Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T01:40:51.425Z Has data issue: false hasContentIssue false

7 - Velo-cardio-facial syndrome (deletion 22q11.2): a homogeneous neurodevelopmental model for schizophrenia

Published online by Cambridge University Press:  04 August 2010

Stephan Eliez
Affiliation:
University of Geneva School of Medicine, Geneva, Switerland
Carl Feinstein
Affiliation:
Stanford University School of Medicine, Stanford, USA
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

There is now a very impressive body of data supporting the neurodevelopmental hypothesis of schizophrenia. This chapter summarizes the available clinical, neuroimaging, and genetic information regarding velo-cardio-facial syndrome (VCFS), so that it may be available for clinical research in schizophrenia. Developmental delays in the preschool period may result in identification of VCFS at that time, but some children with VCFS and adults whose condition was unrecognized in childhood are never identified, because of low clinical index of suspicion. Studies of the relationship between VCFS and schizophrenia have recently stimulated interest in further molecular genetic analysis of 22q11.2 site, utilizing both family- and population-based schizophrenia samples. A review of most of the available neuroimaging studies of children with VCFS suggests that there is an early alteration of parietal lobe and cerebellum, and that the decrease of temporal lobe gray matter and hippocampus can be observed only in adults.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asarnow, R. F., Nuechterlein, K. H., Asamen, J.et al. (2002a). Neurocognitive functioning and schizophrenia spectrum disorders can be independent expressions of familial liability for schizophrenia in community control children: the UCLA family study. Schizophr Res 54: 111–120CrossRefGoogle Scholar
Asarnow, R. F., Nuechterlein, K. H., Subotnik, K. L.et al. (2002b). Neurocognitive impairments in nonpsychotic parents of children with schizophrenia and attention-deficit/hyperactivity disorder: the University of California, Los Angeles Family Study. Arch Gen Psychiatry 59: 1053–1060CrossRefGoogle Scholar
Bassett, A. S., Chow, E. W. (1999). 22q11 deletion syndrome: a genetic subtype of schizophrenia. Biol Psychiatry 46: 882–891CrossRefGoogle ScholarPubMed
Bassett, A. S., Hodgkinson, K., Chow, E. W.et al. (1998). 22q11 deletion syndrome in adults with schizophrenia. Am J Med Genet 81: 328–3373.0.CO;2-N>CrossRefGoogle ScholarPubMed
Bilder, R., Volavka, J., Czobor, P.et al. (2002). Neurocognitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biol Psychiatry 52: 701–707CrossRefGoogle ScholarPubMed
Bingham, P. M., Lynch, D., McDonald-McGinn, D., Zackai, E. (1998). Polymicrogyria in chromosome 22 delection syndrome. Neurology 51: 1500–1502CrossRefGoogle ScholarPubMed
Bird, L. M. (2001). Cortical dysgenesis and 22q11 deletion. Clin Dysmorphol 10: 77CrossRefGoogle ScholarPubMed
Cannon, M., Caspi, A., Moffitt, T. E.et al. (2002). Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Arch Gen Psychiatry 59: 449–456CrossRefGoogle ScholarPubMed
Carlson, C., Papolos, D., Pandita, R. K.et al. (1997a). Molecular analysis of velo-cardio-facial syndrome patients with psychiatric disorders. Am J Hum Genet 60: 851–859Google Scholar
Carlson, C., Sirotkin, H., Pandita, R.et al. (1997b). Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients. Am J Hum Genet 61: 620–629CrossRefGoogle Scholar
Chakravarti, A. (2002). A compelling genetic hypothesis for a complex disease, PRODHH2/DGCR6 variation leads to schizophrenia susceptibility. Proc Natl Acad Sci USA 99: 4755–4756CrossRefGoogle ScholarPubMed
Chow, E., Zipursky, R. B., Mikulis, D.et al. (1999). MRI findings in adults with 22q11 deletion syndrome (22qDS) and schizophrenia. Schizophr Res 36: 89Google Scholar
Chow, E. W., Zipursky, R. B., Mikulis, D. J., Bassett, A. S. (2002). Structural brain abnormalities in patients with schizophrenia and 22q11 deletion syndrome. Biol Psychiatry 51: 208–215CrossRefGoogle ScholarPubMed
Cohen, E., Chow, E., Weksberg, R., Bassett, A. S. (1999). Phenotype of adults with the 22q11 deletion syndrome. Am J Med Genet 86: 359–3653.0.CO;2-V>CrossRefGoogle ScholarPubMed
Cooper, J., Bloom, F., Roth, R. (1996): The Biochemical Basis of Neuropharmacology, 7th edn. New York: Oxford University Press
Driscoll, D. A., Salvin, J., Sellinger, B.et al. (1993). Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counselling and prenatal diagnosis. J Med Genet 30: 813–817CrossRefGoogle ScholarPubMed
Dunham, I., Shimizu, N., Roe, B. A.et al. (1999). The DNA sequence of human chromosome 22. Nature 402: 489–495CrossRefGoogle ScholarPubMed
Eliez, S., Schmitt, J. E., White, C. D., Reiss, A. L. (2000). Children and adolescents with velocardiofacial syndrome: a volumetric MRI study. Am J Psychiatry 157: 409–415CrossRefGoogle ScholarPubMed
Eliez, S., Schmitt, J. E., White, C. D., Wellis, V. G., Reiss, A. L. (2001a). A quantitative MRI study of posterior fossa development in velocardiofacial syndrome. Biol Psychiatry 49: 540–546CrossRefGoogle Scholar
Eliez, S., Blasey, C. M., Schmitt, E. J.et al. (2001b). Velocardiofacial syndrome: are structural changes in the temporal and mesial temporal regions related to schizophrenia?Am J Psychiatry 158: 447–453CrossRefGoogle Scholar
Eliez, S., Antonarakis, S. E., Morris, M. A., Dahoun, S. P., Reiss, A. L. (2001c). Parental origin of the deletion 22q11.2 and brain development in velocardiofacial syndrome: a preliminary study. Arch Gen Psychiatry 58: 64–68CrossRefGoogle Scholar
Erlenmeyer-Kimling, L., Rock, D., Roberts, S.et al. (2000). Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychosis. Am J Psychiatry 157: 1416–1422CrossRefGoogle Scholar
Feinstein, C., Reiss, A. L. (1996). Psychiatric disorders in mentally retarded children and adolescents. Child Adolesc Psychiatr Clin N Am 5: 827–852Google Scholar
Feinstein, C., Weiner, J. (1997). Developmental disorders of learning, motor skills, and communication. In Textbook of Child and Adolescent Psychiatary, ed. J. Weiner. Washington, DC: American Psychiatry Press, pp. 281–300
Feinstein, C., Eliez, S., Blasey, C., Reiss, A. L. (2002). Psychiatric disorders and behavioral problems in children with velocardiofacial syndrome: usefulness as phenotypic indicators of schizophrenia risk. Biol Psychiatry 51: 312–318CrossRefGoogle ScholarPubMed
Fish, B. (1977). Neurobiologic antecedents of schizophrenia in children. Evidence for an inherited, congenital neurointegrative defect. Arch Gen Psychiatry 34: 1297–1313CrossRefGoogle ScholarPubMed
Fish, B., Marcus, J., Hans, S. L., Auerbach, J. G., Perdue, S. (1992). Infants at risk for schizophrenia: sequelae of a genetic neurointegrative defect. A review and replication analysis of pandsymaturation in the Jerusalem Infant Development Study. Arch Gen Psychiatry 49: 221–235CrossRefGoogle ScholarPubMed
Fokstuen, S., Arbenz, U., Artan, S., et al. (1998). 22q11.2 deletions in a series of patients with non-selective congenital heart defects: incidence, type of defects and parental origin. Clin Genet 53: 63–69CrossRefGoogle Scholar
Fraser, W., Nolan, M. (1994). Psychiatric disorders in mental retardation. In Mental Health in Mental Retardation, ed. N. Bouras. Cambridge: Cambridge University Press, pp. 79–92
Fuller, R., Nopoulos, P., Arndt, S.et al. (2002). Longitudinal assessment of premorbid cognitive functioning in patients with schizophrenia through examination of standardized scholastic test performance. Am J Psychiatry 159: 1183–1189CrossRefGoogle ScholarPubMed
Funke, B., Saint-Jore, B., Puech, A.et al. (1997). Characterization and mutation analysis of goosecoid-like (GSCL), a homeodomain-containing gene that maps to the critical region for VCFS/DGS on 22q11. Genomics 46: 364–372CrossRefGoogle Scholar
Gerdes, M., Solot, C., Wang, P. P.et al. (1999). Cognitive and behavior profile of preschool children with chromosome 22q11.2 deletion. Am J Med Genet 85: 127–1333.0.CO;2-F>CrossRefGoogle ScholarPubMed
Ghariani, S., Dahan, K., Saint-Martin, C.et al. (2002). Polymicrogyria in chromosome 22q11 deletion syndrome. Eur J Paediatr Neurol 6: 73–77CrossRefGoogle ScholarPubMed
Glaser, B., Mumme, D. L., Blasey, C.et al. (2002). Language skills in children with velocardiofacial syndrome (deletion 22q11.2). J Pediatr 140: 753–758CrossRefGoogle Scholar
Gold, S., Arndt, S., Nopoulos, P., O'Leary, D. S., Andreasen, N. C. (1999). Longitudinal study of cognitive function in first-episode and recent-onset schizophrenia. Am J Psychiatry 156: 1342–1348Google ScholarPubMed
Goldberg, R., Motzkin, B., Marion, R., Scambler, P. J., Shprintzen, R. J. (1993). Velo-cardio-facial syndrome: a review of 120 patients. Am J Med Genet 45: 313–319CrossRefGoogle ScholarPubMed
Golding-Kushner, K. J., Weller, G., Shprintzen, R. J. (1985). Velo-cardio-facial syndrome: language and psychological profiles. J Craniofac Genet Dev Biol 5: 259–266Google ScholarPubMed
Gong, W., Emanuel, B. B., Collins, J. E.et al. (1996). A transcription map of the DiGeorge and velocardiofacial syndrome minimal critical region. Hum Mol Genet 5: 789–800CrossRefGoogle Scholar
Gothelf, D., Frisch, A., Munitz, H.et al. (1997). Velocardiofacial manifestations and microdeletions in schizophrenic inpatients. Am J Med Genet 72: 455–4613.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Gottlieb, S., Emanuel, B. S., Driscoll, D. A.et al. (1997). The DiGeorge syndrome minimal critical region contains a goosecoid-like (GSCL) homeobox gene that is expressed early in human development. Am J Hum Genet 60: 1194–1201Google ScholarPubMed
Gottlieb, S., Hanes, S. D., Golden, J. A., Oakey, R. J., Budarf, M. L. (1998). Goosecoid-like, a gene deleted in DiGeorge and velocardiofacial syndromes, recognizes DNA with a bicoid-like specificity and is expressed in the developing mouse brain. Hum Mol Genet 7: 1497–1505CrossRefGoogle ScholarPubMed
Gur, R. E., Turetsky, B. I., Bilker, W. B., Gur, R. C. (1999). Reduced gray matter volume in schizophrenia. Arch Gen Psychiatry 56: 905–911CrossRefGoogle Scholar
Hans, S. L., Marcus, J., Nuechterlein, K. H.et al. (1999). Neurobehavioral deficits at adolescence in children at risk for schizophrenia: the Jersualem Infant Development Study. Arch Gen Psychiatry 56: 741–748CrossRefGoogle Scholar
Jacquet, H., Raux, G., Thibaut, F.et al. (2002). PRODH mutations and hyperprolinemia in a subset of schizophrenic patients. Hum Mol Genet 11: 2243–2249CrossRefGoogle Scholar
Jerome, L. A., Papaioannou, V. E. (2001). DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 27: 286–291CrossRefGoogle ScholarPubMed
Karayiorgou, M., Morris, M. A., Morrow, B.et al. (1995). Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA 92: 7612–7616CrossRefGoogle ScholarPubMed
Kates, W. R., Burnette, C. P., Jabs, E. W.et al. (2001). Regional cortical white matter reductions in velocardiofacial syndrome: a volumetric MRI analysis. Biol Psychiatry 49: 677–684CrossRefGoogle ScholarPubMed
Kawame, H., Kurosawa, K., Akatsuka, A., Ochiai, Y., Mizuno, K. (2000). Polymicrogyria is an uncommon manifestation in 22q11.2 deletion syndrome. Am J Med Genet 94: 77–783.0.CO;2-V>CrossRefGoogle ScholarPubMed
Kirov, G., Murphy, K. C., Arranz, M.et al. (1998). Low activity allele of catechol-O-methyltransferase gene associated with rapid cylcing bipolar disorder. Mol Psychiatry 3: 342–345CrossRefGoogle ScholarPubMed
Kunugi, H., Vallada, H., Sham, P.et al. (1997). Catechol-O-methyltransferase polymorphisms and schizophrenia: a transmission disequilibrium study in multiply affected families. Psychiatr Genet 7: 97–101CrossRefGoogle ScholarPubMed
Lachman, H. M., Morrow, B., Shprintzen, R.et al. (1996a). Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome. Am J Med Genet 67: 468–4723.0.CO;2-G>CrossRefGoogle Scholar
Lachman, H. M., Papolos, D. F., Saito, T.et al. (1996b). Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6: 243–250CrossRefGoogle Scholar
Lachman, H., Kelsoe, J., Moreno, L., Katz, S., Papolos, D. (1997). Lack of association of catechol-O-methyltransferase (COMT) functional polymorphism in bipolar affective disorder. Psychiatr Genet 7: 13–17CrossRefGoogle ScholarPubMed
Lindsay, E. A., Greenberg, F., Shaffer, L. G., et al. (1995). Submicroscopic deletions at 22q11.2: variability of the clinical picture and delineation of a commonly deleted region. Am J Med Genet 56: 191–197CrossRefGoogle ScholarPubMed
Lindsay, E. A., Harvey, E., Scambler, P., Baldini, A. (1998). ES2, a gene deleted in DiGeorge syndrome, encodes a nuclear protein and is expressed during early mouse development, where it shares an expression domain with a goosecoid-like gene. Hum Mol Genet 7: 629–635CrossRefGoogle ScholarPubMed
Lindsay, E. A., Vitelli, F., Su, H.et al. (2001). Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410: 97–101CrossRefGoogle ScholarPubMed
Liu, H., Heath, S. C., Sobin, C.et al. (2002a). Genetic variation at the 22q11 PRODH 2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 99: 3717–3722CrossRefGoogle Scholar
Liu, H., Abecasis, G. R., Heath, S. C.et al. (2002b). Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci USA 99: 16859–16864CrossRefGoogle Scholar
Liu, H., Heath, S. C., Sobin, C.et al. (2002c). Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 99: 3717–3722CrossRefGoogle Scholar
Marcus, J., Hans, S. L., Auerbach, J. G., Auerbach, A. G. (1993). Children at risk for schizophrenia: the Jerusalem Infant Development Study II. Neurobehavioral deficits at school age. Arch Gen Psychiatry 50: 797–809CrossRefGoogle ScholarPubMed
McDermid, H. E., Morrow, B. E. (2002). Genomic disorders on 22q11. Am J Hum Genet 70: 1077–1088CrossRefGoogle ScholarPubMed
McDonald-McGinn, D. M., Kirschner, R., Goldmuntz, E.et al. (1999). The Philadelphia story: the 22q11.2 deletion. Report on 250 patients. Genet Couns 10: 11–24Google ScholarPubMed
McGlashan, T. H., Hoffman, R. E. (2000). Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 57: 637–648CrossRefGoogle ScholarPubMed
Merscher, S., Funke, B., Epstein, J. A.et al. (2001). TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104: 619–629CrossRefGoogle ScholarPubMed
Mitnick, R. J., Bello, J. A., Shprintzen, R. J. (1994). Brain anomalies in velo-cardio-facial syndrome. Am J Med Genet 54: 100–106CrossRefGoogle ScholarPubMed
Mohamed, S., Paulsen, J. S., O'Leary, D., Arndt, S., Andreasen, N. (1999). Generalized cognitive deficits in schizophrenia: a study of first-episode patients. Arch Gen Psychiatry 56: 749–754CrossRefGoogle ScholarPubMed
Moss, E. M., Batshaw, M. L., Solot, C. B.et al. (1999). Psychoeducational profile of the 22q11.2 microdeletion: a complex pattern. J Pediatr 134: 193–198CrossRefGoogle ScholarPubMed
Murphy, K. C., Jones, L. A., Owen, M. J. (1999). High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 56: 940–945CrossRefGoogle ScholarPubMed
Palmatier, M. A., Kang, A. M., Kidd, K. K. (1999). Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biol Psychiatry 46: 557–567CrossRefGoogle ScholarPubMed
Papolos, D. F., Faedda, G. L., Veit, S.et al. (1996). Bipolar spectrum disorders in patients diagnosed with velo-cardio-facial syndrome: does a hemizygous deletion of chromosome 22q11 result in bipolar affective disorder?Am J Psychiatry 153: 1541–1547Google ScholarPubMed
Papolos, D. F., Veit, S., Faedda, G. L., Saito, T., Lachman, H. M. (1998). Ultra-ultra rapid cycling bipolar disorder is associated with the low activity catecholamine-O-methyltransferase allele. Mol Psychiatry 3: 346–349CrossRefGoogle ScholarPubMed
Pulver, A. E., Nestadt, G., Goldberg, R.et al. (1994). Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J Nerv Ment Dis 182: 476–478CrossRefGoogle ScholarPubMed
Reichenberg, A., Weiser, M., Rabinowitz, J.et al. (2002). A population-based cohort study of premorbid intellectual, language, and behavioral functioning in patients with schizophrenia, schizoaffective disorder, and nonpsychotic bipolar disorder. Am J Psychiatry 159: 2027–2035CrossRefGoogle ScholarPubMed
Roberts, C., Daw, S. C., Halford, S., Scambler, P. J. (1997). Cloning and developmental expression analysis of chick Hira (Chira), a candidate gene for DiGeorge syndrome. Hum Mol Genet 6: 237–245CrossRefGoogle Scholar
Ryan, A. K., Goodship, J. A., Wilson, D. I.et al. (1997). Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 34: 798–804CrossRefGoogle ScholarPubMed
Saint-Jore, B., Puech, A., Heyer, J.et al. (1998). Goosecoid-like (Gscl), a candidate gene for velocardiofacial syndrome, is not essential for normal mouse development. Hum Mol Genet 7: 1841–1849CrossRefGoogle Scholar
Saito, T., Stopkova, P., Diaz, L.et al. (2003). Polymorphism screening of PIK4CA: possible candidate gene for chromosome 22q11-linked psychiatric disorders. Am J Med Genet 116: 77–83CrossRefGoogle Scholar
Scambler, P. J., Kelly, D., Lindsay, E.et al. (1992). Velo-cardio-facial syndrome associated with chromosome 22 deletions encompassing the DiGeorge locus. Lancet 339: 1138–1139CrossRefGoogle ScholarPubMed
Scherer, N. J., D'Antonio, L. L., Kalbfleisch, J. H. (1999). Early speech and language development in children with velocardiofacial syndrome. Am J Med Genet 88: 714–7233.0.CO;2-B>CrossRefGoogle ScholarPubMed
Shaikh, T. H., Kurahashi, H., Saitta, S. C.et al. (2000). Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet 9: 489–501CrossRef
Shenton, M. E., Dickey, C. C., Frumin, M., McCarley, R. W. (2001). A review of MRI findings in schizophrenia. Schizophr Res 49: 1–52CrossRefGoogle Scholar
Shifman, S., Bronstein, M., Sternfeld, M.et al. (2002). A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 71: 1296–1302CrossRefGoogle Scholar
Shprintzen, R. J. (1999). Historic overview of VCFS. Genet Couns 10: 1–2Google Scholar
Shprintzen, R. J., Goldberg, R. B., Lewin, M. L.et al. (1978). A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities: velo-cardio-facial syndrome. Cleft Palate J 15: 56–62Google ScholarPubMed
Shprintzen, R. J., Goldberg, R., Golding-Kushner, K. J., Marion, R. W. (1992). Late-onset psychosis in the velo-cardio-facial syndrome. Am J Med Genet 42: 141–142CrossRefGoogle ScholarPubMed
Strous, R., Bark, N., Parsia, S., Vovlavka, J., Lachman, H. (1997). Analysis of a functional catechol-O-methyltransferase gene polymorphism in schizophrenia: evidence for association with aggressive and antisocial behavior. Psychiatr Res 69: 71–77CrossRefGoogle ScholarPubMed
Swillen, A., Devriendt, K., Legius, E.et al. (1997). Intelligence and psychosocial adjustment in velocardiofacial syndrome: a study of 37 children and adolescents with VCFS. J Med Genet 34: 453–458CrossRefGoogle ScholarPubMed
Swillen, A., Devriendt, K., Legius, E.et al. (1999). The behavioural phenotype in velo-cardio-facial syndrome (VCFS): from infancy to adolescence. Genet Couns 10: 79–88Google Scholar
Tezenas Du Montcel, S., Mendizabai, H.et al. (1996). Prevalence of 22q11 microdeletion [letter]. J Med Genet 33: 719CrossRefGoogle Scholar
Thompson, P. M., Vidal, C., Giedd, J. N.et al. (2001). Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 98: 11650–11655CrossRefGoogle ScholarPubMed
Toppelberg, C., Shapiro, T. (2000). Language disorders: a 10-year research update review. J Am Acad Child Adolesc Psychiatry 39: 143–152CrossRefGoogle ScholarPubMed
Usiskin, S. I., Nicolson, R., Krasnewich, D. M.et al. (1999). Velocardiofacial syndrome in childhood-onset schizophrenia. J Am Acad Child Adolesc Psychiatry 38: 1536–1543CrossRefGoogle ScholarPubMed
Amelsvoort, T., Daly, E., Robertson, D.et al. (2001). Structural brain abnormalities associated with deletion at chromosome 22q11: quantitative neuroimaging study of adults with velo-cardio-facial syndrome. Br J Psychiatry 178: 412–419CrossRefGoogle ScholarPubMed
Vantrappen, G., Devriendt, K., Swillen, A.et al. (1999). Presenting symptoms and clinical features in 130 patients with the velo-cardio-facial syndrome. The Leuven experience. Genet Couns 10: 3–9Google ScholarPubMed
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660–669CrossRefGoogle ScholarPubMed
Weinberger, D. R., Egan, M. F., Bertolino, A.et al. (2001). Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50: 825–844CrossRefGoogle ScholarPubMed
Weinshilboum, R. M. (1978). Human biochemical genetics of plasma dopamine-beta-hydroxylase and erythrocyte catechol-O-methyltransferase. Hum Genet Suppl 1: 101–112CrossRefGoogle Scholar
Worthington, S., Turner, A., Elber, J., Andrews, P. I. (2000). 22q11 deletion and polymicrogyria: cause or coincidence?Clin Dysmorphol 9: 193–197CrossRefGoogle ScholarPubMed
Yamagishi, H., Garg, V., Matsuoka, R., Thomas, T., Srivastava, D. (1999). A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science 283: 1158–1161CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×