Skip to main content Accessibility help
×
  • Cited by 156
Publisher:
Cambridge University Press
Online publication date:
July 2014
Print publication year:
2010
Online ISBN:
9780511760303

Book description

A nonlinear Markov evolution is a dynamical system generated by a measure-valued ordinary differential equation with the specific feature of preserving positivity. This feature distinguishes it from general vector-valued differential equations and yields a natural link with probability, both in interpreting results and in the tools of analysis. This brilliant book, the first devoted to the area, develops this interplay between probability and analysis. After systematically presenting both analytic and probabilistic techniques, the author uses probability to obtain deeper insight into nonlinear dynamics, and analysis to tackle difficult problems in the description of random and chaotic behavior. The book addresses the most fundamental questions in the theory of nonlinear Markov processes: existence, uniqueness, constructions, approximation schemes, regularity, law of large numbers and probabilistic interpretations. Its careful exposition makes the book accessible to researchers and graduate students in stochastic and functional analysis with applications to mathematical physics and systems biology.

Reviews

'This monograph is suitable for graduate students and researchers who have a good background in probability theory and analysis and have mastered such key topics as martingales, stochastic calculus and weak convergence, on the one hand, and the analytic theory of semigroups, on the other hand. … This book is pioneering in developing a new and important type of dynamics for modelling complex stochastic systems. It deserves to be widely read.'

Source: Bulletin of the London Mathematical Society

'… this is an important book. Written with great care by a leading expert, it is accessible to researchers and graduate students in stochastic and functional analysis, with applications in mathematical physics and systems biology.'

Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
[1] L., Accardi, F., Fagnola (eds.). Quantum interacting particle systems. In: Proc. Volterra-CIRM Int. School, Trento, 2000, QP-PQ: Quantum Probability and White Noise Analysis, vol. 14, World Scientific, 2002.
[2] S., Albeverio, A., Hilbert and V., Kolokoltsov. Sur le comportement asymptotique du noyau associé à une diffusion dégénéré. C.R. Math. Rep. Acad. Sci. Canada 22:4 (2000), 151–159.
[3] S., Albeverio, B., Rüdiger. Stochastic integrals and the Lévy-Ito decomposition theorem on separable Banach spaces. Stoch. Anal. Appl. 23:2 (2005), 217–253.
[4] D.J., Aldous. Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5:1 (1999), 3–48.
[5] H., Amann. Coagulation-fragmentation processes. Arch. Ration. Mech. Anal. 151 (2000), 339–366.
[6] W. J., Anderson. Continuous-Time Markov Chains. Probability and its Applications. Springer Series in Statistics. Springer, 1991.
[7] D., Applebaum. Probability and Information.Cambridge University Press, 1996.
[8] D., Applebaum. Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics, vol. 93. Cambridge University Press, 2004.
[9] O., Arino, R., Rudnicki. Phytoplankton dynamics. Comptes Rendus Biol. 327 (2004), 961–969.
[10] L., Arkeryd. On the Boltzmann equation. Parts I and II. Arch. Ration. Mech. Anal. 45 (1972), 1–35.
[11] L., Arkeryd. L∞ Estimates for the spatially-homogeneous Boltzmann equation. J. Stat. Phys. 31:2 (1983), 347–361.
[12] A. A., Arseniev. Lektsii o kineticheskikh uravneniyakh (in Russian) (Lectures on kinetic equations). Nauka, Moscow, 1992.
[13] A. A., Arseniev, O. E., Buryak. On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation (in Russian). Mat. Sb. 181:4 (1990), 435-446; English translation in Math. USSR Sb. 69:2 (1991), 465–478.
[14] I., Bailleul. Sensitivity for Smoluchovski equation. Preprint 2009. http://www. statslab.cam.ac.uk/ismael/files/Sensitivity.pdf.
[15] A., Bain, D., Crisan. Fundamentals of Stochastic Filtering. Stochastic Modelling and Applied Probability, vol. 60. Springer, 2009.
[16] R., Balescu. Statistical Dynamics. Matter out of Equilibrium.Imperial College Press, 1997.
[17] J. M., Ball, J., Carr. The discrete coagulation-fragmentation equations: existence, uniqueness and density conservation. J. Stat. Phys. 61 (1990), 203–234.
[18] R. F., Bass. Uniqueness in law for pure jump type Markov processes. Prob. Theory Relat. Fields 79 (1988), 271–287.
[19] R. F., Bass, Z.-Q., Chen. Systems of equations driven by stable processes. Prob. Theory Relat. Fields 134 (2006), 175–214.
[20] P., Becker-Kern, M. M., Meerschaert, H.-P., Scheffler. Limit theorems for coupled continuous time random walks. Ann. Prob. 32:1B (2004), 730–756.
[21] V. P., Belavkin. Quantum branching processes and nonlinear dynamics of multi-quantum systems (in Russian). Dokl. Acad. Nauk SSSR 301:6 (1988), 1348–1352.
[22] V. P., Belavkin. Multiquantum systems and point processes I. Rep. Math. Phys. 28 (1989), 57–90.
[23] V. P., Belavkin, V. N., Kolokoltsov. Stochastic evolutions as boundary value problems. In: Infinite Dimensional Analysis and Quantum Probability, RIMS Kokyuroku 1227 (2001), 83–95.
[24] V. P., Belavkin, V. N., Kolokoltsov. Stochastic evolution as interaction representation of a boundary value problem for Dirac type equation. Inf. Dim. Anal., Quantum Prob. Relat. Fields 5:1 (2002), 61–92.
[25] V. P., Belavkin, V. N., Kolokoltsov. On general kinetic equation for many particle systems with interaction, fragmentation and coagulation. Proc. Roy. Soc. London A 459 (2003), 727–748.
[26] V. P., Belavkin, V. P., Maslov. Uniformization method in the theory of nonlinear hamiltonian systems of Vlasov and Hartree type (in Russian). Teoret. i Matem. Fizika 33:1 (1977), 17–31. English translation in Theor. Math. Phys. 43:3 (1977), 852–862.
[27] R. E., Bellman. Dynamic Programming. Princeton University Press and Oxford University Press, 1957.
[28] G. Ben, Arous. Developpement asymptotique du noyau de la chaleur sur la diagonale. Ann. Inst. Fourier 39:1 (1989), 73–99.
[29] A., Bendikov. Asymptotic formulas for symmetric stable semigroups. Exp. Math. 12 (1994), 381–384.
[30] V., Bening, V., Korolev, T., Suchorukova, G., Gusarov, V., Saenko, V., Kolokoltsov. Fractionally stable distributions. In: V., Korolev, N., Skvortsova (eds.), Stochastic Models ofPlasma Turbulence (in Russian), Moscow State University, 2003, pp. 291-360. English translation in V. Korolev, N. Skvortsova (eds.), Stochastic Models ofStructural Plasma Turbulence, VSP, 2006, pp. 175-244.
[31] V., Bening, V., Korolev, V., Kolokoltsov. Limit theorems for continuous-time random walks in the double array limit scheme. J. Math. Sci. (NY) 138:1 (2006), 5348–5365.
[32] J., Bennett, J.-L., Wu. Stochastic differential equations with polar-decomposed Levy measures and applications to stochastic optimization. Fron. Math. China 2:4 (2007), 539–558.
[33] J., Bertoin. Lévy Processes. Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, 1996.
[34] J., Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics, vol. 102, Cambridge University Press, 2006.
[35] K., Bichteler. Stochastic Integration with Jumps. Encyclopedia of Mathematics and Applications, Cambridge University Press, 2002.
[36] K., Bichteler, J.-B., Gravereaux, J., Jacod. Malliavin Calculus for Processes with Jumps. Stochastic Monographs, vol. 2, Gordon and Breach, 1987.
[37] P., Biler, L., Brandolese. Global existence versus blow up for some models of interacting particles. Colloq. Math. 106:2 (2006), 293–303.
[38] P., Billingsley. Convergence of Probability Measures. Wiley, 1968.
[39] H., Bliedtner, W., Hansen. Potential Theory – An Analytic Approach to Balayage. Universitext, Springer, 1986.
[40] R. M., Blumenthal, R. K., Getoor. Some theorems on stable processes. Trans. Amer. Math. Soc. 95 (1960), 263–273.
[41] A. V., Bobylev. The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. Sov. Sci. Rev. C, Math. Phys. Rev. 7 (1988), 111–233.
[42] N.N., Bogolyubov. Problems of the Dynamic Theory in Statistical Physics. Moscow, 1946 (in Russian).
[43] J.-M., Bony, Ph., Courrège, P., Priouret. Semi-groupes de Feller sur une variété a bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum. Ann. Inst. Fourier, Grenoble 18:2 (1968), 369–521.
[44] Yu. D., Burago, V. A., Zalgaller. Geometric Inequalities. Springer, 1988.
[45] T., Carleman. Problèmes mathématique dans la théorie cinétique des gaz. Almquist and Wiksells, 1957.
[46] R. A., Carmona, D., Nualart. Nonlinear Stochastic Integrators, Equations and Flows. Stochatic Monographs, vol. 6, Gordon and Breach, 1990.
[47] C., Cercognani, R., Illner, M., Pulvirenti. The Mathematical Theory of Dilute Gases. Springer, 1994.
[48] A. M., Chebotarev. A priori estimates for quantum dynamic semigroups (in Russian). Teoret. Mat. Fiz 134:2 (2003), 185-190; English translation in Theor. Math. Phys. 134:2 (2003), 160–165.
[49] A. M., Chebotarev, F., Fagnola. Sufficient conditions for conservativity of minimal quantum dynamic semigroups. J. Funct. Anal. 118 (1993), 131–153.
[50] A. M., Chebotarev, F., Fagnola. Sufficient conditions for conservativity of minimal quantum dynamic semigroups. J. Funct. Anal. 153 (1998), 382–104.
[51] J. F., Collet, F., Poupaud. Existence of solutions to coagulation-fragmentation systems with diffusion. Transport Theory Statist. Phys. 25 (1996), 503–513.
[52] Ph., Courrège. Sur la forme integro-différentiélle du générateur infinitésimal d'un semi-groupe de Feller sur une variété. In: Sém. Théorie du Potentiel, 19651966. Exposé 3.
[53] F. P., da Costa, H. J., Roessel, J. A. D., Wattis. Long-time behaviour and self-similarity in a coagulation equation with input of monomers. Markov Proc. Relat. Fields 12 (2006), 367–398.
[54] D., Crisan, J., Xiong. Approximate McKean-Vlasov representations for a class of SPDEs. To appear in Stochastics.
[55] R. F., Curtain. Riccati equations for stable well-posed linear systems: the generic case. SIAMJ. Control Optim. 42: 5 (2003), 1681-1702 (electronic).
[56] E. B., Davies. Quantum Theory of Open Systems. Academic Press, 1976.
[57] E. B., Davies. Heat Kernels and Spectral Theory. Cambridge University Press, 1992.
[58] D., Dawson. Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Stat. Phys. 31: 1 (1983), 29–85.
[59] D., Dawson. Measure-valued Markov processes. In: P. L., Hennequin (ed.), Proc. Ecole d'Eté de probabilités de Saint-Flour XXI, 1991. Springer Lecture Notes in Mathematics, vol. 1541, 1993, pp. 1-260.
[60] D., Dawsonet al.Generalized Mehler semigroups and catalytic branching processes with immigration. Potential Anal. 21:1 (2004), 75–97.
[61] A., de Masi, E., Presutti. Mathematical Methods for Hydrodynamic Limits. Springer, 1991.
[62] M., Deaconu, N., Fournier, E., Tanré. A pure jump Markov process associated with Smoluchovski's coagulation equation. Ann. Prob. 30:4 (2002), 1763–1796.
[63] M., Deaconu, N., Fournier, E., Tanré. Rate of convergence of a stochastic particle system for the Smoluchovski coagulation equation. Methodol. Comput. Appl. Prob. 5:2 (2003), 131–158.
[64] P., Del Moral. Feynman-Kac Formulae. Genealogical and Interacting particle Systems with Applications. Probability and its Application. Springer, 2004.
[65] L., Desvillettes, C., Villani. On the spatially homogeneous Landau equation for hard potentials. Part I. Comm. Partial Diff. Eq. 25 (2000), 179–259.
[66] S., Dharmadhikari, K., Joag-Dev. Unimodality, Convexity, and Applications. Academic Press, 1988.
[67] B., Driver, M., Röckner. Constructions of diffusions on path spaces and loop spaces of compact riemannian manifolds. C.R. Acad. Sci. Paris, Ser. I 320 (1995), 1249–1254.
[68] P. B., Dubovskii, I. W., Stewart. Existence, uniqueness and mass conservation for the coagulation-fragmentation equation. Math. Meth. Appl. Sci. 19 (1996), 571–591.
[69] E. B., Dynkin. Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations. University Lecture Series, vol. 34, American Mathematical Society, 2004.
[70] A., Eibeck, W., Wagner. Stochastic particle approximation to Smoluchovski's coagulation equation. Ann. Appl. Prob. 11:4 (2001), 1137–1165.
[71] T., Elmroth. Global boundedness of moments of solutions of the Boltzmann equation for forces of inifinite range. Arch. Ration. Mech. Anal. 82 (1983), 1–12.
[72] F. O., Ernst, S.E., Protsinis. Self-preservation and gelation during turbulance induced coagulation. J. Aerosol Sci. 37:2 (2006), 123–142.
[73] A. M., Etheridge. An Introduction to Superprocesses. University Lecture Series, vol. 20, American Mathematical Society, 2000.
[74] S.N., Ethier, Th. G., Kurtz. Markov Processes – Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics, Wiley, 1986.
[75] K., Evans, N., Jacob. Feller semigroups obtained by variable order subordination. Rev. Mat. Comput. 20:2 (2007), 293–307.
[76] W., Feller. An Introduction to Probability. Theory and Applications, second edition, vol. 2. John Wiley and Sons, 1971.
[77] N., Fournier, Ph., Laurencot. Local properties of self-similar solutions to Smoluchowski's coagulation equation with sum kernels. Proc. Roy. Soc. Edinburgh. A 136 :3 (2006), 485–508.
[78] M., Freidlin. Functional Integration and Partial Differential Equations. Princeton University Press, 1985.
[79] T.D., Frank. Nonlinear Markov processes. Phys. Lett. A 372:25 (2008), 4553–4555.
[80] B., Franke. The scaling limit behavior of periodic stable-like processes. Bernoulli 21:3 (2006), 551–570.
[81] M., Fukushima, Y., Oshima, M., Takeda. Dirichlet Forms and Symmetric Markov Processes. de Gruyter, 1994.
[82] J., Gärtner. On the McKean-Vlasov limit for interacting diffusions. Math. Nachri. 137 (1988), 197–248.
[83] E., Giné, J. A., Wellner. Uniform convergence in some limit theorem for multiple particle systems. Stochastic Proc. Appl. 72 (1997), 47–72.
[84] H., Gintis. Game Theory Evolving. Princeton University Press, 2000.
[85] T., Goudon. Sur l'equation de Boltzmann homogène et sa relation avec l'equation de Landau-Fokker-Planck. C.R. Acad. Sci. Paris 324, 265-270.
[86] S., Graf, R. D., Mauldin. A classification of disintegrations of measures. In: Measures and Measurable Dynamics. Contemporary Mathematics, vol. 94, American Mathematical Society, 1989, 147-158.
[87] G., Graham, S., Méléard. Chaos hypothesis for a system interacting through shared resources. Prob. Theory Relat. Fields 100 (1994), 157–173.
[88] G., Graham, S., Méléard. Stochastic particle approximations for generalized Boltzmann models and convergence estimates. Ann. Prob. 25:1 (1997), 115–132.
[89] H., Guérin. Existence and regularity of a weak function-solution for some Landau equations with a stochastic approach. Stoch. Proc. Appl. 101 (2002), 303–325.
[90] H., Guérin. Landau equation for some soft potentials through a probabilistic approach. Ann. Appl. Prob. 13:2 (2003), 515–539.
[91] H., Guérin, S., Méléard, E., Nualart. Estimates for the density of a nonlinear Landau process. J. Funct. Anal. 238 (2006), 649–677.
[92] T., Gustafsson. Lp -properties for the nonlinear spatially homogeneous Boltzmann equation. Arch. Ration. Mech. Anal. 92 (1986), 23–57.
[93] T., Gustafsson. Global Lp-properties for the spatially homogeneous Boltzmann equation. Arch. Ration. Mech. Anal. 103 (1988), 1–38.
[94] O., Hernandez-Lerma. Lectures on Continuous-Time Markov Control Processes. Aportaciones Matematicas, vol. 3, Sociedad Matematica Mexicana, Mexico, 1994.
[95] O., Hernandez-Lerma, J. B., Lasserre, J., Bernard. Discrete-Time Markov Control Processes. Basic Optimality Criteria. Applications of Mathematics, vol. 30. Springer, 1996.
[96] J., Hofbauer, K., Sigmund. Evolutionary Games and Population Dynamics. Cambridge University Press, 1998.
[97] W., Hoh. The martingale problem for a class of pseudo differential operators. Math. Ann. 300 (1994), 121–147.
[98] W., Hoh, N., Jacob. On the Dirichlet problem for pseudodifferential operators generating Feller semigroups. J. Funct. Anal. 137:1 (1996), 19–48.
[99] A. S., Holevo. Conditionally positive definite functions in quantum probability (in Russian). In: Itogi Nauki i Tekniki. Modern Problems of Mathematics, vol. 36, 1990, pp. 103-148.
[100] M., Huang, R.P., Malhame, P.E., Caines. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6:3 (2006), 221–251.
[101] T. J. R., Hughes, T., Kato, J.E., Marsden. Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Ration. Mech. Anal. 63:3 (1976), 273–294.
[102] S., Ito, Diffusion equations. Translations of Mathematical Monographs, vol. 114. American Mathematical Society, 1992.
[103] N., Jacob. Pseudo-Differential Operators and Markov Processes, vols. I, II, III. Imperial College London Press, 2001, 2002, 2005.
[104] N., Jacob, R. L., Schilling. Lévy-type processes and pseudodifferential operators. In: O. E., Barndorff-Nielsenet al. (eds), Lévy Processes, Theory and Applications, Birkhäuser, 2001, pp. 139-168.
[105] N., Jacobet al.Non-local (semi-)Dirichlet forms generated by pseudo differential operators. In: Z. M., Maet al. (eds.), Dirichlet Forms and Stochastic Processes, Proc. Int. Conf. Beijing 1993, de Gruyter, 1995, pp. 223-233.
[106] J., Jacod, Ph., Protter. Probability Essentials. Springer, 2004.
[107] J., Jacod, A. N., Shiryaev. Limit Theorems for Stochastic Processes. Springer, 1987. Second edition, 2003.
[108] A., Jakubowski. On the Skorohod topology. Ann. Inst. H. Poincaré B22 (1986), 263–285.
[109] I., Jeon. Existence of gelling solutions for coagulation-fragmentation equations. Commun. Math. Phys. 194 (1998), 541–567.
[110] E., Joergensen. Construction of the Brownian motion and the Orstein-Uhlenbeck Process in a Riemannian manifold. Z. Wahrsch. verw. Gebiete 44 (1978), 71–87.
[111] A., Joffe, M., Métivier. Weak convergence of sequence of semimartingales with applications to multitype branching processes. Adv. Appl. Prob. 18 (1986), 20–65.
[112] J., Jost. Nonlinear Dirichlet forms. In: New Directions in Dirichlet Forms, American Mathematical Society/IP Studies in Advanced Mathematics, vol. 8, American Mathematical Society, 1998, pp. 1-47.
[113] M., Kac. Probability and Related Topics in Physical Science. Interscience, 1959.
[114] O., Kallenberg. Foundations of Modern Probability, second edition. Springer, 2002.
[115] I., Karatzas, S., Shreve. Brownian Motion and Stochastic Calculus. Springer, 1998.
[116] T., Kato. Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations, Proc. Symp. Dundee, 1974, Lecture Notes in Mathematics, vol. 448, Springer, 1975, pp. 25-70.
[117] T., Kazumi. Le processes d'Ornstein-Uhlenbeck sur l'espace des chemins et le probleme des martingales. J. Funct. Anal. 144 (1997), 20–45.
[118] A., Khinchine. Sur la crosissance locale des prosessus stochastiques homogènes à acroissements indépendants. Isvestia Akad. Nauk SSSR, Ser. Math. (1939), 487–508.
[119] K., Kikuchi, A., Negoro. On Markov processes generated by pseudodifferential operator of variable order. Osaka J. Math. 34 (1997), 319–335.
[120] C., Kipnis, C., Landim. Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften, vol. 320, Springer, 1999.
[121] A. N., Kochubei. Parabolic pseudo-differentiable equations, supersingular integrals and Markov processes (in Russian). Izvestia Akad. Nauk, Ser. Matem. 52:5 (1988), 909–934. English translation in Math. USSR Izv. 33:2 (1989), 233–259.
[122] A., Kolodko, K., Sabelfeld, W., Wagner. A stochastic method for solving Smolu-chowski's coagulation equation. Math. Comput. Simulation 49 (1999), 57–79.
[123] V. N., Kolokoltsov. On linear, additive, and homogeneous operators in idempo-tent analysis. In: V. P., Maslov and S. N., Samborski: (eds.), Idempotent Analysis, Advances in Soviet Mathematics, vol. 13, 1992, pp. 87-101.
[124] V. N., Kolokoltsov. Semiclassical Analysis for Diffusions and Stochastic Processes. Springer Lecture Notes in Mathematics, vol. 1724, Springer, 2000.
[125] V. N., Kolokoltsov. Symmetric stable laws and stable-like jump-diffusions. Proc. London Math. Soc. 3 80 (2000), 725–768.
[126] V. N., Kolokoltsov. Small diffusion and fast dying out asymptotics for super-processes as non-Hamiltonian quasi-classics for evolution equations. Electronic J. Prob., http://www.math.washington.edu/ ejpecp/ 6 (2001), paper 21.
[127] V. N., Kolokoltsov. Measure-valued limits of interacting particle systems with k-nary interactions I. Prob. Theory Relat. Fields 126 (2003), 364–394.
[128] V. N., Kolokoltsov. On extension of mollified Boltzmann and Smoluchovski equations to particle systems with a k-nary interaction. Russian J. Math. Phys. 10 3 (2003), 268–295.
[129] V. N., Kolokoltsov. Measure-valued limits of interacting particle systems with k-nary interactions II. Stoch. Stoch. Rep. 76 1 (2004), 45–58.
[130] V. N., Kolokoltsov. On Markov processes with decomposable pseudo-differential generators. Stoch. Stoch. Rep. 76 1 (2004), 1–44.
[131] V. N., Kolokoltsov. Hydrodynamic limit of coagulation-fragmentation type models of k-nary interacting particles. J. Stati. Phys. 115: 5/6 (2004), 1621–1653.
[132] V. N., Kolokoltsov. Kinetic equations for the pure jump models of k-nary interacting particle systems. Markov Proc. Relat. Fields 12 (2006), 95–138.
[133] V. N., Kolokoltsov. On the regularity of solutions to the spatially homogeneous Boltzmann equation with polynomially growing collision kernel. AdvancedStud. Contemp. Math. 12 (2006), 9–38.
[134] V. N., Kolokoltsov. Nonlinear Markov semigroups and interacting Lévy type processes. J. Stat. Phys. 126:3 (2007), 585–642.
[135] V. N., Kolokoltsov. Generalized continuous-time random walks (CTRW), subordination by hitting times and fractional dynamics. arXiv:0706.1928v1[math.PR] 2007. Probab. Theory Appl. 53:4 (2009), 594–609.
[136] V. N., Kolokoltsov. The central limit theorem for the Smoluchovski coagulation model. arXiv:0708.0329v1[math.PR] 2007. Prob. Theory Relat. Fields 146:1 (2010), 87. Published online, http://dx.doi.org/10.1007/s00440-008-0186-2.
[137] V.N., Kolokoltsov. The Lévy-Khintchine type operators with variable Lips-chitz continuous coefficients generate linear or nonlinear Markov processes and semigroupos. To appear in Prob. Theory. Relat. Fields.
[138] V.N., Kolokoltsov, V., Korolev, V., Uchaikin. Fractional stable distributions. J. Math. Sci. (N.Y.) 105:6 (2001), 2570–2577.
[139] V. N., Kolokoltsov, O. A., Malafeyev. Introduction to the Analysis of Many Agent Systems of Competition and Cooperation (Game Theory for All). St Petersburg University Press, 2008 (in Russian).
[140] V. N., Kolokoltsov, O. A., Malafeyev. Understanding Game Theory. World Scientific, 2010.
[141] V.N., Kolokoltsov, V.P., Maslov. Idempotent Analysis and its Application to Optimal Control. Moscow, Nauka, 1994 (in Russian).
[142] V. N., Kolokoltsov, V. P., Maslov. Idempotent Analysis and its Applications. Kluwer, 1997.
[143] V.N., Kolokoltsov, R.L., Schilling, A.E., Tyukov. Transience and non-explosion of certain stochastic newtonian systems. Electronic J. Prob. 7 (2002), paper no. 19.
[144] T., Komatsu. On the martingale problem for generators of stable processes with perturbations. Osaka J. Math. 21 (1984), 113–132.
[145] V. Yu., Korolev, V. E., Bening, S. Ya., Shorgin. Mathematical Foundation of Risk Theory. Moscow, Fismatlit, 2007 (in Russian).
[146] V., Korolevet al.Some methods of the analysis of time characteristics of catastrophes in nonhomogeneous flows of extremal events. In: I.A., Sokolov (ed.), Sistemi i Sredstva Informatiki. Matematicheskie Modeli v Informacionnich Technologiach, Moscow, RAN, 2006, pp. 5-23 (in Russian).
[147] M., Kostoglou, A.J., Karabelas. A study of the nonlinear breakage equations: analytical and asymptotic solutions. J. Phys. A 33 (2000), 1221–1232.
[148] M., Kotulski. Asymptotic distribution of continuous-time random walks: a probabilistic approach. J. Stat. Phys. 81:3/4 (1995), 777–792.
[149] M., Kraft, A., Vikhansky. A Monte Carlo method for identification and sensitivity analysis of coagulation processes. J. Comput. Phys. 200 (2004), 50–59.
[150] H., Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics, vol. 24, Cambridge University Press, 1990.
[151] T. G., Kurtz, J., Xiong. Particle representations for a class of nonlinear SPDEs. Stochastic Proc. Appl. 83:1 (1999), 103–126.
[152] T. G., Kurtz, J., Xiong. Numerical solutions for a class of SPDEs with application to filtering. In: Stochastics in Finite and Infinite Dimensions, Trends in Mathematics, Birkhäuser, 2001, pp. 233-258.
[153] A. E., Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Universitext, Springer, 2006.
[154] M., Lachowicz. Stochastic semigroups and coagulation equations. Ukrainian Math. J. 57:6 (2005), 913–922.
[155] M., Lachowicz, Ph., Laurencot, D., Wrzosek. On the Oort-Hulst-Savronov coagulation equation and its relation to the Smoluchowski equation. SIAM J. Math. Anal. 34 (2003), 1399–1421.
[156] P., Laurencot, S., Mischler. The continuous coagulation-fragmentation equations with diffusion. Arch. Ration. Mech. Anal. 162 (2002), 45–99.
[157] P., Laurencot, D., Wrzosek. The discrete coagulation equations with collisional breakage. J. Stat. Phys. 104: 1/2 (2001), 193–220.
[158] R., Leandre. Uniform upper bounds for hypoelliptic kernels with drift. J. Math. Kyoto University 34:2 (1994), 263–271.
[159] J. L., Lebowitz, E.W., Montroll (eds.). Non-Equilibrium Phenomena I: The Boltzmann Equation. Studies in Statistical Mechanics, vol. X, North-Holland, 1983.
[160] M. A., Leontovich. Main equations of the kinetic theory from the point of view of random processes (in Russian). J. Exp. Theoret. Phys. 5 (1935), 211–231.
[161] P., Lescot, M., Roeckner. Perturbations of generalized Mehler semigroups and applications to stochastic heat equation with Levy noise and singular drift. Potential Anal. 20:4 (2004), 317–344.
[162] T., Liggett. Interacting Particle Systems. Reprint of the 1985 original. Classics in Mathematics, Springer, 2005.
[163] G., Lindblad. On the Generators of quantum dynamic semigroups. Commun. Math. Phys. 48 (1976), 119–130.
[164] X., Lu, B., Wennberg. Solutions with increasing energy for the spatially homogeneous Boltzmann equation. Nonlinear Anal. Real World Appl. 3 (2002), 243–258.
[165] A. A., Lushnikov. Some new aspects of coagulation theory. Izv. Akad. Nauk SSSR, Ser. Fiz. Atmosfer. i Okeana 14:10 (1978), 738–743.
[166] A. A., Lushnikov, M., Kulmala. Singular self-preserving regimes of coagulation processes. Phys. Rev. E 65 (2002).
[167] Z.-M., Ma, M., Röckner. Introduction to the Theory of Non-Symmetric Dirichlet Forms. Springer, 1992.
[168] P., Mandl. Analytic Treatment of One-Dimensional Markov Processes. Springer, 1968.
[169] A.H., Marcus. Stochastic coalescence. Technometrics 10 (1968), 133–143.
[170] R. H., Martin. Nonlinear Operators and Differential Equations in Banach Spaces. Wiley, 1976.
[171] N., Martin, J., England. Mathematical Theory of Entropy. Addison-Wesley, 1981.
[172] V. P., Maslov. Perturbation Theory and Asymptotical Methods. Moscow State University Press, 1965 (in Russian). French Translation, Dunod, Paris, 1972.
[173] V. P., Maslov. Complex Markov Chains and Functional Feynman Integrals. Moscow, Nauka, 1976 (in Russian).
[174] V. P., Maslov. Nonlinear averaging axioms in financial mathematics and stock price dynamics. Theory Prob. Appl. 48:04 (2004), 723–733.
[175] V. P., Maslov. Quantum Economics. Moscow, Nauka, 2006 (in Russian).
[176] V.P., Maslov, G. A., Omel'yanov. Geometric Asymptotics for Nonlinear PDE. I. Translations of Mathematical Monographs, vol. 202, American Mathematical Society, 2001.
[177] V. P., Maslov, C. E., Tariverdiev. Asymptotics of the Kolmogorov-Feller equation for systems with a large number of particles. Itogi Nauki i Techniki. Teoriya veroyatnosti, vol. 19, VINITI, Moscow, 1982, pp. 85-125 (in Russian).
[178] N. B., Maslova. Existence and uniqueness theorems for the Boltzmann equation. In: Ya., Sinai (ed.), Encyclopaedia of Mathematical Sciences, vol. 2, Springer, 1989, pp. 254-278.
[179] N.B., Maslova. Nonlinear Evolution Equations: Kinetic Approach. World Scientific, 1993.
[180] W. M., McEneaney. A new fundamental solution for differential Riccati equations arising in control. Automatica (J. IFAC) 44:4 (2008), 920–936.
[181] H. P., McKean. A class of Markov processes associated with nonlinear parabolic equations. Proc. Nat. Acad. Sci. 56 (1966), 1907–1911.
[182] H. P., McKean. An exponential formula for solving Boltzmann's equation for a Maxwellian gas. J. Combin. Theory 2:3 (1967), 358–382.
[183] M. M., Meerschaert, H.-P., Scheffler. Limit Distributions for Sums of Independent Random Vectors. Wiley Series in Probability and Statistics, John Wiley and Son, 2001.
[184] M. M., Meerschaert, H.-P., Scheffler. Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Prob. 41 (2004), 623–638.
[185] S., Méléard. Convergence of the fluctuations for interacting diffusions with jumps associated with Boltzmann equations. Stocha. Stoch. Rep. 63: 3-4 (1998), 195–225.
[186] R., Metzler, J., Klafter. The random walk's guide to anomalous diffusion: a fractional dynamic approach. Phys. Rep. 339 (2000), 1–77.
[187] P.-A., Meyer. Quantum Probability for Probabilists. Springer Lecture Notes in Mathematics, vol. 1538, Springer, 1993.
[188] S., Mishler, B., Wennberg. On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16:4 (1999), 467–501.
[189] M., Mobilia, I.T., Georgiev, U.C., Tauber. Phase transitions and spatio-temporal fluctuations in stochastic lattice Lotka-Volterra models. J. Stat. Phys. 128: 1-2 (2007), 447–483.
[190] E.W., Montroll, G. H., Weiss. Random walks on lattices, II. J. Math. Phys. 6 (1965), 167–181.
[191] C., Mouhot, C., Villani. Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Ration. Mech. Anal. 173:2 (2004), 169–212.
[192] A., Negoro. Stable-like processes: construction of the transition density and the behavior of sample paths near t = 0. Osaka J. Math. 31 (1994), 189–214.
[193] J., Norris. Markov Chains. Cambridge University Press, 1998.
[194] J., Norris. Cluster coagulation. Commun. Math. Phys. 209 (2000), 407–435.
[195] J., Norris. Notes on Brownian coagulation. Markov Proc. Relat. Fields 12:2 (2006), 407–412.
[196] D., Nualart. The Malliavin Calculus and Related Topics. Probability and its Applications, second edition. Springer, 2006.
[197] R., Olkiewicz, L., Xu, B., Zegarlin'ski. Nonlinear problems in infinite interacting particle systems. Inf. Dim. Anal. Quantum Prob. Relat. Topics 11:2 (2008), 179–211.
[198] S., Peszat, J., Zabczyk. Stochastic Partial Differential Equations with Lévy Noise. Encyclopedia of Mathematics, Cambridge University Press, 2007.
[199] D. Ya., Petrina, A. K., Vidibida. Cauchy problem for Bogolyubov's kinetic equations. TrudiMat. Inst. USSR Acad. Sci. 136 (1975), 370–378.
[200] N. I., Portenko, S. I., Podolynny. On multidimensional stable processes with locally unbounded drift. Random Oper. Stoch. Eq. 3:2 (1995), 113–124.
[201] L., Rass, J., Radcliffe. Spatial Deterministic Epidemics. Mathematical Surveys and Monographs, vol. 102, American Mathematical Society, 2003.
[202] S., Rachev, L., Rüschendorf. Mass Transportation Problems, vols. I, II. Springer, 1998.
[203] R., Rebolledo. La methode des martingales appliquée l'etude de la convergence en loi de processus (in French). Bull. Soc. Math. France Mem. 62, 1979.
[204] R., Rebolledo. Sur l'existence de solutions certains problemes de semimartin-gales (in French). C. R. Acad. Sci. Paris A-B 290:18 (1980), A843-A846.
[205] M., Reed, B., Simon. Methods of Modern Mathematical Physics, vol. 1, Functional Analysis. Academic Press, 1972.
[206] M., Reed, B., Simon. Methods of Modern Mathematical Physics, vol. 2, Harmonic Analysis. Academic Press, 1975.
[207] M., Reed, B., Simon. Methods of Modern Mathematical Physics, vol. 4, Analysis of Operators. Academic Press, 1978.
[208] T., Reichenbach, M., Mobilia, E., Frey. Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model. Phys. Rev. E(3) 74:5 (2006).
[209] D., Revuz, M., Yor. Continuous Martingales and Brownian Motion. Springer, 1999.
[210] Yu. A., Rozanov. Probability Theory, Stochastic Processes and Mathematical Statistics (in Russian). Moscow, Nauka, 1985. English translation: Mathematics and its Applications, vol. 344, Kluwer, 1995.
[211] R., Rudnicki, R., Wieczorek. Fragmentation-coagulation models of phytoplankton. Bull. Polish Acad. Sci. Math. 54:2 (2006), 175–191.
[212] V. S., Safronov. Evolution of the Pre-Planetary Cloud and the Formation of the Earth and Planets. Moscow, Nauka, 1969 (in Russian). English translation: Israel Program for Scientific Translations, Jerusalem, 1972.
[213] A. I., Saichev, W. A., Woyczynski. Distributions in the Physical and Engineering Sciences vol. 1, Birkhäuser, Boston, 1997.
[214] A.I., Saichev, G.M., Zaslavsky. Fractional kinetic equations: solutions and applications. Chaos 7:4 (1997), 753–764.
[215] S. G., Samko. Hypersingular Integrals and Applications. Rostov-na-Donu University Press, 1984 (in Russian).
[216] S. G., Samko, A. A., Kilbas, O. A., Marichev. Fractional Integrals and Derivatives and Their Applications. Naukla i Teknika, Minsk, 1987 (in Russian). English translation Harwood Academic.
[217] G., Samorodnitski, M. S., Taqqu. Stable Non-Gaussian Random Processes, Stochastic Models with Infinite Variance. Chapman and Hall, 1994.
[218] R. L., Schilling. On Feller processes with sample paths in Besov spaces. Math. Ann. 309 (1997), 663–675.
[219] R., Schneider. Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, 1993.
[220] A. N., Shiryayev. Probability. Springer, 1984.
[221] Ja. G., Sinai, Ju. M., Suchov. On an existence theorem for the solutions of Bogoljubov's chain of equations (in Russian). Teoret. Mat. Fiz. 19 (1974), 344–363.
[222] F., Sipriani, G., Grillo. Nonlinear Markov semigroups, nonlinear Dirichlet forms and applications to minimal surfaces. J. Reine Angew. Math. 562 (2003), 201–235.
[223] A. V., Skorohod. Stochastic Equations for Complex Systems. Translated from the Russian. Mathematics and its Applications (Soviet Series), vol. 13, Reidel, 1988.
[224] J., Smoller. Shock Waves and Reaction-Diffusion Equations. Springer, 1983.
[225] H., Spohn. Large Scaling Dynamics of Interacting Particles. Springer, 1991.
[226] D. W., Stroock. Diffusion processes associated with Lévy generators. Z. Wahrsch. verw. Gebiete 32 (1975), 209–244.
[227] D. W., Stroock. Markov Processes from K. Ito's Perspective. Annals of Mathematics Studies. Princeton University Press, 2003.
[228] D., Stroock, S. R. S., Varadhan. On degenerate elliptic-parabolic operators of second order and their associated diffusions. Commun. Pure Appl. Math. XXV (1972), 651–713.
[229] D. W., Stroock. S. R. S., Varadhan. Multidimensional Diffusion Processes. Springer, 1979.
[230] A.-S., Sznitman. Nonlinear reflecting diffusion process and the propagation of chaos and fluctuation associated. J. Funct. Anal. 56 (1984), 311–336.
[231] A.-S., Sznitman. Equations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. verw. Gebeite 66 (1984), 559–592.
[232] A.-S., Sznitman. Topics in propagation of chaos. In: Proc. Ecole d'Eté de probabilités de Saint-Flour XIX-1989. Springer Lecture Notes in Mathematics, vol. 1464, Springer, 1991, pp. 167-255.
[233] K., Taira. On the existence of Feller semigroups with boundary conditions. Mem. Ameri. Math. Soc. 99 (1992), 1–65.
[234] K., Taira. On the existence of Feller semigroups with Dirichlet conditions. Tsukuba J. Math. 17 (1993), 377–427.
[235] K., Taira. Boundary value problems for elliptic pseudo-differential operators II. Proc. Roy. Soc. Edinburgh 127A (1997), 395–105.
[236] K., Taira, A., Favini and S., Romanelli. Feller semigroups and degenerate elliptic operators with Wentzell boundary conditions. Stud. Math. 145: 1 (2001), 17–53.
[237] D., Talay, L., Tubaro (eds.). Probabilistic Models for Nonlinear Partial Differential Equations. In: Proc. Conf. at Montecatini Terme, 1995, Springer Lecture Notes in Mathematics, vol. 1627, Springer, 1996.
[238] H., Tanaka. Purely discontinuous Markov processes with nonlinear generators and their propagation of chaos (in Russian). Teor. Verojatnost. i Primenen 15 (1970), 599–621.
[239] H., Tanaka. On Markov process corresponding to Boltzmann's equation of Maxwellian gas. In: Proc. Second Japan-USSR Symp on Probability Theory, Kyoto, 1972, Springer Lecture Notes in Mathematics, vol. 330, Springer, 1973, pp. 478-489.
[240] H., Tanaka, M., Hitsuda. Central limit theorems for a simple diffusion model of interacting particles. Hiroshima Math. J. 11 (1981), 415–423.
[241] V. V., Uchaikin, V.M., Zolotarev. Chance and Stability: Stable Distributions and their Applications. VSP, 1999.
[242] V. V., Uchaikin. Montroll-Weisse problem, fractional equations and stable distributions. Int. J. Theor. Phys. 39:8 (2000), 2087–2105.
[243] K., Uchiyama. Scaling limit of interacting diffusions with arbitrary initial distributions. Prob. Theory Relat. Fields 99 (1994), 97–110.
[244] J.M., van Neerven. Continuity and representation of Gaussian Mehler semigroups. Potential Anal. 13:3 (2000), 199–211.
[245] C., Villani. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143 (1998), 273–307.
[246] C., Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics vol. 58, American Mathematical Society, 2003.
[247] W., Whitt. Stochastic-Process Limits. Springer, 2002.
[248] E. T., Whittaker, G. N., Watson. Modern Analysis, third edition. Cambridge University Press, 1920.
[249] D., Wrzosek. Mass-conservation solutions to the discrete coagulation-fragmentation model with diffusion. Nonlinear Anal. 49 (2002), 297–314.
[250] K., Yosida. Functional Analysis. Springer, 1980.
[251] M., Zak. Dynamics of intelligent systems. Int. J. Theor. Phys. 39:8 (2000), 2107–2140.
[252] M., Zak. Quantum evolution as a nonlinear Markov process. Found. Phys. Lett. 15:3 (2002), 229–243.
[253] G. M., Zaslavsky. Fractional kinetic equation for Hamiltonian chaos. Physica D 76 (1994), 110–122.
[254] B., Zegarlinski. Linear and nonlinear phenomena in large interacting systems. Rep. Math. Phys. 59:3 (2007), 409–419.
[255] V. M., Zolotarev. One-Dimensional Stable Distributions. Moscow, Nauka, 1983 (in Russian). English translation: Translations of Mathematical Monographs, vol. 65, American Mathematical Society, 1986.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.