LB, Macedo, C, Hadi, K, Elinoff, BD, Walters, JT, Ramaswami, B, et al. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS One. 2017;12(4):e0176460.CrossRefGoogle ScholarPubMed
Stout, RD, Jiang, C, Matta, B, Tietzel, I, Watkins, SK, Suttles, J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 2005;175(1):342–9.CrossRefGoogle ScholarPubMed
Collin, M, Bigley, V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):320.CrossRefGoogle ScholarPubMed
Collin, M, McGovern, N, Haniffa, M. Human dendritic cell subsets. Immunology. 2013;140(1):2230.Google Scholar
Zaba, LC, Fuentes-Duculan, J, Steinman, RM, Krueger, JG, Lowes, MA. Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J Clin Invest. 2007;117(9):2517–25.CrossRefGoogle Scholar
van Nierop, K, de Groot, C. Human follicular dendritic cells: function, origin and development. Semin Immunol. 2002;14(4):251–7.CrossRefGoogle ScholarPubMed
Aguzzi, A, Kranich, J, Krautler, NJ. Follicular dendritic cells: origin, phenotype, and function in health and disease. Trends Immunol. 2014;35(3):105–13.Google Scholar
Andriko, JW, Kaldjian, EP, Tsokos, M, Abbondanzo, SL, Jaffe, ES. Reticulum cell neoplasms of lymph nodes: a clinicopathologic study of 11 cases with recognition of a new subtype derived from fibroblastic reticular cells. Am J Surg Pathol. 1998;22(9):1048–58.CrossRefGoogle ScholarPubMed
Fletcher, AL, Acton, SE, Knoblich, K. Lymph node fibroblastic reticular cells in health and disease. Nat Rev Immunol. 2015;15(6):350–61.Google Scholar
Emile, JF, Abla, O, Fraitag, S, Horne, A, Haroche, J, Donadieu, J, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016;127(22):2672–81.Google Scholar

References

Picarsic, J, Chikwava, K. Disorders of histiocytes. In: Hsi, E, ed. Hematopathology. 3rd ed. Philadelphia, PA: Elsevier; 2018: 567616.Google Scholar

References

Otsuka, M, Egawa, G, Kabashima, K. Uncovering the mysteries of Langerhans Cells, inflammatory dendritic epidermal cells, and monocyte-derived Langerhans cell-like cells in the epidermis. Front Immunol. 2018;9:1768.Google Scholar
Collin, M, Bigley, V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):320.Google Scholar
McGovern, N, Shin, A, Low, G, Low, D, Duan, K, Yao, LJ, et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature. 2017;546(7660):662–6.CrossRefGoogle ScholarPubMed
McGovern, N, Chan, JKY, Ginhoux, F. Dendritic cells in humans – from fetus to adult. Int Immunol. 2014;27(2):6572.Google Scholar
Garces, S, Yin, CC, Miranda, RN, Patel, KP, Li, S, Xu, J, et al. Clinical, histopathologic, and immunoarchitectural features of dermatopathic lymphadenopathy: an update. Mod Pathol. 2020;33(6):1104–21.Google Scholar
Facchetti, F, Blanzuoli, L, Ungari, M, Alebardi, O, Vermi, W. Lymph node pathology in primary combined immunodeficiency diseases. Springer Semin Immunopathol. 1998;19(4):459–78.Google Scholar
Picarsic, J, Jaffe, R. Nosology and pathology of Langerhans cell histiocytosis. Hematol Oncol Clin North Am. 2015;29(5):799823.Google Scholar
Shanmugam, V, Craig, JW, Hornick, JL, Morgan, EA, Pinkus, GS, Pozdnyakova, O. Cyclin D1 is expressed in neoplastic cells of Langerhans cell histiocytosis but not reactive Langerhans cell proliferations. Am J Surg Pathol. 2017;41(10):1390–6.Google Scholar
Cruz, PD, East, C, Bergstresser, PR. Dermal, subcutaneous, and tendon xanthomas: Diagnostic markers for specific lipoprotein disorders. J Am Acad Dermatol. 1988;19(1, Part 1):95111.Google Scholar
Lynch, JM, Barrett, TL. Collagenolytic (necrobiotic) granulomas: part II – the “red” granulomas. J Cutan Pathol. 2004;31(6):409–18.Google Scholar
Doffinger, R, Patel, S, Kumararatne, DS. Human immunodeficiencies that predispose to intracellular bacterial infections. Curr Opin Rheumatol. 2005;17(4):440–6.Google Scholar
Liew, W-K, Thoon, K-C, Chong, C-Y, Tan, NWH, Cheng, D-T, Chan, BSW, et al. Juvenile-onset immunodeficiency secondary to anti-interferon-gamma autoantibodies. J Clin Immunol. 2019;39(5):512–8.CrossRefGoogle ScholarPubMed
Landing, BH, Shirkey, HS. A syndrome of recurrent infection and infiltration of viscera by pigmented lipid histiocytes. Pediatrics. 1957;20(3):431–8.CrossRefGoogle ScholarPubMed
Yousef, GM, Naghibi, B. Malakoplakia outside the urinary tract. Arch Pathol Lab Med. 2007;131(2):297300.Google Scholar
Dogan, S, Barnes, L, Cruz-Vetrano, WP. Crystal-storing histiocytosis: report of a case, review of the literature (80 cases) and a proposed classification. Head Neck Pathol. 2012;6(1):111–20.Google Scholar
Lewis, JT, Candelora, JN, Hogan, RB, Briggs, FR, Abraham, SC. Crystal-storing histiocytosis due to massive accumulation of charcot-leyden crystals: a unique association producing colonic polyposis in a 78-year-old woman with eosinophilic colitis. Am J Surg Pathol. 2007;31(3):481–5.Google Scholar
Parizhskaya, M, Youssef, NN, Di Lorenzo, C, Goyal, RK. Clofazimine enteropathy in a pediatric bone marrow transplant recipient. J Pediatrics. 2001;138(4):574–6.Google Scholar
Turk, JL. The mononuclear phagocyte system in granulomas. Br J Dermatol. 1985;113(s28):4954.Google Scholar
Uzzan, M, Ko, HM, Mehandru, S, Cunningham-Rundles, C. Gastrointestinal disorders associated with common variable immune deficiency (CVID) and chronic granulomatous disease (CGD). Curr Gastroenterol Rep. 2016;18(4):17.CrossRefGoogle ScholarPubMed
Morimoto, Y, Routes, JM. Granulomatous disease in common variable immunodeficiency. Curr Allergy Asthma Rep. 2005;5(5):370–5.Google Scholar
Leung, J, Sullivan, KE, Perelygina, L, Icenogle, JP, Fuleihan, RL, Lanzieri, TM. Prevalence of granulomas in patients with primary immunodeficiency disorders, United States: data from national health care claims and the US Immunodeficiency Network Registry. J Clin Immunol. 2018;38(6):717–26.Google Scholar
Nanda, A, Al-Herz, W, Al-Sabah, H, Al-Ajmi, H. Noninfectious cutaneous granulomas in primary immunodeficiency disorders: report from a national registry. Am J Dermatopathol. 2014;36(10):832–7.Google Scholar
Schaffer, JV, Chandra, P, Keegan, BR, Heller, P, Shin, HT. Widespread granulomatous dermatitis of infancy: an early sign of Blau syndrome. Arch Dermatol. 2007;143(3):386–91.Google Scholar
Ferreira, CR, Gahl, WA. Lysosomal storage diseases. Transl Sci Rare Dis. 2017;2(1–2):171.Google Scholar
Pileri, S, Falini, B, Delsol, G, Stein, H, Baglioni, P, Poggi, S, et al. Lymphohistiocytic T-cell lymphoma (anaplastic large cell lymphoma CD30+/Ki-1+ with a high content of reactive histiocytes). Histopathology. 1990;16(4):383–91.Google Scholar
Berklite, L, Ranganathan, S, John, I, Picarsic, J, Santoro, L, Alaggio, R. Fibrous histiocytoma/dermatofibroma in children: the same as adults? Human Pathology. 2020;99:107–15.Google Scholar
Martinez, AP, Fritchie, KJ, Weiss, SW, Agaimy, A, Haller, F, Huang, H-Y, et al. Histiocyte-rich rhabdomyoblastic tumor: rhabdomyosarcoma, rhabdomyoma, or rhabdomyoblastic tumor of uncertain malignant potential? A histologically distinctive rhabdomyoblastic tumor in search of a place in the classification of skeletal muscle neoplasms. Mod Pathol. 2019;32(3):446–57.Google Scholar

References

Henter, J-I, Samuelsson-Horne, A, Aricò, M, Egeler, RM, Elinder, Gr, Filipovich, AH, et al. Treatment of hemophagocytic lymphohistiocytosis with HLH-94 immunochemotherapy and bone marrow transplantation.Blood. 2002;100(7):2367–73.Google Scholar
Bergsten, E, Horne, A, Arico, M, Astigarraga, I, Egeler, RM, Filipovich, AH, et al. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long-term results of the cooperative HLH-2004 study. Blood. 2017;130(25):2728–38.Google Scholar
Horne, A, Wickström, R, Jordan, MB, Yeh, EA, Naqvi, A, Henter, J-I, et al. How to treat involvement of the central nervous system in hemophagocytic lymphohistiocytosis? Curr Treat Options Neurol. 2017;19(1):3.Google Scholar
Haddad, E, Sulis, M-L, Jabado, N, Blanche, S, Fischer, A, Tardieu, M. Frequency and severity of central nervous system lesions in hemophagocytic lymphohistiocytosis. Blood. 1997;89(3):794800.Google Scholar
Blincoe, A, Heeg, M, Campbell, PK, Hines, M, Khojah, A, Klein-Gitelman, M, et al. Neuroinflammatory disease as an isolated manifestation of hemophagocytic lymphohistiocytosis. J Clin Immunol. 2020;40(6):901–16.Google Scholar
Jordan, MB, Allen, CE, Greenberg, J, Henry, M, Hermiston, ML, Kumar, A, et al. Challenges in the diagnosis of hemophagocytic lymphohistiocytosis: Recommendations from the North American Consortium for Histiocytosis (NACHO). Pediatr Blood Cancer. 2019;66(11):e27929.Google Scholar
Rivière, S, Galicier, L, Coppo, P, Marzac, C, Aumont, C, Lambotte, O, et al. Reactive hemophagocytic syndrome in adults: a retrospective analysis of 162 patients. Am J Med. 2014;127(11):1118–25.Google Scholar
Parikh, SA, Kapoor, P, Letendre, L, Kumar, S, Wolanskyj, AP. Prognostic factors and outcomes of adults with hemophagocytic lymphohistiocytosis. Mayo Clin Proc. 2014;89(4):484–92.Google Scholar
Taurisano, R, Maiorana, A, De Benedetti, F, Dionisi-Vici, C, Boldrini, R, Deodato, F. Wolman disease associated with hemophagocytic lymphohistiocytosis: attempts for an explanation. Eur J Pediatr. 2014;173(10):1391–4.Google Scholar
Sharpe, LR, Ancliff, P, Amrolia, P, Gilmour, KC, Vellodi, A. Type II Gaucher disease manifesting as haemophagocytic lymphohistiocytosis. J Inherit Metab Dis. 2009;32 Suppl 1:S107–10.Google Scholar
Ravelli, A, Minoia, F, Davì, S, Horne, A, Bovis, F, Pistorio, A, et al. 2016 classification criteria for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis: a European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Ann Rheum Dis. 2016;75(3):481–9.Google Scholar
Gupta, A, Tyrrell, P, Valani, R, Benseler, S, Weitzman, S, Abdelhaleem, M. The role of the initial bone marrow aspirate in the diagnosis of hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2008;51(3):402–4.Google Scholar
Henter, JI, Horne, A, Arico, M, Egeler, RM, Filipovich, AH, Imashuku, S, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124–31.Google Scholar
Favara, BE. Hemophagocytic lymphohistiocytosis: a hemophagocytic syndrome. Semin Diagn Pathol. 1992;9(1):6374.Google Scholar
Emile, JF, Abla, O, Fraitag, S, Horne, A, Haroche, J, Donadieu, J, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016;127(22):2672–81.Google Scholar
Schulert, GS, Grom, AA. Macrophage activation syndrome and cytokine-directed therapies. Best Pract Res Clin Rheumatol. 2014;28(2):277–92.Google Scholar
Schulert, GS, Yasin, S, Carey, B, Chalk, C, Do, T, Schapiro, AH, et al. Systemic juvenile idiopathic arthritis–associated lung disease: characterization and risk factors. Arthritis Rheumatol. 2019;71(11):1943–54.Google Scholar
Henter, JI, Elinder, G, Ost, A. Diagnostic guidelines for hemophagocytic lymphohistiocytosis. The FHL Study Group of the Histiocyte Society. Semin Oncol. 1991;18(1):2933.Google Scholar
Macheta, M, Will, AM, Houghton, JB, Wynn, RF. Prominent dyserythropoiesis in four cases of haemophagocytic lymphohistiocytosis. J Clin Pathol. 2001;54(12):961–3.Google Scholar
Parizhskaya, M, Youssef, NN, Di Lorenzo, C, Goyal, RK. Clofazimine enteropathy in a pediatric bone marrow transplant recipient. J Pediatr. 2001;138(4):574–6.Google Scholar
Natsheh, SE, Roberts, EA, Ngan, B, Chait, P, Ng, VL. Liver failure with marked hyperferritinemia: “ironing out” the diagnosis. Can J Gastroenterol. 2001;15(8):537–40.Google Scholar
Ost, A, Nilsson-Ardnor, S, Henter, JI. Autopsy findings in 27 children with haemophagocytic lymphohistiocytosis. Histopathology. 1998;32(4):310–6.Google Scholar
Gars, E, Purington, N, Scott, G, Chisholm, K, Gratzinger, D, Martin, BA, et al. Bone marrow histomorphological criteria can accurately diagnose hemophagocytic lymphohistiocytosis. Haematologica. 2018;103(10):1635–41.Google Scholar
Jaffe, R. The histopathology of hemophagocytic lymphohistiocytosis. Cambridge, UK: Cambridge University Press; 2005.Google Scholar
Rosado, FG, Kim, AS. Hemophagocytic lymphohistiocytosis: an update on diagnosis and pathogenesis. Am J Clin Pathol. 2013;139(6):713–27.Google Scholar
Listinsky, CM. Common reactive erythrophagocytosis in axillary lymph nodes. Am J Clin Pathol. 1988;90(2):189–92.CrossRefGoogle ScholarPubMed
Jawed, SI, Busam, K, Wang, X, Horwitz, S, Querfeld, C. Cutaneous hemophagocytosis after alemtuzumab injection in a patient with Sézary syndrome. JAMA Dermatology. 2014;150(9):1021–3.Google Scholar
Johnson, SM, Gilmour, K, Samarasinghe, S, Bamford, A. Haemophagocytic lymphohistiocytosis complicating visceral leishmaniasis in the UK: a case for detailed travel history, a high index of suspicion and timely diagnostics. BMJ Case Rep. 2019;12(7):e228307.Google Scholar
Favara, BE. Histopathology of the liver in histiocytosis syndromes. Pediatr Pathol Lab Med. 1996;16(3):413–33.Google Scholar
de Kerguenec, C, Hillaire, S, Molinié, V, Gardin, C, Degott, C, Erlinger, S, et al. Hepatic manifestations of hemophagocytic syndrome: a study of 30. Am J Gastroenterol. 2001;96(3):852–7.Google Scholar
Chen, JH, Fleming, MD, Pinkus, GS, Pinkus, JL, Nichols, KE, Mo, JQ, et al. Pathology of the liver in familial hemophagocytic lymphohistiocytosis. Am J Surg Pathol. 2010;34(6):852–67.Google Scholar
Kapelari, K, Fruehwirth, M, Heitger, A, Königsrainer, A, Margreiter, R, Simma, B, et al. Loss of intrahepatic bile ducts: an important feature of familial hemophagocytic lymphohistiocytosi. Virchows Archiv. 2005;446(6):619–25.Google Scholar
Parizhskaya, M, Reyes, J, Jaffe, R. Hemophagocytic syndrome presenting as acute hepatic failure in two infants: clinical overlap with neonatal hemochromatosis. Pediatr Dev Pathol. 1999;2(4):360–6.Google Scholar
Jaffe, R. Liver involvement in the histiocytic disorders of childhood. Pediatr Dev Pathol. 2004;7(3):214–25.Google Scholar
Egan, C, Jaffe, ES. Non-neoplastic histiocytic and dendritic cell disorders in lymph nodes. Semin Diagn Pathol. 2018;35(1):2033.Google Scholar
Buckley, PJ, O’Laughlin, S, Komp, DM. Histiocytes in familial and infection-induced/idiopathic hemophagocytic syndromes may exhibit phenotypic differences. Pediatr Pathol. 1992;12(1):5166.Google Scholar
Rekha, TS, Kiran, HS, Nandini, NM, Murthy, S. Cytology of secondary hemophagocytic lymphohistiocytosis masquerading as lymphoma in a nonimmunocompromised adult. J Cytol. 2014;31(4):239–41.Google Scholar
Henter, J-I, Aricò, M, Elinder, G, Imashuku, S, Janka, G. Familial hemophagocytic lymphohistiocytosis: primary hemophagocytic lymphohistiocytosis. Hematol Oncol Clin North Am. 1998;12(2):417–33.Google Scholar
Liang, J, Alfano, DN, Squires, JE, Riley, MM, Parks, WT, Kofler, J, et al. Novel NLRC4 mutation causes a syndrome of perinatal autoinflammation with hemophagocytic lymphohistiocytosis, hepatosplenomegaly, fetal thrombotic vasculopathy, and congenital anemia and ascites. Pediatr Dev Pathol. 2017;20(6):498505.Google Scholar
Valentín, SM, Montalván, E, Sánchez, JL. Perivascular hemophagocytosis: report of 2 cases and review of the literature. Am J Dermatopathol. 2010;32(7):716–9.Google Scholar
Millsop, JW, Ho, B, Kiuru, M, Fung, MA, Sharon, VR. Cutaneous hemophagocytic lymphohistiocytosis: bean bags from the bone. JAMA Dermatology. 2016;152(8):950–2.Google Scholar
Aronson, IK, Worobec, SM. Cytophagic histiocytic panniculitis and hemophagocytic lymphohistiocytosis: an overview. Dermatol Ther. 2010;23(4):389402.Google Scholar
Pasqualini, C, Jorini, M, Carloni, I, Giangiacomi, M, Cetica, V, Arico, M, et al. Cytophagic histiocytic panniculitis, hemophagocytic lymphohistiocytosis and undetermined autoimmune disorder: reconciling the puzzle. Ital J Pediatr. 2014;40(1):17.Google Scholar
Lee, DE, Martinez-Escala, ME, Serrano, LM, Zhou, XA, Kaplan, JB, Pro, B, et al. Hemophagocytic lymphohistiocytosis in cutaneous T-cell lymphoma. JAMA Dermatology. 2018;154(7):828–31.Google Scholar
Henter, JI, Nennesmo, I. Neuropathologic findings and neurologic symptoms in twenty-three children with hemophagocytic lymphohistiocytosis. J Pediatr. 1997;130(3):358–65.Google Scholar
de Saint Basile, G, Ménasché, G, Fischer, A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol. 2010;10(8):568–79.Google Scholar
Dieckmann, NM, Frazer, GL, Asano, Y, Stinchcombe, JC, Griffiths, GM. The cytotoxic T lymphocyte immune synapse at a glance. J Cell Sci. 2016;129(15):2881–6.Google Scholar
Stepp, SE, Dufourcq-Lagelouse, R, Le Deist, F, Bhawan, S, Certain, S, Mathew, PA, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286(5446):1957–9.Google Scholar
Duncan, JA, Canna, SW. The NLRC 4 inflammasome. Immunol Rev. 2018;281(1):115–23.Google Scholar
Canna, SW, Marsh, RA. Pediatric hemophagocytic lymphohistiocytosis. Blood. 2020;135(16):1332–43.Google Scholar
Janka, GE. Familial hemophagocytic lymphohistiocytosis. Eur J Pediatr. 1983;140(3):221–30.Google Scholar
Trottestam, H, Horne, A, Aricò, M, Egeler, RM, Filipovich, AH, Gadner, H, et al. Chemoimmunotherapy for hemophagocytic lymphohistiocytosis: long-term results of the HLH-94 treatment protocol. Blood. 2011;118(17):4577–84.Google Scholar
Locatelli, F, Jordan, MB, Allen, C, Cesaro, S, Rizzari, C, Rao, A, et al. Emapalumab in children with primary hemophagocytic lymphohistiocytosis. N Engl J Med. 2020;382(19):1811–22.Google Scholar
Arca, M, Fardet, L, Galicier, L, Rivière, S, Marzac, C, Aumont, C, et al. Prognostic factors of early death in a cohort of 162 adult haemophagocytic syndrome: impact of triggering disease and early treatment with etoposide. Br J Haematol. 2015;168(1):63–8.Google Scholar
Otrock, ZK, Eby, CS. Clinical characteristics, prognostic factors, and outcomes of adult patients with hemophagocytic lymphohistiocytosis. Am J Hematol. 2015;90(3):220–4.Google Scholar
Schram, AM, Comstock, P, Campo, M, Gorovets, D, Mullally, A, Bodio, K, et al. Haemophagocytic lymphohistiocytosis in adults: a multicentre case series over 7 years. Br J Haematol. 2016;172(3):412–9.Google Scholar

References

Berres, ML, Lim, KP, Peters, T, Price, J, Takizawa, H, Salmon, H, et al. BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J Exp Med. 2014;211(4):669–83.Google Scholar
Durham, BH, Roos-Weil, D, Baillou, C, Cohen-Aubart, F, Yoshimi, A, Miyara, M, et al. Functional evidence for derivation of systemic histiocytic neoplasms from hematopoietic stem/progenitor cells. Blood. 2017;130(2):176–80.Google Scholar
Abla, O, Jacobsen, E, Picarsic, J, Krenova, Z, Jaffe, R, Emile, JF, et al. Consensus recommendations for the diagnosis and clinical management of Rosai-Dorfman-Destombes disease. Blood. 2018;131(26):2877–90.Google Scholar
Wellbrock, C, Karasarides, M, Marais, R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004;5(11):875–85.Google Scholar
Emile, JF, Abla, O, Fraitag, S, Horne, A, Haroche, J, Donadieu, J, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016;127(22):2672–81.Google Scholar
Lim, KPH, Milne, P, Poidinger, M, Duan, K, Lin, H, McGovern, N, et al. Circulating CD1c+ myeloid dendritic cells are potential precursors to LCH lesion CD1a+CD207+ cells. Blood Adv. 2020;4(1):8799.Google Scholar
Goyal, G, Heaney, ML, Collin, M, Cohen-Aubart, F, Vaglio, A, Durham, BH, et al. Erdheim-Chester disease: consensus recommendations for evaluation, diagnosis, and treatment in the molecular era. Blood. 2020;135(22):1929–45.Google Scholar
Guyot-Goubin, A, Donadieu, J, Barkaoui, M, Bellec, S, Thomas, C, Clavel, J. Descriptive epidemiology of childhood Langerhans cell histiocytosis in France, 2000–2004. Pediatr Blood Cancer. 2008;51(1):71–5.Google Scholar
Krooks, J, Minkov, M, Weatherall, AG. Langerhans cell histiocytosis in children: history, classification, pathobiology, clinical manifestations, and prognosis. J Am Acad Dermatol. 2018;78(6):1035–44.Google Scholar
Krooks, J, Minkov, M, Weatherall, AG. Langerhans cell histiocytosis in children: diagnosis, differential diagnosis, treatment, sequelae, and standardized follow-up. J Am Acad Dermatol. 2018;78(6):1047–56.Google Scholar
Heritier, S, Emile, JF, Barkaoui, MA, Thomas, C, Fraitag, S, Boudjemaa, S, et al. BRAF mutation correlates with high-risk Langerhans cell histiocytosis and increased resistance to first-line therapy. J Clin Oncol. 2016;34(25):3023–30.Google Scholar
Lee, LH, Krupski, C, Clark, J, Wunderlich, M, Lorsbach, RB, Grimley, MS, et al. High-risk LCH in infants is serially transplantable in a xenograft model but responds durably to targeted therapy. Blood Adv. 2020;4(4):717–27.Google Scholar
Gadner, H, Minkov, M, Grois, N, Potschger, U, Thiem, E, Arico, M, et al. Therapy prolongation improves outcome in multisystem Langerhans cell histiocytosis. Blood. 2013;121(25):5006–14.Google Scholar
Haupt, R, Minkov, M, Astigarraga, I, Schafer, E, Nanduri, V, Jubran, R, et al. Langerhans cell histiocytosis (LCH): guidelines for diagnosis, clinical work-up, and treatment for patients till the age of 18 years. Pediatr Blood Cancer. 2013;60(2):175–84.Google Scholar
Allen, CE, Ladisch, S, McClain, KL. How I treat Langerhans cell histiocytosis. Blood. 2015;126(1):2635.CrossRefGoogle Scholar
Grois, N, Potschger, U, Prosch, H, Minkov, M, Arico, M, Braier, J, et al. Risk factors for diabetes insipidus in Langerhans cell histiocytosis. Pediatr Blood Cancer. 2006;46(2):228–33.Google Scholar
Geissmann, F, Lepelletier, Y, Fraitag, S, Valladeau, J, Bodemer, C, Debre, M, et al. Differentiation of Langerhans cells in Langerhans cell histiocytosis. Blood. 2001;97(5):1241–8.CrossRefGoogle ScholarPubMed
Allen, CE, Li, L, Peters, TL, Leung, HC, Yu, A, Man, TK, et al. Cell-specific gene expression in Langerhans cell histiocytosis lesions reveals a distinct profile compared with epidermal Langerhans cells. J Immunol. 2010;184(8):4557–67.Google Scholar
Rollins, BJ. Genomic alterations in Langerhans cell histiocytosis. Hematol Oncol Clin North Am. 2015;29(5):839–51.Google Scholar
Allen, CE, Merad, M, McClain, KL. Langerhans-cell histiocytosis. N Engl J Med. 2018;379(9):856–68.Google Scholar
Xiao, Y, van Halteren, AG, Lei, X, Borst, J, Steenwijk, EC, de Wit, T, et al. Bone marrow-derived myeloid progenitors as driver mutation carriers in high-and low-risk Langerhans cell histiocytosis. Blood. 2020;136(19):2188–99.Google Scholar
Picarsic, J, Jaffe, R. Nosology and pathology of Langerhans cell histiocytosis. Hematol Oncol Clin North Am. 2015;29(5):799823.Google Scholar
Abdallah, M, Généreau, T, Donadieu, J, Emile, JF, Chazouillères, O, Gaujoux-Viala, C, et al. Langerhans’ cell histiocytosis of the liver in adults. Clin Res Hepatol Gastroenterol. 2011;35(6–7):475–81.CrossRefGoogle ScholarPubMed
Kaplan, KJ, Goodman, ZD, Ishak, KG. Liver involvement in Langerhans’ cell histiocytosis: a study of nine cases. Mod Pathol. 1999;12(4):370–8.Google Scholar
Kambouchner, M, Emile, JF, Copin, MC, Coulomb-Lherminé, A, Sabourin, JC, Della Valle, V, et al. Childhood pulmonary Langerhans cell histiocytosis: a comprehensive clinical-histopathological and BRAF(V600E) mutation study from the French national cohort. Hum Pathol. 2019;89:5161.Google Scholar
Favara, BE, Jaffe, R, Egeler, RM. Macrophage activation and hemophagocytic syndrome in Langerhans cell histiocytosis: report of 30 cases. Pediatr Dev Pathol. 2002;5(2):130–40.Google Scholar
Chellapandian, D, Hines, MR, Zhang, R, Jeng, M, van den Bos, C, Santa-María López, V, et al. A multicenter study of patients with multisystem Langerhans cell histiocytosis who develop secondary hemophagocytic lymphohistiocytosis. Cancer. 2019;125(6):963–71.Google Scholar
Shanmugam, V, Craig, JW, Hornick, JL, Morgan, EA, Pinkus, GS, Pozdnyakova, O. Cyclin D1 is expressed in neoplastic cells of Langerhans cell histiocytosis but not reactive Langerhans cell proliferations. Am J Surg Pathol. 2017;41(10):1390–6.Google Scholar
Willman, CL. Detection of clonal histiocytes in Langerhans cell histiocytosis: biology and clinical significance. Br J Cancer Suppl. 1994;23:S29S33.Google Scholar
Chetritt, J, Paradis, V, Dargere, D, Adle-Biassette, H, Maurage, CA, Mussini, JM, et al. Chester-Erdheim disease: a neoplastic disorder. Human Pathology. 1999;30(9):1093–6.Google Scholar
Badalian-Very, G, Vergilio, JA, Degar, BA, MacConaill, LE, Brandner, B, Calicchio, ML, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919–23.Google Scholar
Durham, BH. Molecular characterization of the histiocytoses: neoplasia of dendritic cells and macrophages. Seminars in Cell & Developmental Biology. 2019;86:6276.Google Scholar
Durham, BH, Lopez Rodrigo, E, Picarsic, J, Abramson, D, Rotemberg, V, De Munck, S, et al. Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms. Nat Med. 2019;25(12):1839–42.Google Scholar
Hogstad, B, Berres, ML, Chakraborty, R, Tang, J, Bigenwald, C, Serasinghe, M, et al. RAF/MEK/extracellular signal-related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions. J Exp Med. 2018;215(1):319–36.Google Scholar
Bigenwald, C, Le Berichel, J, Wilk, CM, Chakraborty, R, Chen, ST, Tabachnikova, A, et al. BRAF(V600E)-induced senescence drives Langerhans cell histiocytosis pathophysiology. Nat Med. 2021;27(5):851–61.Google Scholar
Bhattacharjee, P, Glusac, EJ. Langerhans cell hyperplasia in scabies: a mimic of Langerhans cell histiocytosis. J Cutan Pathol. 2007;34(9):716–20.Google Scholar
Picarsic, J, Jaffe, R. Pathology of histiocytic disorders and neoplasms and related disorders. In: Abla, O, Janka, G, eds. Histiocytic disorders. Cham, Switzerland: Springer International; 2018: 350.Google Scholar
Favara, BE, Steele, A. Langerhans cell histiocytosis of lymph nodes: a morphological assessment of 43 biopsies. Pediatr Pathol Lab Med. 1997;17(5):769–87.Google Scholar
Edelweiss, M, Medeiros, LJ, Suster, S, Moran, CA. Lymph node involvement by Langerhans cell histiocytosis: a clinicopathologic and immunohistochemical study of 20 cases. Hum Pathol. 2007;38(10):1463–9.Google Scholar
Garces, S, Yin, CC, Miranda, RN, Patel, KP, Li, S, Xu, J, et al. Clinical, histopathologic, and immunoarchitectural features of dermatopathic lymphadenopathy: an update. Mod Pathol. 2020;33(6):1104–21.Google Scholar
Geissmann, F, Dieu-Nosjean, MC, Dezutter, C, Valladeau, J, Kayal, S, Leborgne, M, et al. Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J Exp Med. 2002;196(4):417–30.Google Scholar
Chikwava, K, Jaffe, R. Langerin (CD207) staining in normal pediatric tissues, reactive lymph nodes, and childhood histiocytic disorders. Pediatr Dev Pathol. 2004;7(6):607–14.Google Scholar
Selove, W, Picarsic, J, Swerdlow, SH. Langerin staining identifies most littoral cell angiomas but not most other splenic angiomatous lesions. Hum Pathol. 2019;83:43–9.Google Scholar
Titgemeyer, C, Grois, N, Minkov, M, Flucher-Wolfram, B, Gatterer-Menz, I, Gadner, H. Pattern and course of single-system disease in Langerhans cell histiocytosis data from the DAL-HX 83- and 90-study. Med Pediatr Oncol. 2001;37(2):108–14.Google Scholar
Zelger, BW, Sidoroff, A, Orchard, G, Cerio, R. Non-Langerhans cell histiocytoses. A new unifying concept. Am J Dermatopathol. 1996;18(5):490504.Google Scholar
Zelger, B, Cerio, R. Xanthogranuloma is the archetype of non‐Langerhans cell histiocytoses. Br J Dermatol. 2001;145(2):369–70.Google Scholar
Weitzman, S, Jaffe, R. Uncommon histiocytic disorders: the non-Langerhans cell histiocytoses. Pediatr Blood Cancer. 2005;45(3):256–64.Google Scholar
Ceppi, F, Abla, O. Juvenile xanthogranuloma and related non-LCH disorders. In: Abla, O, Janka, G, eds. Histiocytic disorders. Cham, Switzerland: Springer International; 2018: 293311.Google Scholar
Janssen, D, Harms, D. Juvenile xanthogranuloma in childhood and adolescence: a clinicopathologic study of 129 patients from the Kiel Pediatric Tumor Registry. Am J Surg Pathol. 2005;29(1):21–8.Google Scholar
Haynes, ESE, Guo, H, Jaffe, R, Picarsic, J. S100 immunohistochemistry in 65 localized juvenile xanthogranuloma family lesions: understanding staining patterns with clinicopathologic correlation. Presentation at the Spring 2017 Meeting of the Society for Pediatric Pathology, San Antonio, TX.Google Scholar
Haroche, J, Charlotte, F, Arnaud, L, von Deimling, A, Helias-Rodzewicz, Z, Hervier, B, et al. High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood. 2012;120(13):2700–3.Google Scholar
Picarsic, J, Pysher, T, Zhou, H, Fluchel, M, Pettit, T, Whitehead, M, et al. BRAF V600E mutation in juvenile xanthogranuloma family neoplasms of the central nervous system (CNS-JXG): a revised diagnostic algorithm to include pediatric Erdheim-Chester disease. Acta Neuropathol Commun. 2019;7(1):168.Google Scholar
Eissa, SS, Clay, MR, Santiago, T, Wu, G, Wang, L, Shulkin, BL, et al. Dasatinib induces a dramatic response in a child with refractory juvenile xanthogranuloma with a novel MRC1-PDGFRB fusion. Blood Adv. 2020;4(13):2991.Google Scholar
Lee, LH, Gasilina, A, Roychoudhury, J, Clark, J, McCormack, FX, Pressey, J, et al. Real-time genomic profiling of histiocytoses identifies early-kinase domain BRAF alterations while improving treatment outcomes. JCI Insight. 2017;2(3):e89473.Google Scholar
Hu, WK, Gilliam, AC, Wiersma, SR, Dahms, BB. Fatal congenital systemic juvenile xanthogranuloma with liver failure. Pediatr Dev Pathol. 2004;7(1):71–6.Google Scholar
Perez‐Becker, R, Szczepanowski, M, Leuschner, I, Janka, G, Gokel, M, Imschweiler, T, et al. An aggressive systemic juvenile xanthogranuloma clonally related to a preceding T‐cell acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;56(5):859–62.Google Scholar
Kemps, PG, Picarsic, J, Durham, BH, Hélias-Rodzewicz, Z, Hiemcke-Jiwa, L, van den Bos, C, et al. ALK-positive histiocytosis: a new clinicopathologic spectrum highlighting neurologic involvement and responses to ALK inhibition. Blood. 2022;139(2):256–80.Google Scholar
Jaffe, ES, Chan, JKC. Histiocytoses converge through common pathways. Blood. 2022;139(2):157–9.Google Scholar
Chan, JK, Lamant, L, Algar, E, Delsol, G, Tsang, WY, Lee, KC, et al. ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy. Blood. 2008;112(7):2965–8.Google Scholar
Huang, H, Gheorghe, G, North, PE, Suchi, M. Expanding the phenotype of ALK-positive histiocytosis: a report of 2 cases. Pediatr Dev Pathol. 2018;21(5):449–55.Google Scholar
Chang, KTE, Tay, AZE, Kuick, CH, Chen, H, Algar, E, Taubenheim, N, et al. ALK-positive histiocytosis: an expanded clinicopathologic spectrum and frequent presence of KIF5B-ALK fusion. Mod Pathol. 2019;32(5):598608.Google Scholar
Cuviello, A, Rice, J, Cohen, B, Zambidis, ET. Infant with a skin lesion and respiratory distress. BMJ Case Rep. 2018;2018:bcr–2018–224506.Google Scholar
Gupta, GK, Xi, L, Pack, SD, Jones, JB, Pittaluga, S, Raffeld, M, et al. ALK-positive histiocytosis with KIF5B-ALK fusion in an adult female. Haematologica. 2019;104(11):e534.Google Scholar
Lucas, C-HG, Gilani, A, Solomon, DA, Liang, X, Maher, OM, Chamyan, G, et al. ALK-positive histiocytosis with KIF5B-ALK fusion in the central nervous system. Acta neuropathol. 2019;138(2):335–7.Google Scholar
Wolter, NE, Ngan, B, Whitlock, JA, Dickson, BC, Propst, EJ. Atypical juvenile histiocytosis with novel KIF5B-ALK gene fusion mimicking subglottic hemangioma. Int J Pediatr Otorhinolaryngol. 2019;126:109585.Google Scholar
Sarah, M, Zofia, H-R, Fleur, C-A, Frédéric, C, Sylvie, F, Nathalie, T, et al. Highly sensitive methods are required to detect mutations in histiocytoses. Haematologica. 2019;104(3):e97–e9.Google Scholar
Destombes, P. [Adenitis with lipid excess, in children or young adults, seen in the Antilles and in Mali. (4 cases)]. Bull Soc Pathol Exot Filiales. 1965;58(6):1169–75.Google Scholar
Rosai, J, Dorfman, RF. Sinus histiocytosis with massive lymphadenopathy.A newly recognized benign clinicopathological entity. Arch Pathol. 1969;87(1):6370.Google Scholar
Abla, O, Picarsic, J. Pathology of histiocytic disorders and neoplasms and related disorders. In: Abla, O, Janka, G, eds. Histiocytic disorders. Springer; 2017:339–60.Google Scholar
Morgan, NV, Morris, MR, Cangul, H, Gleeson, D, Straatman-Iwanowska, A, Davies, N, et al. Mutations in SLC29A3, encoding an equilibrative nucleoside transporter ENT3, cause a familial histiocytosis syndrome (Faisalabad histiocytosis) and familial Rosai-Dorfman disease. PLoS Genet. 2010;6(2):e1000833.Google Scholar
Maric, I, Pittaluga, S, Dale, JK, Niemela, JE, Delsol, G, Diment, J, et al. Histologic features of sinus histiocytosis with massive lymphadenopathy in patients with autoimmune lymphoproliferative syndrome. Am J Surg Pathol. 2005;29(7):903–11.Google Scholar
Mastropolo, R, Close, A, Allen, SW, McClain, KL, Maurer, S, Picarsic, J. BRAF-V600E-mutated Rosai-Dorfman-Destombes disease and Langerhans cell histiocytosis with response to BRAF inhibitor. Blood Adv. 2019;3(12):1848–53.Google Scholar
Fatobene, G, Haroche, J, Helias-Rodzwicz, Z, Charlotte, F, Taly, V, Ferreira, AM, et al. BRAF V600E mutation detected in a case of Rosai-Dorfman disease. Haematologica. 2018;103(8):e377–e9.Google Scholar
Richardson, TE, Wachsmann, M, Oliver, D, Abedin, Z, Ye, D, Burns, DK, et al. BRAF mutation leading to central nervous system Rosai-Dorfman disease. Ann Neurol. 2018;84(1):147–52.Google Scholar
Moore, JC, Zhao, X, Nelson, EL. Concomitant sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease) and diffuse large B-cell lymphoma: a case report. J Med Case Rep. 2008;2:70.Google Scholar
Johnson, WT, Patel, P, Hernandez, A, Grandinetti, LM, Huen, AC, Marks, S, et al. Langerhans cell histiocytosis and Erdheim-Chester disease, both with cutaneous presentations, and papillary thyroid carcinoma all harboring the BRAF(V600E) mutation. J Cutan Pathol. 2016;43(3):270–5.Google Scholar
Hervier, B, Haroche, J, Arnaud, L, Charlotte, F, Donadieu, J, Neel, A, et al. Association of both Langerhans cell histiocytosis and Erdheim-Chester disease linked to the BRAFV600E mutation: a multicenter study of 23 cases. Blood. 2014;124(7):1119–26.Google Scholar
Milne, P, Bigley, V, Bacon, CM, Neel, A, McGovern, N, Bomken, S, et al. Hematopoietic origin of Langerhans cell histiocytosis and Erdheim Chester disease in adults. Blood. 2017;130(2):167–75.Google Scholar
Berres, ML, Merad, M, Allen, CE. Progress in understanding the pathogenesis of Langerhans cell histiocytosis: back to histiocytosis X? Br J Haematol. 2015;169(1):313.Google Scholar
Egan, C, Lack, J, Skarshaug, S, Pham, TA, Abdullaev, Z, Xi, L, et al. The mutational landscape of histiocytic sarcoma associated with lymphoid malignancy. Mod Pathol. 2020:34(2):336347.Google Scholar
Castro, EC, Blazquez, C, Boyd, J, Correa, H, de Chadarevian, JP, Felgar, RE, et al. Clinicopathologic features of histiocytic lesions following ALL, with a review of the literature. Pediatr Dev Pathol. 2010;13(3):225–37.Google Scholar
Howard, JE, Dwivedi, RC, Masterson, L, Jani, P. Langerhans cell sarcoma: a systematic review. Cancer Treat Rev. 2015;41(4):320–31.Google Scholar
Zwerdling, T, Won, E, Shane, L, Javahara, R, Jaffe, R. Langerhans cell sarcoma: case report and review of world literature. J Pediatr Hematol Oncol. 2014;36(6):419–25.Google Scholar
Pileri, SA, Grogan, TM, Harris, NL, Banks, P, Campo, E, Chan, JK, et al. Tumours of histiocytes and accessory dendritic cells: an immunohistochemical approach to classification from the International Lymphoma Study Group based on 61 cases. Histopathology. 2002;41(1):129.Google Scholar
Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Rev. 4th ed. Lyon, France: IARC; 2017.Google Scholar
Singh, R, Keen, CE, Stone, C, Sarsfield, P. Langerhans cell sarcoma: a case report demonstrating morphological and immunophenotypical variability within a single lesion. Case Rep Pathol. 2017;2017:9842605.Google Scholar
Karai, LJ, Sanik, E, Ricotti, CA, Susa, J, Sinkre, P, Aleodor, AA. Langerhans cell sarcoma with lineage infidelity/plasticity: a diagnostic challenge and insight into the pathobiology of the disease. Am J Dermatopathol. 2015;37(11):854–61.Google Scholar
Xu, Z, Padmore, R, Faught, C, Duffet, L, Burns, BF. Langerhans cell sarcoma with an aberrant cytoplasmic CD3 expression. Diagn Pathol. 2012;7:128.Google Scholar
Jacobsen, E, Abla, O, Visser, J. Malignant histiocytoses. In: Histiocytic disorders. Springer; 2018: 361–81.Google Scholar
Swerdlow, SH, Campo, E, Pileri, SA, Harris, NL, Stein, H, Siebert, R, et al. The 2016 revision of the World Health Organization (WHO) classification of lymphoid neoplasms. Blood. 2016;127(20):2391–405.Google Scholar
Shanmugam, V, Sholl, L, Fletcher, CD, Hornick, JL, eds. RAS/MAPK pathway activation defines a common molecular subtype of histiocytic sarcoma. Laboratory investigation. New York: Nature Publishing Group; 2018.Google Scholar
Heath, JL, Burgett, SE, Gaca, AM, Jaffe, R, Wechsler, DS. Successful treatment of pediatric histiocytic sarcoma using abbreviated high-risk leukemia chemotherapy. Pediatr Blood Cancer. 2014;61(10):1874–6.Google Scholar
Porter, DW, Gupte, GL, Brown, RM, Spray, C, English, MW, DeGoyet, Jd, et al. Histiocytic sarcoma with interdigitating dendritic cell differentiation. J Pediatr. Hematol. Oncol. 2004;26(12):827–30.Google Scholar
Kordes, M, Roring, M, Heining, C, Braun, S, Hutter, B, Richter, D, et al. Cooperation of BRAF(F595L) and mutant HRAS in histiocytic sarcoma provides new insights into oncogenic BRAF signaling. Leukemia. 2016;30(4):937–46.Google Scholar
Chakraborty, R, Abdel-Wahab, O, Durham, BH. MAP-kinase-driven hematopoietic neoplasms: a decade of progress in the molecular age. Cold Spring Harb Perspect Med. 2020;11(5):a034892.Google Scholar
Idbaih, A, Mokhtari, K, Emile, JF, Galanaud, D, Belaid, H, de Bernard, S, et al. Dramatic response of a BRAF V600E-mutated primary CNS histiocytic sarcoma to vemurafenib. Neurology. 2014;83(16):1478–80.Google Scholar
Xerri, L, Adélaïde, J, Popovici, C, Garnier, S, Guille, A, Mescam-Mancini, L, et al. CDKN2A/B deletion and double-hit mutations of the MAPK pathway underlie the aggressive behavior of Langerhans cell tumors. Am J Surg Pathol. 2018;42(2):150–9.Google Scholar
Liu, Q, Tomaszewicz, K, Hutchinson, L, Hornick, JL, Woda, B, Yu, H. Somatic mutations in histiocytic sarcoma identified by next generation sequencing. Virchows Arch. 2016;469(2):233-41.Google Scholar
Go, H, Jeon, YK, Huh, J, Choi, SJ, Choi, YD, Cha, HJ, et al. Frequent detection of BRAF(V600E) mutations in histiocytic and dendritic cell neoplasms. Histopathology. 2014;65(2):261–72.Google Scholar
Ansari, J, Naqash, AR, Munker, R, El-Osta, H, Master, S, Cotelingam, JD, et al. Histiocytic sarcoma as a secondary malignancy: pathobiology, diagnosis, and treatment. Eur J Haematol. 2016;97(1):916.Google Scholar
West, DS, Dogan, A, Quint, PS, Tricker-Klar, ML, Porcher, JC, Ketterling, RP, et al. Clonally related follicular lymphomas and Langerhans cell neoplasms: expanding the spectrum of transdifferentiation. Am J Surg Pathol. 2013;37(7):978–86.Google Scholar
Choi, SM, Andea, AA, Wang, M, Behdad, A, Shao, L, Zhang, Y, et al. KRAS mutation in secondary malignant histiocytosis arising from low grade follicular lymphoma. Diagn Pathol. 2018;13(1):78.Google Scholar
Feldman, AL. Clonal relationships between malignant lymphomas and histiocytic/dendritic cell tumors. Surg Pathol Clin. 2013;6(4):619–29.Google Scholar
Kumar, R, Khan, SP, Joshi, DD, Shaw, GR, Ketterling, RP, Feldman, AL. Pediatric histiocytic sarcoma clonally related to precursor B-cell acute lymphoblastic leukemia with homozygous deletion of CDKN2A encoding p16(INK4A). Pediatr Blood Cancer. 2010;56(2):307–10.Google Scholar
Rodig, SJ, Payne, EG, Degar, BA, Rollins, B, Feldman, AL, Jaffe, ES, et al. Aggressive Langerhans cell histiocytosis following T-ALL: clonally related neoplasms with persistent expression of constitutively active NOTCH1. Am J Hematol. 2008;83(2):116–21.Google Scholar
Feldman, AL, Berthold, F, Arceci, RJ, Abramowsky, C, Shehata, BM, Mann, KP, et al. Clonal relationship between precursor T-lymphoblastic leukaemia/lymphoma and Langerhans-cell histiocytosis. Lancet Oncol. 2005;6(6):435–7.Google Scholar
Shao, H, Xi, L, Raffeld, M, Feldman, AL, Ketterling, RP, Knudson, R, et al. Clonally related histiocytic/dendritic cell sarcoma and chronic lymphocytic leukemia/small lymphocytic lymphoma: a study of seven cases. Mod Pathol. 2011;24(11):1421–32.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×