Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T14:51:05.174Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 August 2021

Alan Rubin
Affiliation:
University of California, Los Angeles
Chi Ma
Affiliation:
Caltech
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Meteorite Mineralogy , pp. 331 - 378
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K., Sakamoto, N., Krot, A. N., and Yurimoto, H. (2017) Occurrences, abundances, and compositional variations of cosmic symplectites in the Acfer 094 ungrouped carbonaceous chondrite. Geochemical Journal 51, 315.CrossRefGoogle Scholar
Abreu, N. M. (2016) Why is it so difficult to classify Renazzo-type (CR) carbonaceous chondrites? – Implications from TEM observations of matrices for the sequences of aqueous alteration. Geochimica et Cosmochimica Acta 194, 91122.Google Scholar
Abreu, N. M. and Brearley, A. J. (2010) Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. Geochimica et Cosmochimica Acta 74, 11461171.CrossRefGoogle Scholar
Abron, A.-M. (2019) Building other worlds. Griffith Observer 83(4), 216.Google Scholar
Ackermand, D. and Raase, P. (1973) Die mineralogische Zusammensetzung des Meteoriten von Kiel. Contributions to Mineralogy and Petrology 39, 289300.Google Scholar
Acquadro, J. J., MacPherson, G. J., Corrigan, C. M., and Lunning, N. G. (2019) Evidence for impact-induced shock melting in carbonaceous chondrites. Lunar and Planetary Science 50, Abstract #2529.Google Scholar
Afiattalab, F. and Wasson, J. T. (1980) Composition of the metal phases in ordinary chondrites: Implications regarding classification and metamorphism. Geochimica et Cosmochimica Acta 44, 431446.CrossRefGoogle Scholar
Agrell, S. O., Long, J. V. P., and Ogilvie, R. E. (1963) Nickel content of kamacite near the interface with taenite in iron meteorites. Nature 198, 749750.Google Scholar
Akaiwa, H. (1966) Abundances of selenium, tellurium, and indium in meteorites. Journal of Geophysical Research 71, 19191923.Google Scholar
Alexander, C. M. O’D., Hutchison, R. H., Graham, A. L., and Yabuki, H. (1987) Discovery of scapolite in the Bishunpur (LL3) chondritic meteorite. Mineralogical Magazine 51, 733735.Google Scholar
Alexander, C. M. O’D., Barber, D. J., and Hutchison, R. H. (1989) The microstructure of Semarkona and Bishunpur. Geochimica et Cosmochimica Acta, 53, 30453057.Google Scholar
Alexander, C. M. O’D., Prombo, C. A., Swan, P. D., and Walker, R. M. (1991) SiC and Si3N4 in Qingzhen (EH3) (abstract). Lunar and Planetary Science 22, 56.Google Scholar
Alexander, C. M. O’D., Swan, P., and Prombo, C. A. (1994) Occurrence and implications of silicon nitride in enstatite chondrites. Meteoritics 29, 7985.Google Scholar
Anand, M., Taylor, L. A., Nazarov, M. A., Shu, J., Mao, H.-K., and Hemley, R. J. (2004) Space weathering on airless planetary bodies: Clues from the lunar mineral hapkeite. Proceedings of the National Academy of Sciences 101, 68476851.Google Scholar
Anders, A. and Zinner, E. (1993) Interstellar grains in primitive meteorites: Diamond, silicon carbide, and graphite. Meteoritics 28, 490514.Google Scholar
Andersen, C. A., Keil, K., and Mason, B. (1964) Silicon oxynitride: A meteoritic mineral. Science 146, 256257.Google Scholar
Andersson, S. and Magnéli, A. (1956) Diskrete Titanoxydphasen im Zusammensetzungsbereich TiO1,75-TiO1,90Naturwissenschaften43495496.CrossRefGoogle Scholar
Andronicos, C. L., Bindi, L., Distler, V. V., Hollister, L. S., Lin, C., MacPherson, G. J., Steinhardt, P. J., and Yuduvskaya, M. (2018) Comment on “Compositon and origin of holotype Al–Cu–Zn minerals in relation to quasicrystals in the Khatyrka meteorite” by M. Ivanova et al. (2017). Meteoritics & Planetary Science 53, 24302440.Google Scholar
Arimatsu, K., Tsumura, K., Usui, F., Shinnaka, Y., Ichikawa, K., Ootsubo, T., Kotani, T., Wada, T., Nagase, K., and Watanabe, J. (2019) A kilometre-sized Kuiper belt object discovered by stellar occulation using amateur telescopes. Nature Astronomy 3, 301306. https://doi.org/10.1038/s41550-018-0685-8.Google Scholar
Armstrong, J. C., Wells, L. E., and Gonzalez, G. (2002) Rummaging through Earth’s attic for remains of ancient life. Icarus 160, 183196.Google Scholar
Armstrong, J. T., Hutcheon, I. D., and Wasserburg, G. J. (1987) Zelda and company: Petrogenesis of sulfide-rich Fremdlinge and constraints on solar nebula processes. Geochimica et Cosmochimica Acta 51, 31553173.Google Scholar
Asimow, P. D., Lin, C., Bindi, L., Ma, C., Tschauner, O., Hollister, L. S., Steinhardt, P. J. (2016) Shock synthesis of quasicrystals with implications for their origin in asteroid collisions. Proceedings of the National Academy of Sciences 113, 70777081.CrossRefGoogle ScholarPubMed
Baecker, B., Rubin, A. E., and Wasson, J. T. (2017) Secondary melting events in Semarkona chondrules revealed by compositional zoning in low-Ca pyroxene. Geochimica et Cosmochimica Acta 211, 256279.Google Scholar
Barber, D. J. (1981) Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites. Geochimica et Cosmochimica Acta 45, 945970.Google Scholar
Barber, D. J., Beckett, J. R., Paque, J. M., and Stolper, E. (1994) A new titanium-bearing calcium aluminosilicate phase: II. Crystallography and crystal chemistry of grains formed in slowly cooled melts with bulk compositions of calcium-aluminum-rich inclusions. Meteoritics 29, 682690.CrossRefGoogle Scholar
Barnatowicz, T. J., Messenger, S., Pravdivtseva, O., Swan, P., and Walter, R. M. (2003) Pristine presolar silicon carbide. Geochimica et Cosmochimica Acta 67, 46794691.Google Scholar
Baziotis, I. P., Liu, Y., DeCarli, P. S., Melosh, H. J., McSween, H. Y., Bodnar, R. J. and Taylor, L. A. (2013) The Tissint martian meteorite as evidence for the largest impact excavation. Nature Communications 4, 17, Article 1404.Google Scholar
Baziotis, I., Asimow, P. D., Hu, J., Ferrière, L.Ma, C., Cernok, A., Anand, M., and Topa, D. (2018) High pressure minerals in the Château-Renard (L6) ordinary chondrite: Implications for collisions on its parent bodyScientific Reports 8, 9851.CrossRefGoogle ScholarPubMed
Becker, R. H. and Pepin, R. O. (1984) Solar composition noble gases in the Washington County iron meteorite. Earth & Planetary Science Letters 70, 110.CrossRefGoogle Scholar
Bellucci, J. J., Nemchin, A. A., Grange, M., Robinson, K. L., Collins, G., Whitehouse, M. J., Snape, J. F., Norman, M. D., and Kring, D. A. (2019) Terrestrial-like zircon in a clast from an Apollo 14 breccia. Earth & Planetary Science Letters 510, 173185.Google Scholar
Benedix, G. K., McCoy, T. J., Keil, K., and Love, S. G. (2000) A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB-Winonaite parent body. Meteoritics & Planetary Science 35, 11271141.Google Scholar
Berger, E., Lauretta, D. S., Zega, T. J., and Keller, L. P. (2016) Heterogeneous histories of Ni-bearing pyrrhotite and pentlandite grains in the CI chondrites Orgueil and Alais. Meteoritics & Planetary Science 51, 18131829.Google Scholar
Berkley, J. L., Taylor, G. J., Keil, K., Harlow, G. E., and Prinz, M. (1980) The nature and origin of ureilites. Geochimica et Cosmochimica Acta 44, 15791597.CrossRefGoogle Scholar
Bermingham, K. R., Worsham, E. A., and Walker, R. J. (2018) New insights into Mo and Ru isotope variation in the nebula and terrestrial planet accretionary genetics. Earth and Planetary Science Letters 487, 221229.Google Scholar
Bernatowicz, T. J., Amari, S., Zinner, E. K., and Lewis, R. S. (1991) Interstellar grains within interstellar grains. Astrophysical Journal 373, L73L76.Google Scholar
Bernatowicz, T. J., Cowsik, R., Gibbons, P. C., Lodders, K., Fegley, B., Amari, S., and Lewis, R. S. (1996) Constraints on stellar grain formation from presolar graphite in the Murchison meteorite. Astrophysical Journal 472, 760782.Google Scholar
Bevan, A. W. R., Bevan, J. C., and Francis, J. G. (1977) Amphibole in the Mayo Belwa meteorite: First occurrence in an enstatite achondrite. Mineralogical Magazine 41, 531534.Google Scholar
Bevan, A. W. R., Kinder, J., and Axon, H. J. (1981) Complex shock-induced Fe–Ni–S–Cr–C melts in the Haig (IIIA) iron meteorite. Meteoritics 16, 261267.CrossRefGoogle Scholar
Bevan, A. W. R., Downes, P. J., Henry, D. A., Verrall, M., and Haines, P. W. (2019) The Gove relict iron meteorite from Arnhem Land, Northern Territory, Australia. Meteoritics & Planetary Science 54, 17101719.Google Scholar
Bhandari, N., Shah, V. B., and Wasson, J. T. (1980) The Parsa enstatite chondrite. Meteoritics 15, 225233.Google Scholar
Bindi, L. and Steinhardt, P. J. (2018) How impossible crystals came to Earth: A short history. Rocks and Minerals 93, 5057.Google Scholar
Bindi, L. and Xie, X. (2018): Shenzhuangite, NiFeS2, the Ni-analogue of chalcopyrite from the Suizhou L6 chondrite. European Journal of Mineralogy 30, 165169.Google Scholar
Bindi, L. and Xie, X. (2019) Hiroseite, IMA 2019–019. CNMNC Newsletter No. 50, June-July 2019, page 617; Mineralogical Magazine 83, 615620 https://doi.org/ 10.1180/mgm.2019.46.Google Scholar
Bindi, L., Steinhardt, P. J., Yao, N., and Lu, P. J. (2009) Natural quasicrystals. Science 324, 13061309.CrossRefGoogle ScholarPubMed
Bindi, L., Steinhardt, P. J., Yao, N., and Lu, P. J. (2011) Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal. American Mineralogist 96, 928931.Google Scholar
Bindi, L., Yao, N., Lin, C., Hollister, L.S., MacPherson, G.J., Poirier, G.R., Andronicos, C.L., Distler, V.V., Eddy, M.P., Kostin, A., Kryachko, V., Steinhardt, W.M., Yudovskaya, M. (2014) Steinhardtite, a new body-centered-cubic allotropic form of aluminum from the Khatyrka CV3 carbonaceous chondrite. American Mineralogist 99, 24332436.Google Scholar
Bindi, L.,Yao, N., Lin, C., Hollister, L. S., Andronicos, C. L., Distler, V. V., Eddy, M. P., Kostin, A. Kryachko, V., MacPherson, G. J., Steinhardt, W. M., Yudovskaya, M., and Steinhardt, P. J. (2015) Decagonite, Al71Ni24Fe5, a quasicrystal with decagonal symmetry from the Khatyrka CV3 carbonaceous chondrite. American Mineralogist 100, 23402343.Google Scholar
Bindi, L., Lin, C., Ma, C., and Steinhardt, P. J. (2016) Collisions in outer space produced an icosahedral phase in the Khatyrka meteorite never observed previously in the laboratory. Scientific Reports 6, 38117.Google Scholar
Bindi, L., Chen, M. and Xie, X. (2017) Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite. Scientific Reports 7, 42674.CrossRefGoogle ScholarPubMed
Bindi, L., Pham, J., and Steinhardt, P. J. (2018) Previously unknown quasicrystal periodic approximant found in space. Scientific Reports 8, 16271.Google Scholar
Bindi, L., Brenker, F. E., Nestola, F., Koth, T. E., Prior, D. J., Lilly, K., Krot, A. N., Bizzarro, M, and Xie, X. (2019) Discovery of asimowite, the Fe-analog of wadsleyite, in shock-melted silicate droplets of the Suizhou L6 and the Quebrada Chimborazo 001 CB3.0 chondrites. American Mineralogist 104, 775778.Google Scholar
Binns, R. (1967) Stony meteorites bearing maskelynite. Nature 213, 11111112.CrossRefGoogle Scholar
Binzel, R. P. (2001) Forging the fourth link between planetary worlds: Vesta and the HEDs. Meteoritics & Planetary Science 36,479480.Google Scholar
Binzel, R. P. and Xu, S. (1993) Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science 260, 186191.Google Scholar
Bischoff, A. and Keil, K. (1984) Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochimica et Cosmochimica Acta 48, 693709.Google Scholar
Bischoff, A. and Palme, H. (1987) Composition and mineralogy of refractory metal-rich assemblages from a Ca,Al-rich inclusion in the Allende meteorite. Geochimica et Cosmochimica Acta 51, 27332748.Google Scholar
Bischoff, A., Palme, H., Schultz, L., Weber, D., Weber, H. W., and Spettel, B. (1993) Acfer 182 and paired samples, an iron-rich carbonaceous chondrite: Similarities with ALH 85085 and relationship to CR chondrites. Geochimica et Cosmochimica Acta 57, 26312648.Google Scholar
Bischoff, A., Geiger, T., Palme, H., Spettel, B., Schultz, L., Scherer, P., Loeken, T., Bland, P., Clayton, R. N., Mayeda, T. K., Herpers, U., Meltzow, B., Michel, R., and Dittrich-Hannen, B. (1994) Acfer 217-A new member of the Rumuruti chondrite group (R). Meteoritics 29, 264274.Google Scholar
Bischoff, A., Scott, E. R. D., Metzler, K., and Goodrich, C. A. (2006) Nature and origins of meteoritic breccias. In Meteorites and the Early Solar System II, Tucscon: University of Arizona Press, 679712.Google Scholar
Bischoff, A., Vogel, N., and Roszjar, J. (2011) The Rumuruti chondrite group. Chemie der Erde – Geochemistry 71, 101133.Google Scholar
Bland, P. A., Howard, L. E., Prior, D. J., Wheeler, J., Hough, R. M., and Dyl, K. A. (2011) Earliest rock fabric formed in the solar system preserved in a chondrule rim. Nature Geoscience 4, 244247.CrossRefGoogle Scholar
Bloss, F. D. (1971) Crystallography and Crystal Chemistry: An Introduction, New York: Holt, Rinehart and Winston, 545 pp.Google Scholar
Blum, J. D., Wasserburg, G. J., Hutcheon, I. D., Beckett, J. R., and Stolper, E. M. (1988) ‘Domestic’ origin of opaque assemblages in refractory inclusions in meteorites. Nature 331, 405409.Google Scholar
Blum, J. D., Wasserburg, G. J., Hutcheon, I. D., Beckett, J. R., and Stolper, E. M. (1989) Origin of opaque assemblages in CV3 meteorites: Implications for nebular and planetary processes. Geochimica et Cosmochimica Acta 53, 543556.Google Scholar
Boesenberg, J. S. and Hewins, R. H. (2010) An experimental investigation into the metastable formation of phosphoran olivine and pyroxene. Geochimica et Cosmochimica Acta, 74, 19231941.Google Scholar
Boesenberg, J. S., Prinz, M., Weisberg, M. K., Davis, A. M., Clayton, R. N., Mayeda, T. K., and Wasson, J. T. (1995) Pyroxene pallasites: A new pallasite grouplet (abstract). Meteoritics 30, 488489.Google Scholar
Boesenberg, J. S., Davis, A. M., Prinz, M., Weisberg, M. K., Clayton, R. N., and Mayeda, T. K. (2000) The pyroxene pallasites, Vermillion and Yamato 8451: Not quite a couple. Meteoritics & Planetary Science 35, 757769.Google Scholar
Boesenberg, J. S., Mayne, R. G., Humayun, M., Silver, A. P., Greenwood, R. C., and Franchi, I. A. (2016) Pyroxene-plagioclase pallasite Northwest Africa 10019: Where does it belong? Lunar and Planetary Science 47, Abstract #2297.Google Scholar
Boesenberg, J. S., Humayun, M., and Van Niekerk, D. (2017) Zinder: The first mantle sample from the IIIF iron parent body. Lunar and Planetary Science, 48, Abstract #2319.Google Scholar
Boesenberg, J. S., Humayun, M., Windmill, R., Greenwood, R. C., and Franchi, I. A. (2018) Sericho: A new main group pallasite with two types of chromite. Lunar and Planetary Science 49, Abstract#1556.Google Scholar
Bogard, D. D. and Johnson, P. (1983) Martian gases in an Antarctic meteorite. Science 221, 651654.Google Scholar
Bollard, J., Connelly, J. N., and Bizzarro, M. (2015) Pb-Pb dating of individual chondrules from the CBa chondrite Gujba: Assessment of the impact plume formation model. Meteoritics & Planetary Science 50, 11971216.Google Scholar
Boynton, W. V. (1975) Fractionation in the solar nebula: Condensation of yttrium and the rare earth elements. Geochimica et Cosmochimica Acta 39, 569584.Google Scholar
Bradley, J. P. (2005) Interplanetary dust particles. In Treatise on Geochemistry, Volume 1: Meteorites, Comets and Planets, ed. Davis, A. M. Amsterdam: Elsevier, pp. 689711.Google Scholar
Bradley, J. P., Harvey, R. P., and McSween, H. Y. (1997) No ‘nanofossils’ in martian meteorite. Nature 390, 454.Google Scholar
Brearley, A. J. (1989) Nature and origin of matrix in the unique type 3 chondrite, Kakangari. Geochimica et Cosmochimica Acta 53, 23952411.Google Scholar
Brearley, A. J. (1990) Carbon-rich aggregates in type 3 ordinary chondrites: Characterization, origins, and thermal history. Geochimica et Cosmochimica Acta 54, 831850.Google Scholar
Brearley, A. J. (1991) Mineralogical and chemical studies of matrix in the Adelaide meteorite, a unique carbonaceous chondrite with affinities to ALH A77307 (CO3) (abstract). Lunar and Planetary Science 22, 133134.Google Scholar
Brearley, A. J. (1993a) Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: Origins and evidence for diverse, primitive nebular dust components. Geochimica et Cosmochimica Acta 57, 15211550.CrossRefGoogle Scholar
Brearley, A. J. (1993b) Occurrence and possible significance of rare Ti oxides (Magneli phases) in carbonaceous chondrite matrices. Meteoritics 28, 590595.Google Scholar
Brearley, A. J. (1995) Aqueous alteration and brecciation in Bells, an unusual, saponite-bearing, CM chondrite. Geochimica et Cosmochimica Acta 59, 22912317.Google Scholar
Brearley, A. J. (1996) Disordered biopyriboles in the Allende meteorite: First extraterrestrial occurrence. Geological Society of America Abstracts with Program 28, A103.Google Scholar
Brearley, A. J. (1997) Phyllosilicates in the matrix of the unique carbonaceous chondrite, LEW 85332 and possible implications for the aqueous alteration of CI chondrites. Meteoritics & Planetary Science 32, 377388.Google Scholar
Brearley, A. J. (2006) The action of water. In Meteorites and the Early Solar System II, eds. Lauretta, D. S. and McSween, H. Y. Tucson: University of Arizona Press, pp. 587624.CrossRefGoogle Scholar
Brearley, A. J. and Jones, R. H. (1998) Chondritic meteorites. In Planetary Materials, Reviews in Mineralogy & Geochemistry, Vol. 36, ed. Papike, J. J. Washington, DC: Mineralogical Society of America, pp. 3-1–3-398.Google Scholar
Breen, J. P., Rubin, A. E., and Wasson, J. T. (2016) Variations in impact effects among IIIE iron meteorites. Meteoritics & Planetary Science 51, 16111631.CrossRefGoogle Scholar
Brigham, C. A., Yabuki, H., Ouyang, Z., Murrell, M. T., El Goresy, A., and Burnett, D. S. (1986) Silica-bearing chondrules and clasts in ordinary chondrites. Geochimica et Cosmochimica Acta 50, 16551666.Google Scholar
Britvin, S. N., Kolomensky, V. D., Boldyreva, M. M., Bogdanova, A. N., Kretser, Y. L., Boldyreva, O. N., and Rudashesky, N. S. (1999) Nickelphosphide (Ni,Fe)3P, the nickel analog of schreibersite. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva 128, 6472.Google Scholar
Britvin, S. N., Guo, X. Y., Kolomensky, V. D., Boldyreva, M. M., Kretser, Y. L., and Yagovkina, M. A. (2001) Cronusite, Ca0.2(H2O)2CrS2, a new mineral from the Norton County enstatite achondrite. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva 130, 2936.Google Scholar
Britvin, S. N., Rudashevsky, N. S., Krivovichev, S. V., Burns, P. C., and Polekhovsky, Y. S. (2002) Allabogdanite,(Fe, Ni)2P, a new mineral from the Onello meteorite: The occurrence and crystal structure. American Mineralogist 87, 12451249.CrossRefGoogle Scholar
Britvin, S. N., Bogdanova, A. N., Boldyreva, M. M., and Aksenova, G. Y. (2008) Rudashevskyite, the Fe-dominant analogue of sphalerite, a new mineral: Description and crystal structure. American Mineralogist 93, 902909.Google Scholar
Britvin, S. N., Krivovichev, S. V., and Armbruster, T. (2016) Ferromerrillite, Ca9NaFe2+ (PO4)7, a new mineral from the Martian meteorites, and some insights into merrillite–tuite transformation in shergottites. European Journal of Mineralogy 28, 125136.CrossRefGoogle Scholar
Britvin, S. N., Galuskina, I. O., Vlasenko, N. S., Vereshchagin, O.S., Bocharov, V. N., Krzhizhanovskaya, M. G., Shilovskikh, V. V., Galuskin, E. V., Vapnik, Y., and Obolonskaya, E. V. (2020a) Keplerite, IMA 2019-108, CNMNC Newsletter No. 54, page 277; European Journal of Mineralogy 32, 275283.Google Scholar
Britvin, S. N., Murashko, M. N., Vapnik, Y., Polekhovsky, Y. S., Krivovichev, S. V., Krzhizhanovskaya, M. G., Vereshchagin, O. S., Shilovskikh, V. V., and Vlasenko, N. S. (2020b) Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite-transjordanite (hexagonal Fe2P-Ni2P). American Mineralogist 105, 428436.Google Scholar
Brown, P. G., Revelle, D. O., Tagliaferri, E., and Hildebrand, A. R. (2002) An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records. Meteoritics & Planetary Science 37, 661675.Google Scholar
Brownlee, D. (2014) The Stardust mission: Analyzing samples from the edge of the solar system. Annual Review of Earth and Planetary Science 42, 179205.CrossRefGoogle Scholar
Brownlee, D. E. and Rajan, R. S. (1973) Micrometeorite craters discovered on chondrule-like objects from Kapoeta meteorite. Science 182, 13411344.Google Scholar
Buchwald, V. F. (1975) Handbook of Iron Meteorites. BerkeleyUniversity of California Press, 1,418 pp.Google Scholar
Buchwald, V. F. (1977) The mineralogy of iron meteorites. Philosophical Transactions of the Royal Society of London A 286, 453491.Google Scholar
Buchwald, V. F. (1989) Mineralogi og Reaktionsmodeller ved Korrosion of Jordfundne Jergenstande (Meteoritter og Oldsager), Lyngby, Denmark: Technical University of Denmark.Google Scholar
Buchwald, V. F. and Clarke, R. S. (1988) Akaganeite, not lawrencite, corrodes Antarctic iron meteorites (abstract). Meteoritics 23, 261.Google Scholar
Buchwald, V. F. and Clarke, R. S. (1989) Corrosion of Fe-Ni alloys by Cl-containing akaganeite (beta-FeOOH): The Antarctic meteorite case. American Mineralogist 74, 656667.Google Scholar
Buchwald, V. F. and Scott, E. R. D. (1971) First nitride (CrN) in iron meteorites. Nature 233, 113114.Google Scholar
Buddhue, J. D. (1957) The Oxidation and Weathering of Meteorites. Albuquerque: University of New Mexico, 161 pp.Google Scholar
Budde, G., Burkhardt, C., Brennecka, G. A., Fischer-Gödde, M., Kruijer, T. S., and Kleine, T. (2016) Molybendum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth and Planetary Science Letters, 454, 293303.Google Scholar
Budde, G., Burkhardt, C., and Kleine, T. (2017) The distinct genetics of carbonaceous and non-carbonaceous meteorites inferred from molybdenum isotopes. 80th Annual Meeting of the Meteoritical Society, Abstract #6271.Google Scholar
Budde, G., Kruijer, T. S., and Kleine, T. (2018) Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochimica et Cosmochimica Acta, 222, 28430C4.Google Scholar
Bunch, T. E., Keil, K., and Olsen, E. (1970) Mineralogy and petrology of silicate inclusions in iron meteorites. Contributions to Mineralogy and Petrology 25, 297340.Google Scholar
Bunch, T., Wittke, J., and Irving, A. (2014) The Al Haggounia “fossil or paleo” meteorite problem, accessed July 3, 2020, www.cefns.nau.edu/geology/naml/Meteorite/Al_Haggounia.html.Google Scholar
Burbine, T. H. (2014) Asteroids. In Treatise on Geochemistry, eds. Holland, H. and Turekian, K. San Diego: Elsevier Pergamon, pp. 365415.Google Scholar
Burbine, T. H. (2017) Asteroids: Astronomical and Geological Bodies. Cambridge: Cambridge University Press, 367 pp.Google Scholar
Burbine, T. H., Buchanan, P. C., Binzel, R. P., Bus, S. J., Hiroi, T., Hinrichs, J. L., Meibom, A., and McCoy, T. J. (2001) Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences. Meteoritics & Planetary Science 36, 761781.Google Scholar
Burgess, K. D. and Stroud, R. M. (2020) Space weathering of three Itokawa grains and presence of cubanite. Lunar and Planetary Science 51, Abstract#1133.Google Scholar
Burke, J. G. (1986) Cosmic Debris: Meteorites in History. Berkeley: University of California Press, 445 pp.Google Scholar
Burton, A. S., Glavin, D. P., Elsila, J. E., Dworkin, J. P., Jenniskens, P., and Yin, Q.-Z. (2014) The amino acid composition of the Sutter’s Mill CM2 carbonaceous chondrite. Meteoritics & Planetary Science 49, 20742086.Google Scholar
Buseck, P. R. (1968) Mackinawite, pentlandite and native copper from the Newport pallasite. Mineralogical Magazine 36, 717725.Google Scholar
Buseck, P. R. (1977) Pallasite meteorites—mineralogy, petrology and geochemistry. Geochimoca et Cosmochimica Acta 41, 711740.Google Scholar
Buseck, P. R. and Hua, X. (1993) Matrices of carbonaceous chondrite meteorites. Annual Review of Earth & Planetary Sciences 21, 255305.Google Scholar
Cable, M. L., Vu, T. H., Maynard-Casely, H. E., Malaska, M., Choukroun, M., and Hodyss, R. (2020) Evidence for a new Titan molecular mineral: A co-crystal between acetylene and acetonitrile. Lunar and Planetary Science 51, Abstract #1769.Google Scholar
Caillet Komorowski, C., El Goresy, A., Miyahara, M., Boudouma, O., and Ma, C. (2012) Discovery of Hg–Cu-bearing metal-sulfide assemblages in a primitive H-3 chondrite: Towards a new insight in early solar system processes. Earth and Planetary Science Letters 349–350, 261271.Google Scholar
Cameron, A. G. W. and Ward, W. (1976) The origin of the Moon (abstract). Lunar Science 7, 120122.Google Scholar
Campbell, A. J., Humayun, M., and Weisberg, M. K. (2002) Siderophile element constraints on the formation of metal in the metal-rich chondrites Bencubbin, Weatherford, and Gujba. Geochimica et Cosmochimica Acta 66, 647660.Google Scholar
Campbell, A. J. and Humayun, M. (2005) Compositions of group IVB iron meteorites and their parent melt. Geochimica et Cosmochimica Acta 69, 47334744.Google Scholar
Campins, H., Hargrove, K., Pinilla-Alonso, N., Howell, E. S., Kelley, M. S., Licandro, J., Mothé-Diniz, T., Fernández, Y., and Ziffer, J. (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature 464, 13201321.Google Scholar
Cano, E. J., Sharp, Z. D., and Shearer, C. K. (2020) Distinct oxygen isotopic compositions of the Earth and Moon. Nature Geoscience 13, 270274. https://doi.org/10.1038/s41561-020-0550-0.Google Scholar
Canup, R. M. (2012) Forming a Moon with an Earth-like composition via a giant impact. Science 338, 10521055.CrossRefGoogle Scholar
Carter, N. L., Raleigh, C. B., and DeCarli, P. S. (1968) Deformation of olivine in stony meteorites. Journal of Geophysical Research 73, 54395461.Google Scholar
Cartwright, J. A., Ott, U., Herrmann, S., and Agee, C. B. (2014) Modern atmospheric signatures in 4.4 Ga martian meteorite NWA 7034. Earth and Planetary Science Letters 400, 7787.Google Scholar
Castle, N. and Herd, C. D. K. (2018) Experimental investigation into the effects of oxidation during petrogenesis of the Tissint meteorite. Meteoritics & Planetary Science 53, 13411363.Google Scholar
Chabot, N. L. and Haack, H. (2006) Evolution of asteroidal cores. In Meteorites and the Early Solar System II, eds. Lauretta, D. S. and McSween, H. Y. Tucson: University of Arizona Press, pp. 747771.Google Scholar
Chan, Q. H. S., Zolensky, M. E., Kebukawa, Y., Fries, M., Ito, M., Steele, A., Rahman, Z., Nakato, A., Kilcoyne, A. L. D., Suga, H., Takahashi, Y., Takeichi, Y., and Mase, K. (2018) Organic matter in extraterrestrial water-bearing salt crystals. Science Advances 4, eaao3521. https://doi: 10.1126/sciadv.aao3521.Google Scholar
Chao, E. C. T., Fahey, J. J., Littler, J., and Milton, D. J. (1962) Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. Journal of Geophysical Research 67, 419421.CrossRefGoogle Scholar
Chaumard, N., Devouard, B., Delbo, M., Provost, A., and Zanda, B. (2012) Radiative heating of carbonaceous near-Earth objects as a cause of thermal metamorphism for CK chondrites. Icarus 220, 6573.Google Scholar
Chen, D.-L., Zhang, A.-C., Pang, R.-L., Chen, J.-N., and Li, Y. (2019) Shock-induced phase transformation of anorthitic plagioclase in the eucrite meteorite Northwest Africa 2650. Meteoritics & Planetary Science 54, 15481562.Google Scholar
Chen, M., Sharp, T. G., El Goresy, A., Wopenka, B., and Xie, X. (1996) The majorite-pyrope-magnesiowustite assemblage: Constraints on the history of shock veins in chondrites. Science 271, 15701573.Google Scholar
Chen, M., Shu, J., and Mao, H. K. (2008) Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Science Bulletin 53, 33413345.Google Scholar
Chennaoui-Aoudjehane, H., Jambon, A., Rjimati, E., Jull, A. J. T., and Leclerc-Giscard, M. D. (2009) The Late Quaternary fall at Al Haggounia (Morocco): The 14C evidence. Meteoritics & Planetary Science 44, A100.Google Scholar
Chizmadia, L., Rubin, A. E., and Wasson, J. T. (2002) Mineralogy and petrology of amoeboid olivine inclusions: Evidence for CO3 parent-body aqueous alteration. Meteoritics & Planetary Science 37, 17811796.Google Scholar
Choe, W. H., Huber, H., Rubin, A. E., Kallemeyn, G. W., and Wasson, J. T. (2010) Compositions and taxonomy of 15 unusual carbonaceous chondrites. Meteoritics & Planetary Science 45, 531554.Google Scholar
Christiansen, E. H. and Hamblin, K. (2014) Dynamic Earth: An Introduction to Physical Geology. Burlington, MA: Jones and Bartlett, 838 pp.Google Scholar
Christophe Michel-Levy, M. (1976) La matrice noire et blanche de la chondrite de Tieschitz (H3). Earth and Planetary Science Letters 30, 143150.Google Scholar
Chukanov, N., Pekov, I., Levitskaya, L., and Zadov, A. (2009) Droninoite, Ni3Fe3+ 2Cl (OH)8· 2H2O, a new hydrotalcite-group mineral species from the weathered Dronino meteorite. Geology of Ore Deposits 51, 767773.Google Scholar
Cintala, M. (1981) The Mercurian regolith: An evaluation of impact glass production by micrometeoroid impact. Lunar and Planetary Science XII, 141143.Google Scholar
Clarke, R.S. and Scott, E. R. D. (1980) Tetrataenite–ordered FeNi, a new mineral in meteorites. American Mineralogist 65, 624630.Google Scholar
Clarke, R. S., Buchwald, V. F., and Olsen, E. (1990) Anomalous ataxite from Mount Howe, Antarctica. Meteoritics 25, 354.Google Scholar
Clayton, D. D. and Nittler, L. R. (2004) Astrophysics with presolar stardust. Annual Review of Astronomy & Astrophysics 42, 3978.Google Scholar
Clayton, R. N., Mayeda, T. K., Goswami, J. N., and Olsen, E. J. (1991) Oxygen isotope studies of ordinary chondrites. Geochimica et Cosmochimica Acta 55, 23172337.Google Scholar
Cloutis, E. A., Binzel, R. P., and Gaffey, M. J. (2014) Establishing asteroid-meteorite links. Elements 10, 2530.Google Scholar
Comelli, D., D’Orazio, M., Folco, L., El-Halwagy, M., Frizzi, T., Alberti, R., Capogrosso, V., Elnaggar, A., Hassan, H., Nevin, A., Porcelli, F., Rashed, M. G., and Valentini, G. (2016) The meteoritic origin of Tutankhamun’s iron dagger blade. Meteoritics & Planetary Science 51, 13011309.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., Nordlund, Å., Wielandt, D., and Ivanova, M. A. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651655.Google Scholar
Connolly, H. C., Zipfel, J., Grossman, J. N., Folco, L., Smith, C., Jones, R. H., Righter, K., Zolensky, M., Russell, S. S., and Benedix, G. K. (2006) The Meteoritical Bulletin, No. 90, 2006 September. Meteoritics & Planetary Science Archives 41, 13831418.CrossRefGoogle Scholar
Consolmagno, G. J. and Drake, M. J. (1977) Composition and evolution of the eucrite parent body: Evidence from rare earth elements. Geochimica et Cosmochimica Acta 41, 12711282.Google Scholar
Consolmagno, G. J., Macke, R. J., Rochette, P., Britt, D. T., and Gattacceca, J. (2006) Density, magnetic susceptibility, and the characterization of ordinary chondrite falls and showers. Meteoritics & Planetary Science 41, 331342.Google Scholar
Corrigan, C. M., Rumble, D., Ash, R. D., McDonough, W. F., Honesto, J., and Walker, R. J. (2005) The Tishomingo iron: Relationship to IVB irons, CR clan chondrites and angrites and implications for the origin of volatile-depleted iron meteorites. Lunar and Planetary Science 36, Abstract #2062.Google Scholar
Croat, T. K., Berg, T., Bernatowicz, T., Groopman, E., and Jadhav, M. (2013) Refractory metal nuggets within presolar graphite: First condensates from a circumstellar environment. Meteoritics & Planetary Science 48, 686699.Google Scholar
Crotts, A. (2014) The New Moon: Water, Exploration and Future Habitation. Cambridge, UK: Cambridge University Press, 522 pp.Google Scholar
Cruikshank, D. P., Tholen, D. J., Hartmann, W. K., Bell, J. H., and Brown, R. H. (1991) Three basaltic Earth-approaching asteroids and the source of basaltic meteorites. Icarus 89, 113.Google Scholar
Daly, L., Bland, P. A., Dyl, K. A., Forman, L. V., Evans, K. A., Trimby, P. W., Moody, S., Yang, L., Liu, H., Ringer, S. P., Ryan, C. G., and Saunders, M. (2017) In situ analysis of refractory metal nuggets in carbonaceous chondrites. Geochimica et Cosmochimica Acta 216, 6181.Google Scholar
Davis, A. M. (1991) Ultrarefractory inclusions and the nature of the group II REE fractionation (abstract). Meteoritics 26, 330.Google Scholar
Davis, A. M., Zhang, J., Greber, N. D., Hu, J., Tissot, F. L. H., and Dauphas, N. (2018) Titanium isotopes and rare earth patterns in CAIs: Evidence for thermal processing and gas-dust decoupling in the protoplanetary disk. Geochimica et Cosmochimica Acta 221, 275295.Google Scholar
Delaney, J. S., Prinz, M., and Takeda, H. (1984) The polymict eucrites. Proceedings Lunar and Planetary Science Conference, 15, C251C288. https://doi.org/10.1029/JB089iS01p0C251.Google Scholar
DeMeo, F. E., Polishook, D., Carry, B., Burt, B. J., Hsieh, H. H., Binzel, R. P., Moskovitz, N. A., and Burbine, T. H. (2019) Olivine-dominated A-type asteroids in the main belt: Distribution, abundance and relation to families. Icarus 322, 1330.Google Scholar
Demidova, S. I., Merle, R., Kenny, G. G., Nemchin, A. A., Whitehouse, M. J., Brandstätter, F., and Ntaflos, Th. (2020) Possible LL chondrite projectile in Luna-16 soil samples. Lunar and Planetary Science 51, Abstract#1368.Google Scholar
Dobrică, E. and Brearley, A. J. (2014) Widespread hydrothermal alteration minerals in the fine‐grained matrices of the Tieschitz unequilibrated ordinary chondrite. Meteoritics & Planetary Science 49, 13231349.Google Scholar
Dobrică, E. and Brearley, A. J. (2020) Amorphous silicates in the matrix of Semarkona: The first evidence for the localized preservation of pristine matrix materials in the most unequilibrated ordinary chondrites. Meteoritics & Planetary Science 55, 120. https://doi.org/ 10.1111/maps.13458.Google Scholar
Dodd, R. T. (1981) Meteorites: A Petrologic-Chemical Synthesis. New York: Cambridge, 368 pp.Google Scholar
Dodd, R. T. and Jarosewich, E. (1979) Incipient melting in and shock classification of L-group chondrites. Earth and Planetary Science Letters 44, 335340.Google Scholar
Dodd, R. T. and Jarosewich, E. (1982) The composition of incipient shock melts in L6 chondrites. Earth and Planetary Science Letters 59, 355363.Google Scholar
Dodd, R. T., Van Schmus, W. R., and Marvin, U. B. (1965) Merrihueite, a new alkali-ferromagnesian silicate from the Mezö-Madaras chondrite. Science 149, 972974.Google Scholar
Dodd, R. T., Van Schmus, W. R., and Marvin, U. B. (1966) Significance of iron-rich silicate in the Mezö-Madaras chondrite. American Mineralogist 51, 11771191.Google Scholar
Dodd, R. T., Van Schmus, W. R., and Koffman, D. M. (1967) A survey of the unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta 31, 921951.Google Scholar
Dones, H., Zahnle, K. J., and Alvarellos, J. L. (2018) Asteroids and meteorites from Venus? Only the Earth goddess knows (abstract). American Astronomical Society, Division on Dynamical Astronomy Meeting #49, i.d. 102.02. https://ui.adsabs.harvard.edu/#abs/2018DDA....4910202D/abstractGoogle Scholar
Donohue, P. H., Huss, G. R., and Nagashima, K. (2019) Manganese-chromium systematics of calcite in the CM chondrites QUE 93005 and MET 01070 determined using a new matrix-matched standard. Lunar and Planetary Science 50, Abstract #1949.Google Scholar
Doyle, P. M., Jogo, K., Nagashima, K., Krot, A. N., Wakita, S., Ciesla, F. J., and Hutcheon, I. D. (2015) Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications 6, 110. https://doi.org/ 10.1038/ncomms8444.Google Scholar
Dunn, T. L. and Gross, J. (2017) Reclassification of Hart and Northwest Africa 6047: Criteria for distinguishing between CV and CK3 chondrites. Meteoritics & Planetary Science 52, 24122423.Google Scholar
Dunn, T. L., Gross, J., Ivanova, M. A., Runyon, S. E., and Bruck, A. M. (2016) Magnetite in the unequilibrated CK chondrites: Implications for metamorphism and new insights into the relationship between the CV and CK chondrites. Meteoritics & Planetary Science 51, 17011720.Google Scholar
Dunn, T. L., Battifarano, O. K., Gross, J., and O’Hara, E. J. (2018) Characterization of matrix material in Northwest Africa 5343: Weathering and thermal metamorphism of the least equilibrated CK chondrite. Meteoritics & Planetary Science 53, 21652180.Google Scholar
Dye, S. T., Huang, Y., Lekic, V., McDonough, W. F., and Šrámek, O. (2015) Geo-neutrinos and Earth models. Physics Procedia 61, 310318.Google Scholar
Ebata, S., Nagashima, K., Itoh, S., Kobayashi, S., Sakamoto, N., Fagan, T. J., and Yurimoto, H. (2006) Presolar silicate grains in enstatite chondrites. Lunar and Planetary Science 37, Abstract#1619.Google Scholar
Ebata, S., Fagan, T. J., and Yurimoto, H. (2007) Identification of silicate and carbonaceous presolar grains in the type 3 enstatite chondrite ALHA81189 (abstract). Meteoritics & Planetary Science 42, A38.Google Scholar
Ebel, D. S. and Grossman, L. (2000) Condensation in dust enriched systems. Geochimica et Cosmochimica Acta 64, 339366.Google Scholar
El Goresy, A. (1976) Opaque oxide minerals in meteorites. In Oxide Minerals, ed. Rumble, D. Blacksburg, Virginia: Mineralogical Society of America, Southern Printing Company, pp. EG47EG72.Google Scholar
El Goresy, A. and Ottemann, J. (1966) Gentnerite, Cu8Fe3Cr11S18, a new mineral from the Odessa meteorite. Zeitschrift für Naturforschung 21, 11601161.Google Scholar
El Goresy, A., Nagel, K., Dominik, B., and Ramdohr, P. (1977) Fremdlinge: Potential presolar material in Ca-Al-rich inclusions of Allende. Meteoritics 12, 215216.Google Scholar
El Goresy, A., Nagel, K., and Ramdohr, P. (1978) Fremdlinge and their noble relatives. Proceedings Lunar and Planetary Science Conference 9, 12791303.Google Scholar
El Goresy, A., Wopenka, B., Chen, M., Weinbruch, S., and Sharp, T. (1997) Evidence for two different shock induced high-pressure events and alkali-vapor metasomatisme in Peace River and Tenham (L6) chondrites Lunar and Planetary Science 28, Abstract#1044.Google Scholar
El Goresy, A., Yabuki, H., Ehlers, K., Woolum, D., and Pernicka, E. (1988) Qingzhen and Yamato-691: A tentative alphabet for the EH chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites 1, 65101.Google Scholar
El Goresy, A., Dera, P., Sharp, T. G., Prewitt, C. T., Chen, M., Dubrovinsky, L., Wopenka, B., Boctor, N. Z., and Hemley, R. J. (2008) Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. European Journal of Mineralogy 20, 523528.Google Scholar
El Goresy, A., Boyer, M., and Miyahara, M. (2011) Almahata Sitta MS-17 EL-3 chondrite fragment: Contrasting oldhamite assemblages in chondrules and matrix and significant oldhamite REE-patterns. Meteoritics & Planetary Science 46, A63, Abstract#5079.Google Scholar
El Goresy, A., Lin, Y., Miyahara, M., Gannoun, A., Boyet, M., Ohtani, E., Gillet, P., Trieloff, M., Simionovici, A., Feng, L., and Lenelle, L. (2017) Origin of EL3 chondrites evidence for variable C/O ratios during their course of formation – A state of the art scrutiny. Meteoritics & Planetary Science 52, 781806.Google Scholar
Emel’yanenko, V. V., Naroenkov, S. A., Jenniskens, P., and Popova, O. P. (2014) The orbit and dynamical evolution of the Chelyabinsk object. Meteoritics & Planetary Science 49, 21692174.Google Scholar
Endress, M. and Bischoff, A. (1996) Carbonates in CI chondrites: Clues to parent body evolution. Geochimica et Cosmochimica Acta 60 489507.Google Scholar
Endreß, M., Keil, K., Bischoff, A., Spettel, B., Clayton, R. N., and Mayeda, T. K. (1994) Origin of dark clasts in the Acfer/El Djouf 001 CR2 chondrite. Meteoritics 29, 2640.Google Scholar
Eugster, O. (2003) Cosmic-ray exposure ages of meteorites and lunar rocks and their significance. Geochemistry 63, 330.Google Scholar
Fagan, T. J., Scott, E. R. D., Keil, K., Cooney, T. F., and Sharma, S. K. (2000) Formation of feldspathic and metallic melts by shock in enstatite chondrite Reckling Peak A80259. Meteoritics & Planetary Science 35, 319329.Google Scholar
Farrington, O. C. (1915) Meteorites. Published by the author. Chicago, 233 pp.Google Scholar
Faust, G. T., Fahey, J. J., Mason, B. H., and Dwornik, E. J. (1973) The disintegration of the Wolf Creek meteorite and the formation of pecoraite, the nickel analog of clinochrysotile. United States Geological Survey Professional Paper 384-C, 107135.Google Scholar
Fegley, B., Treiman, A. H., and Sharpton, V. L. (1992) Venus surface mineralogy: Observational and theoretical constraints. Proceedings of Lunar and Planetary Science 22, 319.Google Scholar
Feldman, W. C., Maurice, S., Lawrence, D. J., Little, R. C., Lawson, S. L., Gasnault, O., Wiens, R. C., Barraclough, B. L., Elphic, R. C., Prettyman, T. H., Steinberg, J. T., and Binder, A. B. (2001) Evidence for water ice near the lunar poles. Journal of Geophysical Research 106 (E10), 2323123251.Google Scholar
Fesenkov, V. G. (1958) Progress in meteoritics (in Russian) Meteoritika 16, 510.Google Scholar
Filacchione, G., Capaccioni, F., Ciarniello, M., Raponi, A., Rinaldi, G., Cristina De Sanctis, M., Bockelèe-Morvan, D., Erard, S., Arnold, G., Mennella, V., Formisano, M., Longobardo, A., and Mottola, S. (2020) An orbital water-ice cycle on comet 67P from colour changes. Nature 578, 4952.Google Scholar
Flight, W. (1887) A Chapter in the History of Meteorites. London: Dulau and Co.Google Scholar
Floran, R. J., Prinz, M., Hlava, P. F., Keil, K., Nehru, C. E., and Hinthorne, J. R. (1978) The Chassigny meteorite: A cumulate dunite with hydrous amphibole-bearing melt inclusions. Geochimica et Cosmochimica Acta 42, 12131229.Google Scholar
Fodor, R. V. and Keil, K. (1975) Implications of poikilitic textures in LL-group chondrites. Meteoritics 10, 325339.Google Scholar
Fodor, R. V. and Keil, K. (1976) Carbonaceous and non-carbonaceous lithic fragments in the Plainview, Texas chondrite: Origin and history. Geochimica et Cosmochimica Acta 40, 177189.Google Scholar
Fodor, R. V. and Keil, K. (1978) Catalog of Lithic Fragments in LL-Group Chondrites. Special Publication of the University of New Mexico. Albuquerque: Dept. of Geology & Institute of Meteoritics, University of New Mexico, pp. 138.Google Scholar
Fogel, R. A. (1997) On the significance of diopside and oldhamite in enstatite chondrites and aubrites. Meteoritics & Planetary Science 32, 577591.Google Scholar
Foley, C. N., Nittler, L. R., McCoy, T. J., Lim, L. F., Brown, M. R. M., Starr, R. D., and Trombka, J. I. (2006) Minor element evidence that asteroid 433 Eros is a space-weathered ordinary chondrite parent body. Icarus 184, 338343.Google Scholar
Franza, A. and Pratesi, G. (2020) Julius Obsequen’s book, Liber Prodigiorum, A Roman era record of meteorite falls, fireballs, and other celestial phenomena. Meteoritics & Planetary Science 55, 1697–1708 https://doi.org/10.1111/maps.13525.Google Scholar
Friedrich, J. M., Weisberg, M. K., Ebel, D. S., Biltz, A. E., Corbett, B. M., Iotzov, I. V., Khan, W. S., and Wolman, M. D. (2015) Chondrule size and related physical properties: A compilation and evaluation of current data across all meteorite groups. Chemie der Erde – Geochemistry 75, 419443.Google Scholar
Fritz, J., Greshake, A., Klementova, M., Wirth, R., Palatinus, L., Assis Fernandes, V., Böttger, U., and Ferrière, L. (2019) Donwilhelmsite, IMA 2018-113. CNMNC Newsletter No. 47, February 2019, page 145; Mineralogical Magazine 83, 143147.Google Scholar
Fritz, J., Greshanke, A., Klementova, M., Wirth, R., Palatinus, L., Trønnes, R. G., Fernandes, V. A., Böttger, U., and Ferrière, L. (2020) Donwilhelmsite, [CaAl4Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments. American Mineralogist 105, 17041711.Google Scholar
Frondel, J. W. (1975) Lunar Mineralogy. New York: Wiley.Google Scholar
Fuchs, L. H. (1966a) Djerfisherite, alkali copper-iron sulfide: A new mineral from enstatite chondrites. Science 153, 166167.Google Scholar
Fuchs, L. H. (1966b) Roedderite, a new mineral from the Indarch meteorite. American Mineralogist 51, 949955.Google Scholar
Fuchs, L. H. (1969) The Phosphate Mineralogy of Meteorites. The Netherlands: Reidel, Dordrecht.Google Scholar
Fuchs, L. H. (1971) Occurrence of wollastonite, rhonite, and andradite in the Allende meteorite. American Mineralogist 56, 20532068.Google Scholar
Fuchs, L. H. and Olsen, E. (1965) The occurrence of chlorapatite in the Mount Stirling octahedrite (abstract). Transactions of the American Geophysical Union 46, 122.Google Scholar
Fuchs, L. H., Olsen, E., and Henderson, E. P. (1967) On the occurrence of brianite and panethite, two new phosphate minerals from the Dayton meteorite. Geochimica et Cosmochimica Acta 31, 17111719.Google Scholar
Fuchs, L. H., Olsen, E., and Jensen, K.J. (1973) Mineralogy, mineral-chemistry, and composition of the Murchsion (C2) meteorite. Smithsonian Contributions to the Earth Sciences 10, 139.Google Scholar
Fujimaki, H., Matsu-ura, M., Sunagawa, I., and Aoki, K. (1981) Chemical compositions of chondrules and matrices in the ALH-77015 chondrite (L3). Proceedings of the Symposium on Antarctic Meteorites 6, 161–174.Google Scholar
Fujiya, W., Hoppe, P., Zinner, E., Pignatari, M., and Herwig, F. (2013) Evidence for radiogenic sulfur-32 in Type AB presolar silicon carbide grains. The Astrophysical Journal Letters 776, L29, 6 pp.Google Scholar
Garvie, L. A. J., Németh, P., and Buseck, P. R. (2011) Diamond, bucky-diamond, graphite-diamond, Al-silicate, and stishovite in the Gujba CB chondrite. 74th Annual Meeting of the Meteoritical Society, held August 8–12, 2011, in London, UK Abstract #5227. Published in Meteoritics and Planetary Science Supplement.Google Scholar
Garvie, L. A. J., Knauth, L. P., and Morris, M. A. (2017) Sedimentary laminations in the Isheyevo (CH/CBb) carbonaceous chondrite formed by gentle impact-plume sweep-up. Icarus 292, 3647.Google Scholar
Garvie, L. A. J., Ma, C., Ray, S., Domanik, K., Wittmann, A., and Wadhwa, M. (2021a) Carletonmooreite, Ni3Si, a new silicide from the Norton County, aubrite meteorite. American Mineralogist 106, in press. DOI:10.2138/am-2021-7645Google Scholar
Garvie, L. A. L., Ma, C., and Wittmann, A. (2021b) Location and speciation of germanium in the Butler and Northwest Africa 859 ungrouped iron meteorites. Lunar and Planetary Science 52, Abstract #2398.Google Scholar
Geiger, T. and Bischoff, A. (1989) Mineralogy of metamorphosed carbonaceous chondrites (abstract). Meteoritics 24, 269270.Google Scholar
Geiger, T. and Bischoff, A. (1990) Exsolution of spinel and ilmenite in magnetites from type 4-5 carbonaceous chondrites--indications for metamorphic processes (abstract). Lunar and Planetary Science 21, 409410.Google Scholar
Geiger, T. and Bischoff, A. (1995) Formation of opaque minerals in CK chondrites. Planetary and Space Science 43, 485498.Google Scholar
Genge, M. J. and Grady, M. M. (1999) The fusion crust of stony meteorites: Implications for the atmospheric reprocessing of extraterrestrial materials. Meteoritics & Planetary Science, 34, 341356.Google Scholar
George, J., Waraquiers, D., Di Stefano, D., Petretto, G., Rignanese, G.-M., and Hautier, G. (2020) The limited predictive power of the Pauling rules. Angewandte Chemie 132, 76397645. https://doi.org/10.1002/ange.202000829.Google Scholar
Gettens, R. J., Clarke, R. S. Jr. and Chase, W. T. (1971) Two early Chinese bronze weapons with meteoritic iron blades. Freer Gallery of Art, Washington, DC, Occasional Papers, 4, No. 1.Google Scholar
Ghosh, A., Weidenschilling, S. J., McSween, H. Y., and Rubin, A. (2006) Asteroidal heating and thermal stratification of the asteroid belt. In Meteorites and the Early Solar System II eds. Lauretta, D., Leshin, L. A., and McSween, H. Y. Tucson: University of Arizona Press, pp. 555566.Google Scholar
Gillet, P., Chen, M., Dubrovinsky, L., and El Goresy, A. (2000) Natural NaAlSi3O8-hollandite in the shocked Sixiangkou meteorite. Science 287, 16331636.Google Scholar
Gilmore, M., Treiman, A., Helbert, J., and Smrekar, S. (2017) Venus surface composition constrained by observation and experiment. Space Science Reviews 212, 15111540.Google Scholar
Gladman, B. and Coffey, J. (2009) Mercurian impact ejecta: Meteorites and mantle. Meteoritics & Planetary Science 44, 285291.Google Scholar
Gladman, B. J., Burns, J. A., Duncan, M., Lee, P., and Levison, H. F. (1996) The exchange of impact ejecta between terrestrial planets. Science 271, 13871392.Google Scholar
Glass, B. P., Liu, S., and Leavens, P. B. (2002) Reidite: An impact-produced high-pressure polymorph of zircon found in marine sediments. American Mineralogist 87, 562565.Google Scholar
Goldstein, J. I. and Michael, J. R. (2006) The formation of plessite in meteoritic metal. Meteoritics & Planetary Science 41, 553570.Google Scholar
Gomes, C. B. and Keil, K. (1980) Brazilian Stone Meteorites. Albuquerque: University of New Mexico Press, 162 pp.Google Scholar
Gooding, J. L. (1981) Mineralogical aspects of terrestrial weathering effects in chondrites from Allan Hills, Antarctica. Proceedings of the Lunar and Planetary Science Conference 12B, 11051122.Google Scholar
Gooding, J. L. (1992) Soil mineralogy and chemistry on Mars: Possible clues from salts and clays in SNC meteorites. Icarus 99, 2841.Google Scholar
Gooding, J. L. and Keil, K. (1981) Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation. Meteoritics 16, 1743.Google Scholar
Gooding, J. L., Wentworth, S. J., and Zolensky, M. E. (1991) Aqueous alteration of the Nakhla meteorite. Meteoritics & Planetary Science 26, 135143.Google Scholar
Goodrich, C. A. (1992) Ureilites: A critical review. Meteoritics 27, 327352.Google Scholar
Goodrich, C. A., Keil, K., Berkley, J. L., Laul, J. C., Smith, M. R., Wacker, J. F., Clayton, R. N., and Mayeda, T. K. (1987) Roosevelt County 027: A low-shock ureilite with interstitial silicates and high noble-gas concentration. Meteoritics 22, 191218.Google Scholar
Goodrich, C. A., Scott, E. R. D., and Fioretti, A. M. (2004) Ureilitic breccias: Clues to the petrologic structure and impact disruption of the ureilite parent asteroid. Chemie der Erde – Geochemistry 64, 283327.Google Scholar
Goodrich, C. A., Van Orman, J. A., and Wilson, L. (2007) Fractional melting and smelting on the ureilite parent body. Geochimica et Cosmochimia Acta 71, 28762895.Google Scholar
Goodrich, C. A., Hartmann, W. K., O’Brien, D. P., Weidenschilling, S. J., Wilson, L., Michel, P., and Jutzi, M. (2015) Origin and history of ureilitic material in the solar system: The view from asteroid 2008 TC3 and the Almahata Sitta meteorite. Meteoritics & Planetary Science 50, 782809.Google Scholar
Goodrich, C. A., Kita, N. T., Yin, Q.-Z., Sanborn, M. E., Williams, C. D., Nakashima, D., Lane, M. D., and Boyle, S. (2017) Petrogenesis and provenance of ungrouped achondrite Northwest Africa 7325 from petrology, trace elements, oxygen, chromium and titanium isotopes, and mid-IR spectroscopy. Geochimica et Cosmochimia Acta 203, 381403.Google Scholar
Goodrich, C. A., Nestola, F., Jakubek, R., Erickson, T., Fries, M., Fioretti, A. M., Ross, D. K., and Brenker, F. E. (2020) The origin of diamonds in ureilites. Lunar and Planetary Science 51, Abstract#1411.Google Scholar
Goreva, J. S.Ma, C., and Rossman, G. R. (2001) Fibrous nanoinclusions in massive rose quartz: The source of rose colorationAmerican Mineralogist 86, 466472.Google Scholar
Gradie, J. and Tedesco, E. (1982) Compositional structure of the asteroid belt. Science 216, 14051407.Google Scholar
Grady, M. M. (2000) Catalogue of Meteorites, 5th ed. Cambridge, UK: Cambridge University Press, 689 pp.Google Scholar
Grady, M. M., Pratesi, G., and Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge, UK: Cambridge University Press, 373 pp.Google Scholar
Grazier, K. R., Castillo-Rogez, J. C., and Horner, J. (2018) It’s complicated: A big data approach to exploring planetesimal evolution in the presence of Jovian planets. Astronomical Journal 156, 232s (19 pp).Google Scholar
Greenland, L. (1965) The abundances of selenium, tellurium, silver, palladiumm, cadmium, and zinc in chondritic meteorites. Geochimica et Cosmochimica Acta 31, 849860.Google Scholar
Greenwood, R. C., Burbine, T. H., Miller, M. F., and Franchi, I. A. (2017) Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies. Chemie der Erde – Geochemistry 77, 143.Google Scholar
Greenwood, R. C., Burbine, T. H., and Franchi, I. A. (2020) Linking asteroids and meteorites to the primordial planetesimal population. Geochimica et Cosmochimica Acta 277, 377406. https://doi.org/10.1016/j.gca.2020.02.004.Google Scholar
Greshake, A. (1997) The primitive matrix components of the unique carbonaceous chondrite Acfer 094: A TEM study. Geochimica et Cosmochimica Acta 61, 437452.Google Scholar
Greshake, A. and Bischoff, A. (1996) Chromium-bearing phases in Orgueil (CI): Discovery of magnesiochromite (MgCr2O4), ureyite (NaCrSi2O6), and chromium-oxide (Cr2O3) (abstract). Lunar and Planetary Science 27, 461462.Google Scholar
Greshake, A., Bischoff, A., and Putnis, A. (1996a) Pure CaO, MgO (periclase), TiO2 (rutile), and Al2O3 (corundum) in Ca,Al-rich inclusions from carbonaceous chondrites (abstract). Lunar and Planetary Science 27, 463464.Google Scholar
Greshake, A., Bischoff, A., Putnis, A., and Palme, H. (1996b) Corundum, rutile, periclase, and CaO in Ca,Al-rich inclusions from carbonaceous chondrites. Science 272, 13161318.Google Scholar
Grew, E. S., Yates, M. G., Beane, R. J., Floss, C., and Gerbi, C. (2010) Chopinite-sarcopside solid solution,[(Mg, Fe) 3□](PO4)2, in GRA95209, a transitional acapulcoite: Implications for phosphate genesis in meteorites. American Mineralogist 95, 260272.Google Scholar
Grossman, J. N. and Brearley, A. J. (2005) The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics & Planetary Science 40, 87122.Google Scholar
Grossman, J. N. and Rubin, A. E. (1986) The origin of chondrules and clasts bearing calcic plagioclase in ordinary chondrites (abstract). Lunar and Planetary Science 17, 293294.Google Scholar
Grossman, J. N. and Wasson, J. T. (1985) The origin and history of the metal and sulfide components of chondrules. Geochimica et Cosmochimica Acta 49, 925939.Google Scholar
Grossman, J. N., Alexander, C. M. O’D., and Brearley, A. J. (2000) Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites. Meteoritics & Planetary Science 35, 467486.Google Scholar
Grossman, J. N., Rubin, A. E., Rambaldi, E. R., Rajan, R. S., and Wasson, J. T. (1985) Chondrules in the Qingzhen type-3 enstatite chondrite: Possible precursor components and comparison to ordinary chondrite chondrules. Geochimica et Cosmochimica Acta 49, 17811795.Google Scholar
Gyngard, F., Amari, S., Jadhav, M., Zinner, E., and Lewis, R. S. (2006) Carbon, nitrogen, and silicon isotopic ratios in KJG presolar SiC grains from Murchison. Lunar and Planetary Science Conference 37, Abstract #2194.Google Scholar
Gyngard, F., Ávila, J. N., Ireland, T. R., and Zinner, E. (2014) More interstellar exposure ages of large presolar SiC grains from the Murchison meteorite. Lunar and Planetary Science 45, Abstract #2348Google Scholar
Gyngard, F., Jadhav, M., Nittler, L. R., Stroud, R. M., and Zinner, E. (2018) Bonanza: An extremely large dust grain from a supernova. Geochimica et Cosmochimica Acta 221, 6086.Google Scholar
Haba, M. K., Wotzlaw, J.-F., Lai, Y.-J., Yamaguchi, A., Schönbächler, M. (2019) Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collisionNature Geoscience 12510515.Google Scholar
Haggerty, S. E. (1972) An enstatite chondrite from Hadley Rille (absract). In The Apollo 15 Lunar Samples, eds. Chamberlain, J. W. and Watkins, C. Houston, Texas: Lunar Science Institute, pp. 8587.Google Scholar
Harries, D. and Langenhorst, F. (2018) Carbide-metal assemblages in a sample returned from asteroid 25143 Itokawa: Evidence for methane-rich fluids during metamorphism. Geochimica et Cosmochimica Acta 222, 5373.Google Scholar
Haines, E. L., Gancarz, A. J., Albee, A. L., and Wasserburg, G. J. (1972) The uranium distribution in lunar soils and rocks 12013 and 14310. Lunar and Planetary Science Conference, Vol. 3, Abstract#1127, p. 350.Google Scholar
Hallis, L. J., Anand, M., Greenwood, R. C., Miller, M. F., Franchi, I. A., and Russell, S. S. (2010) The oxygen isotope composition, petrology and geochemistry of mare basalts: Evidence for large-scale compositional variation in the lunar mantle. Geochimica et Cosmochimica Acta 74, 68856899.Google Scholar
Hamilton, V. E., Simon, A. A., Christensen, P. R., Reuter, D. C., Clark, B. E., Barucci, M. A., Bowles, N. E., Boynton, W. V., Brucato, J. R., Cloutis, E. A., Connolly, H. C., Donaldson Hanna, K. L., Emery, J. P., Enos, H. L., Fornasier, S., Haberle, C. W., Hanna, R. D., Howell, E. S., Kaplan, H. H., Keller, L. P., Lantz, C., Li, J.-Y., Lim, L. F., McCoy, T. J., Merlin, F., Nolan, M. C., Praet, A., Rozitis, B., Sandford, S. A., Schrader, D. L., Thomas, C. A., Zou, X,-D., Lauretta, D. S., and the OSIRIS-REx Team (2019) Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nature Astronomy 3, 332340.Google Scholar
Hansen, M. (1958) Constitution of Binary Alloys. New York: McGraw-Hill, 1,305 pp.Google Scholar
Hapke, B. (2001) Space weathering from Mercury to the asteroid belt. Journal of Geophysical Research: Planets 106, 1003910073.Google Scholar
Harju, E. R., Rubin, A. E., Choi, B.-G., Ahn, I., Ziegler, K., and Wasson, J. T. (2014) Progressive aqueous alteration of CR carbonaceous chondrites. Geochimica et Cosmochimica Acta 139, 267292.Google Scholar
Hartmann, W. K. and Davis, D. R. (1975) Satellite-sized planetesimals and lunar origin. Icarus 24, 504515.Google Scholar
Hartmann, W. K., Forte, A., and Sabyr, A. (2018) Comment on “Chelyabinsk, Zond IV, and a possible first-century fireball of historical importance.” Meteoritics & Planetary Science 53, 21812192.Google Scholar
Hassanzadeh, J., Rubin, A. E., and Wasson, J. T. (1990) Compositions of large metal nodules in mesosiderites: Links to iron meteorite group IIIAB and the origin of mesosiderite subgroups. Geochimica et Cosmochimica Acta 54, 31973208.Google Scholar
Hazen, R. M. and Morrison, S. M. (2020) An evolutionary system of mineralogy, Part I: Stellar mineralogy (>13 to 4.6 Ga). American Mineralogist 105, 627651. https://doi.org/10.2138/am-2020-7173.Google Scholar
Hazen, R. M., Papineau, D., Bleeker, W., Downs, R. T., Ferry, J. M., McCoy, T. J., Sverjensky, D. A., and Yang, H. (2008) Mineral evolution. American Mineralogist 93, 16931720.Google Scholar
Heck, P. R., Greer, J., Kööp, L., Trappitsch, R., Gyngard, F., Busemann, H., Maden, C., Ávila, J. N., Davis, A. M., and Wieler, R. (2020) Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide. Proceedings of the National Academy of Sciences 17, 18841889. pnas.org/cgi/doi/10.1073/pnas.1904573117.Google Scholar
Heiken, G., Vaniman, D., and French, B. M., eds. (1991) Lunar Sourcebook: A User’s Guide to the Moon. Cambridge, UK: Cambridge University Press, 736 pp.Google Scholar
Herbst, E. (1995) Chemistry in the interstellar medium. Annual Review of Physical Chemistry 46, 2754.Google Scholar
Herndon, J. M. and Rudee, M. L. (1978) Thermal history of the Abee enstatite chondrite. Earth and Planetary Science Letters 41, 101106.Google Scholar
Hewins, R. H., Jones, R. H., and Scott, E. R. D., eds. (1996) Chondrules and the Protoplanetary Disk. Cambridge, UK: Cambridge University Press, 360 pp.Google Scholar
Hewins, R. H., Condie, C., Morris, M., Richardson, M. L. A., Ouellette, N., and Metcalf, M. (2018) Thermal history of CBb chondrules and cooling rate distributions of ejecta plumes. Astrophysical Journal Letters 855, L17, 7 pp.Google Scholar
Hey, M. H. (1973) Mineral analysis and analysts. Mineralogical Magazine 39, 424.Google Scholar
Heymann, D. (1967) On the origin of hypersthene chondrites: Ages and shock effects of black chondrites. Icarus 6, 189221.Google Scholar
Hibaya, Y., Archer, G. J., Tanaka, R., Sanborn, M. E., Sato, Y., Iizuka, T., Ozawa, K., Walker, R. J., Yamaguchi, A., Yin, Q.-Z., Nakamura, T., and Irving, A. J. (2019) The origin of the unique achondrite Northwest Africa 6704: Constraints from petrology, chemistry and Re–Os, O and Ti isotope systematics. Geochimica et Cosmochimica Acta 245, 597627.Google Scholar
Hicks, L. J., MacArthur, J. L., Bridges, J. C., Price, M. C., Wickham-Eade, J. E., Burchell, M. J., Hansford, G. M., Butterworth, A. L., Gurman, S. J., and Baker, S. H. (2017) Magnetite in comet Wild 2: Evidence for parent body aqueous alteration. Meteoritics & Planetary Science 52, 20752096.Google Scholar
Hilton, C. D., Bermingham, K. R., Ash, R. D., Walker, R. J., and McCoy, T. J. (2018) Genetics, age, and crystallization sequence of the South Byron Trio and the potential relation to the Milton pallasite. Lunar and Planetary Science 49, Abstract #1186.Google Scholar
Hiyagon, H., Sugiura, N., Kita, N. T., Kimura, M., Morishita, Y., and Takehana, Y. (2016) Origin of the eclogitic clasts with graphite-bearing and graphite-free lithologies in the Northwest Africa 801 (CR2) chondrite: Possible origin from a Moon-sized planetary body inferred from chemistry, oxygen isotopes and REE abundances. Geochimica et Cosmochimica Acta 186, 3248.Google Scholar
Hollister, L. S., Bindi, L., Yao, N., Poirier, G. R., Andronicos, C. L., MacPherson, G. J., Lin, C., Distler, V. V., Eddy, M. P., Kostin, A., Kryachko, V., Steinhardt, W. M., Yudovskaya, M., Eiler, J. M., Guan, Y., Clarke, J. J., and Steinhardt P, J. (2014) Impact-induced shock and the formation of natural quasicrystals in the early solar system. Nature Communications 5, 4040.Google Scholar
Hoppe, P., Fujiya, W., and Zinner, E. (2012) Sulfur molecule chemistry in supernova ejecta recorded by silicon carbide stardust. The Astrophysical Journal Letters 745, L26, 5 pp.Google Scholar
Hoppe, P., Lodders, K., and Fujiya, W. (2015) Sulfur in presolar silicon carbide grains from asymptotic giant branch stars. Meteoritics & Planetary Science 50, 11221138.Google Scholar
Hörz, F., Grieve, R., Heiken, G., Spudis, P., and Binde, R. A. (1991) Lunar surface processes. In Lunar Sourcebook: A User’s Guide to the Moon, eds. Heiken, G. H., Vaniman, D. T., and French, B. M. Cambridge: Cambridge University Press, pp. 61120.Google Scholar
Hu, J., Asimow, P. D., and Ma, C. (2019) First shock synthesis of khatyrkite, stolperite and a newly-found natural quasicrystal: Implications for the impact origin of quasicrystals from the Khatyrka meteorite. Lunar and Planetary Science 50, Abstract #3126.Google Scholar
Hua, X., Eisenhour, D. D., and Buseck, P. R. (1995) Cobalt-rich, nickel-poor metal (wairauite) in the Ningqiang carbonaceous chondrite. Meteoritics 30, 106109.Google Scholar
Hunt, A. C., Benedix, G. K., Hammond, S. J., Bland, P. A., Rehkämper, M., Kreissig, K., and Strekopytov, (2017) A geochemical study of the winonaites: Evidence for limited partial melting and constraints on the precursor composition. Geochimica et Cosmochimica Acta 199, 1330.Google Scholar
Hurlbut, C. S. and Klein, C. (1977) Manual of Mineralogy, 19th ed., New York: Wiley, 532 pp.Google Scholar
Huss, G. R. (1990) Ubiquitous interstellar diamond and SiC in primitive chondrites: Abundances reflect metamorphism. Nature 347, 159162.Google Scholar
Huss, G. R., Keil, K., and Taylor, G. J. (1981) The matrices of unequilibrated ordinary chondrites: Implications for the origin and history of chondrites. Geochimica et Cosmochimica Acta 45, 3351.Google Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006) Thermal metamorphism in chondrites. Meteorites and the Early Solar System II. Tucson: University of Arizona Press, 567586.Google Scholar
Hutchison, R. (1982) Meteorites – Evidence for the interrelationships of materials in the solar system of 4.55 Ga ago. Physics of the Earth and Planetary Interiors 29, 199208.Google Scholar
Hutchison, R. (2004) Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cambridge: Cambridge University Press, 506 pp.Google Scholar
Hutchison, R. and Bevan, A. W. R. (1983) Conditions and time of chondrule accretion. In Chondrules and Their Origins, ed. King, E. A. Houston: Lunar and Planetary Institute, pp. 162179.Google Scholar
Hutchison, R., Alexander, C. M. O’D., and Bridges, J. C. (1998) Elemental redistribution in Tieschitz and the origin of white matrix. Meteoritics & Planetary Science 33, 11691179.Google Scholar
Hwang, S. L., Shen, P., Chu, H. T., Chui, T. F., Varela, M. E., and Iizuka, Y. (2014) Kuratite (IMA 2013-109): The “unknown” Fe-Al-Ti silicate from the angrite D’Orbigny Lunar and Planetary Science 45, Abstract #1818.Google Scholar
Hwang, S.-L., Shen, P., Chu, H.-T., Yui, T.-F., Varela, M. E., and Iizuka, Y. (2016a) Matyhite, IMA 2015-121. CNMNC Newsletter No. 31, June 2016, page 692. Mineralogical Magazine 80, 691697.Google Scholar
Hwang, S. L., Shen, P., Chu, H. T. Y., Varela, T. F. M.E. and Iizu, . (2016b) Tsangpoite: The unknown calcium silico phosphate phase in the angrite D’Orbigny. Lunar and Planetery Science 47, Abstract #1466.Google Scholar
Imae, N., Kimura, M., Yamaguchi, A., and Kojima, H. (2019) Primordial, thermal, and shock features of ordinary chondrites: Emulating bulk X-ray diffraction using in-plane rotation of polished thin sections. Meteoritics & Planetary Science 54, 919937.Google Scholar
Ireland, T. R. and Fegley, B. (2000) The solar system’s earliest chemistry: Systematics of refractory inclusions. International Geology Review 42, 865894.Google Scholar
Ireland, T. R. and Wlotzka, F. (1992) The oldest zircons in the solar system. Earth and Planetary Science Letters 109, 110.Google Scholar
Irving, A. J., Kuehner, S. M., Bunch, T. E., Ziegler, K., Chen, G., Herd, C. D. K., Conrey, R. M., and Ralew, S. (2013) Ungrouped mafic achondrite Northwest Africa 7325: A reduced, iron poor cumulate olivine gabbro from a differentiated planetary body. Lunar and Planetary Science 44, Abstract #2164.Google Scholar
Isa, J., Rubin, A. E., and Wasson, J. T. (2014) R-chondrite bulk-chemical compositions and diverse oxides: Implications for parent-body processes. Geochimica et Cosmochimica Acta 124, 131151.Google Scholar
Isa, J., Ma, C., and Rubin, A. E. (2016) Joegoldsteinite: A new sulfide mineral (MnCr2S4) from the Social Circle IVA iron meteorite. American Mineralogist 101, 12171221.Google Scholar
Ishii, H. A., Krot, A. N., and Bradley, J. P. (2010) Discovery, mineral paragenesis, and origin of wadalite in a meteorite. American Mineralogist 95, 440448.Google Scholar
Itoh, S., Russell, S. S., and Yurimoto, H. (2007) Oxygen and magnesium isotopic compositions of amoeboid olivine aggregates from the Semarkona LL3.0 chondrite. Meteoritics & Planetary Science 42, 12411247.Google Scholar
Ivanov, A. V., Zolensky, M. E., Saito, A., Ohsumi, K., Yang, V., Kononkova, N. N., and Mikouchi, T. (2000) Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite. American Mineralogist 85, 10821086.Google Scholar
Ivanov, A. V., Kononkova, N. N., Zolensky, M. E., Migdisova, L. F., and Stroganov, I. A. (2001) The Kaidun meteorite: A large albite crystal-fragment of an alkaline rock. Lunar and Planetary Science 32, Abstract #1080.Google Scholar
Ivanova, M. A., Kononkova, N. N., Franchi, I. A., Verchovsky, A. B., Korochantseva, E. V., Trieloff, M., and Brandstaetter, F. (2006) Isheyevo meteorite: Genetic link between CH and CB chondrites? Lunar and Planetary Science 37, Abstract #1100.Google Scholar
Ivanova, M. A., Lorenz, C. A., Ma, C., and Ivanov, A. V. (2016) The Kaidun breccia material variety: New clasts and updated hypothesis on a space trawl origin. Meteoritics and Planetary Science 51, Abstract #6100.Google Scholar
Ivanova, M. A., Lorenz, C. A., Borisovskiy, S. E., Burmistrov, A. A., Korost, D. V., Korochantsev, A. V., Logunova, M. N., Shornikov, S. I., and Petaev, M. I. (2017) Composition and origin of holotype Al-Cu-Zn minerals in relation to quasicrystals in the Khatyrka meteorite. Meteoritics & Planetary Science 52, 869883.Google Scholar
Ivanova, M. A., Lorenz, C. A., Humayun, M., Richter, K., Corrigan, C. M., Franchi, I. A., Verchovsky, A. B., Korochantseva, E. V., Kozlov, V. V., Teplyakova, S. N., Kononkova, N. N., and Korochantsev, A. V. (2019a) Properties of a new grouplet of G metal-rich chondrites. 82nd Annual Meeting of the Meteoritical Society, held July 7–12, 2019, Sapporo, Japan. Abstract #6143.Google Scholar
Ivanova, M. A.Ma, C., Lorenz, C. A., Franchi, I. A., Kononkova, N. N. (2019b) A new unusual bencubbinite (CBa), Sierra Gorda 013, with unique V-rich sulfidesMeteoritics & Planetary Science 54, Abstract #6149.Google Scholar
Izawa, M. R. M., Flemming, R. L., Banerjee, N. R., and McCausland, P. J. A. (2011) Micro-X-ray diffraction assessment of shock stage in enstatite chondrites. Meteoritics & Planetary Science 46, 638651.Google Scholar
Jabeen, I., Ali, A., Banerjee, N. R., Osinski, G. R., Ralew, S., and DeBoer, S. (2014) Oxygen isotope compositions of mineral separates from NWA 7325 suggest a planetary (Mercury?) origin. Lunar and Planetary Science 45, Abstract #2215.Google Scholar
Jacquet, E., Piani, L., and Weisberg, M. K. (2018) Chondrules in enstatite chondrites. In Chondrules: Records of Protoplanetary Disk Processes, eds. Russell, S. S., Connolly, H. C., and Krot, A. N. Cambridge, UK: Cambridge University Press, pp. 175195; 450 pp.Google Scholar
Jambon, A. and Zimmerman, J. L. (1990) Water in oceanic basalts: Evidence for dehydration of recycled crust. Earth and Planetary Science Letters 101, 323331.Google Scholar
Jarosewich, E. (1990) Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics 25, 323337.Google Scholar
Jeffreys, H. (1924) The Earth, Its Origin, History, and Physical Constitution. Cambridge, UK: Cambridge University Press.Google Scholar
Jeffreys, H. (1929) The Future of the Earth. New York: Norton and Company.Google Scholar
Jenniskens, P., Shaddad, M. H., Numan, D., Elsir, S., Kudoda, A. M.,  Zolensky, M. E., Le, L., Robinson, G. A., Friedrich, J. M., Rumble, D., Steele, A., Chesley, S. R., Fitzsimmons, A., Duddy, S., Hsieh, H. H., Ramsay, G., Brown, P. G., Edwards, W. N., Tagliaferri, E., Boslough, M. B., Spalding, R. E., Dantowitz, R., Kozubal, M., Pravec, P., Borovicka, J., Charvat, Z., Vaubaillon, J., Kuiper, J., Albers, J., Bishope, J. L., Mancinelli, R. L., Sandford, S. A., Milam, S. N., Nuevo, M., and Worden, S. P. (2009) The impact and recovery of asteroid 2008 TC3. Nature 458, 485488.Google Scholar
Jewitt, D. and Luu, J. (1993) Discovery of the candidate Kuiper Belt object 1992 QB1. Nature 362, 730732.Google Scholar
Jin, Z. and Bose, M. (2019) New clues to ancient water on Itokawa. Science Advances 5, eaav8106.Google Scholar
Johnson, C. A. and Skinner, B. J. (2003) Geochemistry of the Furnace Magnetite Bed, Franklin, New Jersey, and the relationship between stratiform oxide ores and stratiform zinc oxide-silicate ores in the New Jersey Highlands. Economic Geology 98, 837854.Google Scholar
Johnson, J. E., Scrymgour, J. M., Jarosewich, E., and Mason, B. (1977) Brachina meteorite – a chassignite from South Australia. Records of the South Australia Museum 17, 309319.Google Scholar
Johnson, M. C., Rutherford, M. J., and Hess, P.C. (1991) Chassigny petrogenesis: Melt compositions, intensive parameters, and water contents of martian(?) magmas. Geochimica et Cosmochimica Acta 55, 349366.Google Scholar
Jones, R. H., Mccubbin, F. M., and Guan, Y. (2016) Phosphate minerals in the H-group of ordinary chondrites, and fluid activity recorded by apatite heterogeneity in the Zag H3-6 regolith breccia. American Mineralogist 101, 24522467.Google Scholar
Kallemeyn, G. W. and Rubin, A. E. (1995) Coolidge and Loongana 001: Members of a new carbonaceous chondrite grouplet. Meteoritics 30, 2027.Google Scholar
Kallemeyn, G. W., Rubin, A. E., Wang, D., and Wasson, J. T. (1989) Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations, and composition-petrographic type relationships. Geochimica et Cosmochimica Acta 53, 27472767.Google Scholar
Kallemeyn, G. W., Rubin, A. E., and Wasson, J. T. (1991) The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous chondrites. Geochimica et Cosmochimica Acta 55, 881892.Google Scholar
Kallemeyn, G. W., Rubin, A. E., and Wasson, J. T. (1996) The compositional classification of chondrites: VII. The R chondrite group. Geochimica et Cosmochimica Acta 60, 22432256.Google Scholar
Komatsu, M., Fagan, T. J., Krot, A. N., Nagashima, K., Petaev, M. I., Kimura, M., and Yamaguchi, A. (2018) First evidence for silica condensation within the solar protoplanetary disk. Proceedings of the National Academy of Sciences 115, 74977502. https://doi.org/10.1073/pnas.1722265115Google Scholar
Karwowski, L. and Muszyński, A. (2008) Multimineral inclusions in the Morasko coarse octahedrite. Meteoritics & Planetary Science 43, A71A71.Google Scholar
Karwowski, Ł., Kusz, J., Muszyński, A., Kryza, R., Sitarz, M., and Galuskin, E. V. (2015) Moraskoite, Na2Mg(PO4)F, a new mineral from the Morasko IAB-MG iron meteorite (Poland). Mineralogical Magazine 79, 387398.Google Scholar
Karwowski, Ł., Kryza, R., Muszyński, A., Kusz, J., Helios, K., Drożdżewski, P., and Galuskin, E. V. (2016) Czochralskiite, Na4Ca3Mg(PO4)4, a second new mineral from the Morasko IAB-MG iron meteorite (Poland). European Journal of Mineralogy 28, 969977.Google Scholar
Keil, K. (1968) Mineralogical and chemical relationships among enstatite chondrites. Journal of Geophysical Research 73, 69456976.Google Scholar
Keil, K. (1982) Composition and origin of chondritic breccias. In Workshop on Lunar Breccias and Soils and Their Meteoritic Analogs, eds. Taylor, G. J. and Wilkening, L. L. LPI Technical Report 82-02. Houston: Lunar and Planetary Institute, pp. 6583.Google Scholar
Keil, K. (1989) Enstatite meteorites and their parent bodies. Meteoritics & Planetary Science 24, 195208.Google Scholar
Keil, K. (2007) Occurrence and origin of keilite,(Fe> 0.5, Mg< 0.5) S, in enstatite chondrite impact-melt rocks and impact-melt breccias. Chemie der Erde – Geochemistry 67, 3754.Google Scholar
Keil, K. (2010) Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde – Geochemistry 70, 295317.Google Scholar
Keil, K. (2012) Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chemie der Erde – Geochemistry 72, 191218.Google Scholar
Keil, K. (2014) Brachinite meteorites: Partial melt residues from an FeO-rich asteroid. Chemie der Erde – Geochemistry 74, 311329.Google Scholar
Keil, K. and Brett, R. (1974) Heideite, (Fe,Cr)1+x(Ti,Fe)2S4, a new mineral in the Bustee enstatite achondrite. American Mineralogist 59, 465470.Google Scholar
Keil, K. and McCoy, T. J. (2018) Acapulcoite-lodranite meteorites: Ultramafic asteroidal partial melt residues. Chemie der Erde – Geochemistry 78, 153203.Google Scholar
Keil, K. and Snetsinger, K. G. (1967) Niningerite: A new meteoritic sulfide. Science 155, 451453.Google Scholar
Keil, K., Berkley, J. L., and Fuchs L, H. (1982) Suessite, Fe3Si: A new mineral in the North Haig ureilite. American Mineralogist 67, 126131.Google Scholar
Keil, K., Ntaflos, Th., Taylor, G. J., Brearley, A. J., Newsom, H. E., and Romig, A. D. (1989) The Shallowater aubrite: Evidence for origin by planetesimal impacts. Geochimica et Cosmochimica Acta 53, 32913307.Google Scholar
Kerridge, J. F. and Matthews, M. S. (1988) Meteorites and the Early Solar System. Tucson: University of Arizona Press, 1,269 pp.Google Scholar
Kerridge, J. F., MacKay, A. L., and Boynton, W. V. (1979) Magnetite in CI carbonaceous meteorites: Origin by aqueous activity on a planetesimal surface. Science 205, 395397.Google Scholar
Killgore, K. and Killgore, M. (2002) Southwest Meteorite Collection: A Pictorial Catalog. Payson, Arizona: Southwest Meteorite Press, 201 pp.Google Scholar
Kim, H. Y., Choi, B.-G., and Rubin, A. E. (2009) Wüstite in the DOM 03238 magnetite-rich CO3.1 chondrite: Formation during atmospheric passage. Meteoritics & Planetary Science 44, A109.Google Scholar
Kimura, M. (1996) Meteorite minerals (in Japanese). Kobutsugaku Zassi 25, 4960.Google Scholar
Kimura, M. and El Goresy, A. (1989) Discovery of E-chondrite assemblages, SiC, and silica-bearing objects in ALH85085: Link between E- and C-chondrite (abstract). Meteoritics 24, 286.Google Scholar
Kimura, M. and Ikeda, Y. (1995) Anhydrous alteration of Allende chondrules in the solar nebula II: Alkali-Ca exchange reactions and formation of nepheline, sodalite and Ca-rich phases in chondrules. Proceedings of the NIPR Symposium on Antarctic Meteorites 8, 123138.Google Scholar
Kimura, M., Tsuchiyama, A., Fukuoka, T., and Iimura, Y. (1992) Antarctic primitive achondrites, Yamato-74025, -75300, and -75305: Their mineralogy, thermal history, and the relevance to winonaite. Proceedings of the NIPR Symposium on Antarctic Meteorites 5, 165190.Google Scholar
Kimura, M., Weisberg, M., Lin, Y., Suzuki, A., Ohtani, E., and Okazaki, R. (2005) Thermal history of the enstatite chondrites from silica polymorphs. Meteoritics & Planetary Science 40, 855868.Google Scholar
Kimura, M., Mikouchi, T., Suzuki, A., Miyahara, M., Ohtani, E., and El Goresy, A. E. (2009) Kushiroite, CaAlAlSiO6: A new mineral of the pyroxene group from the ALH 85085 CH chondrite, and its genetic significance in refractory inclusions. American Mineralogist 94, 14791482.Google Scholar
Kimura, M., Grossman, J. N., and Weisberg, M. K. (2011) Fe-Ni metal and sulfide minerals in CM chondrites: An indicator for thermal history. Meteoritics & Planetary Science 46, 431442.Google Scholar
Kimura, M., Sugiura, N., Mikouchi, T., Hirajima, T., Hiyagon, H., and Takehana, Y. (2013) Eclogitic clasts with omphacite and pyrope-rich garnet in the NWA 801 CR2 chondrite. American Mineralogist 98, 387393.Google Scholar
Kimura, M., Yamaguchi, A., and Miyahara, M. (2017) Shock-induced thermal history of an EH3 chondrite, Asuka 10164. Meteoritics & Planetary Science 52, 2435.Google Scholar
Kimura, M., Sugiura, N., Yamaguchi, A., and Ichimura, K. (2020) The most primitive mesosiderite Northwest Africa 1878, subgroup 0. Meteoritics & Planetary Science 55. https://doi.org/10.1111/maps.13474.Google Scholar
King, E. A., ed. (1983) Chondrules and their Origins. Houston: Lunar and Planetary Institute, 377 pp.Google Scholar
King, A. J., Bates, H. C., Krietsch, D., Busemann, H., Clay, P. L., Schofield, P. F., and Russell, S. S. (2019) The Yamato-type (CY) carbonaceous chondrite group: Analogues for the surface of asteroid Ryugu? Chemie der Erde – Geochemistry 79, 125531.Google Scholar
Klein, C. and Dutrow, B. (2007) Manual of Mineral Science, 23rd ed., New York: Wiley, 716 pp.Google Scholar
Koefoed, P., Amelin, Y., Yin, Q.-Z., Wimpenny, J., Sanborn, M. C., Iizuka, T., and Irving, A. J. (2016) U–Pb and Al–Mg systematics of the ungrouped achondrite Northwest Africa 7325. Geochimica et Cosmochimica Acta 183, 3145.Google Scholar
Korochantseva, E. V., Trieloff, M., Lorenz, C. A., Buykin, A. I., Ivanova, M. A., Schwartz, W. H., Hopp, J., and Jessberger, E. K. (2007) L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar-39Ar dating. Meteoritics & Planetary Science 42, 113130.Google Scholar
Kracher, A., Kurat, G., and Buchwald, V. F. (1977) Cape York: The extraordinary mineralogy of an ordinary iron meteorite and its implication for the genesis of all IIIAB irons. Geochemical Journal 11, 207217.Google Scholar
Krot, A. N. (2016) Machiite, IMA 2016-067. CNMNC Newsletter No. 34, December 2016, page 1317; Mineralogical Magazine 80, 13151321.Google Scholar
Krot, A. N. (2019) Refractory inclusions in carbonaceous chondrites: Records of early solar system processes. Meteoritics & Planetary Science 54, 16471691.Google Scholar
Krot, A. N. and Keil, K. (2002) Anorthite-rich chondrules in CR and CH carbonaceous chondrites: Genetic link between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteoritics & Planetary Science 37, 91111.Google Scholar
Krot, A. N. and Rubin, A. E. (1993) Chromite-rich mafic silicate chondrules in ordinary chondrites: Formation by impact melting. Lunar and Planetary Science 24, 827828.Google Scholar
Krot, A. N. and Rubin, A. E. (1994) Glass-rich chondrules in ordinary chondrites. Meteoritics 29, 697706.Google Scholar
Krot, A. N. and Wasson, J. T. (1994) Silica-merrihueite/roedderite-bearing chondrules and clasts in ordinary chondrites: New occurrences and possible origin. Meteoritics 29 707718.Google Scholar
Krot, A., Rubin, A. E., and Kononkova, N. N. (1993) First occurrence of pyrophanite (MnTiO3) and baddeleyite (ZrO2) in an ordinary chondrite. Meteoritics 28, 232239.Google Scholar
Krot, A. N., Scott, E. R. D., and Zolensky, M. E. (1995) Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? Meteoritics 30, 748775.Google Scholar
Krot, A. N., Rubin, A. E., Keil, K., and Wasson, J. T. (1997a) Microchondrules in ordinary chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta 61, 463473.Google Scholar
Krot, A. N., Zolensky, M. E., Wasson, J. T., Scott, E. R. D., Keil, K., and Ohsumi, K. (1997b) Carbide-magnetite assemblages in type-3 ordinary chondrites. Geochimica et Cosmochimica Acta 61, 219237.Google Scholar
Krot, A., Scott, E. R. D., and Zolensky, M. (1997c) Origin of fayalitic olivine rims and lath-shaped matrix olivine in the CV3 chondrite Allende and its dark inclusions. Meteoritics & Planetary Science 32, 3149.Google Scholar
Krot, A. N., Brearley, A. J., Ulyanov, A. A., Biryukov, V. V., Swindle, T. D., Keil, K., Mittlefehldt, D. W., Scott, E. R. D., Clayton R, N., and Mayeda, T. K. (1999) Mineralogy, petrography, bulk chemical, iodine-xenon, and oxygen-isotopic compositions of dark inclusions in the reduced CV3 chondrite Efremovka. Meteoritics & Planetary Science 34, 6789.Google Scholar
Krot, A. N., Petaev, M. I., Meibom, A., and Keil, K. (2000a) In situ growth of Ca-rich rims around Allende dark inclusions. Geochemistry International 38, S351S368.Google Scholar
Krot, A. N., Meibom, A., and Keil, K. (2000b) A clast of Bali-like oxidized CV material in the reduced CV chondrite breccia Vigarano. Meteoritics & Planetary Science 35, 817825.Google Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005) Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature 436, 989992.Google Scholar
Krot, A. N., Ma, C., Nagashima, K., Davis, A. M., Beckett, J. R., Simon, S. B., Komatsu, M., Fagan, T. J., Brenker, F., Ivanova, M. A., and Bischoff, A. (2019) Mineralogy, petrography, and oxygen isotopic compositions of ultrarefractory inclusions from carbonaceous chondrites. Chemie der Erde – Geochemistry 79, https://doi.org/10.1016/j.chemer.2019.07.001.Google Scholar
Krot, A. N., Nagashima, K., and Rossman, G. R. (2020) Machiite, Al2Ti3O9, a new oxide mineral from the Murchison carbonaceous chondrite: A new ultra-refractory phase from the solar nebula. American Mineralogist 105, 239243.Google Scholar
KruijerT. S., Burkhardt, C., Budde, G., and Kleine, T. (2017) Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences 114, 67126716.Google Scholar
Ksanda, C. J. and Henderson, E. P. (1939) Identification of diamond in the Canyon Diablo iron. American Mineralogist 24, 677680.Google Scholar
Kullerud, G. (1963) The Fe-Ni-S system. Carnegie Institute of Washington Yearbook 62, 175189.Google Scholar
Kurat, G., Brandstatter, H., Palme, H., and Michel-Levy, M. C. (1981) Rusty Ornans. Meteoritics 16, 343344.Google Scholar
Kurat, G., Varela, M. E., Zinner, E., and Brandstätter, F. (2010). The Tucson ungrouped iron meteorite and its relationship to chondrites. Meteoritics & Planetary Science 45, 19822006.Google Scholar
Kyte, F. T. (1998) A meteorite from the Cretaceous/Tertiary boundary. Nature 396, 237239.Google Scholar
Kyte, F. T. (2002) Unmelted meteoritic debris collected from Eltanin ejecta in Polarstern cores from expedition ANT XII/4.Deep Sea Research Part II: Topical Studies in Oceanography 49, 10631071.Google Scholar
Le Guillou, C., Changela, H. G., and Brearley, A. J. (2015) Widespread oxidized and hydrated amorphous silicates in CR chondrites matrices: Implications for alteration conditions and H2 degassing of asteroids. Earth and Planetary Science Letters 420, 162173.Google Scholar
Lee, M. R., Russell, S. S., Arden, J. W., and Pillinger, C. T. (1995) Nierite (Si3N4), a new mineral from ordinary and enstatite chondrites. Meteoritics 30, 387398.Google Scholar
Lee, M. R., Lindgren, P., and Sofe, M. R. (2014) Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration. Geochimica et Cosmochimica Acta 144, 126156.Google Scholar
Lee, M. R., Daly, L., Cohen, B. E., Hallis, L. J., Griffin, S., Trimby, P., Boyce, A., and Mark, D. F. (2018) Aqueous alteration of the Martian meteorite Northwest Africa 817: Probing fluid-rock interaction at the nakhlite launch site. Meteoritics & Planetary Science 53, 23952412.Google Scholar
Lee, M. S., Rubin, A. E., and Wasson, J. T. (1992) Origin of metallic Fe-Ni in Renazzo and related chondrites. Geochimica et Cosmochimica Acta 56, 25212533.Google Scholar
Lehner, S. W., Buseck, P. R., and McDonough, W. F. (2010) Origin of kamacite, schreibersite, and perryite in metal-sulfide nodules of the enstatite chondrite Sahara 97072 (EH3). Meteoritics & Planetary Science 45, 289303.Google Scholar
Leitner, J., Vollmer, C., Harries, D., Kodolányi, J., Ott, U., and Hoppe, P. (2020) Investigation of nitrides in carbonaceous chondrites: A window to early solar nebula processes? Lunar and Planetary Science 52, Abstract#1937.Google Scholar
Levin, H. L. (1990) Contemporary Physical Geology, 3rd ed. Philadelphia: Saunders College Publishing, 623 pp.Google Scholar
Levine, D. and Steinhardt, P. J. (1984) Quasicrystals: A new class of ordered structures. Physical Review Letters 53, 923925.Google Scholar
Lewis, J. A. and Jones, R. H. (2016) Phosphate and feldspar mineralogy of equilibrated L chondrites: The record of metasomatism during metamorphism in ordinary chondrite parent bodies. Meteoritics & Planetary Science 51, 18861913.Google Scholar
Lewis, J. A. and Jones, R. H. (2019) Primary feldspar in the Semarkona LL3.00 chondrite: Constraints on chondrule formation and secondary alteration. Meteoritics & Planetary Science 54, 7289.Google Scholar
Li, S., Lucey, P. G., Milliken, R. E., Hayne, P. O., Fisher, E., Williams, J.-P., Hurley, D. M., and Elphic, R. C. (2018) Direct evidence of surface exposed water ice in the lunar polar regions. Proceedings of the National Academy of Sciences 115, 89078912.Google Scholar
Lim, L. F. and Nittler, L. R. (2009) Elemental composition of 433 Eros: New calibration of the NEAR-Shoemaker XRS data. Icarus 200, 129146.Google Scholar
Lin, C., Hollister, L. S., MacPherson, G. J., Bindi, L., Ma, C., Andronicos, C. L., and Steinhardt, P. J. (2017) Evidence of cross-cutting and redox reaction in Khatyrka meteorite reveals metallic-Al minerals formed in outer space. Scientific Reports 7, 114, Article #1637.Google Scholar
Lin, Y. and Kimura, M. (1996) Discovery of complex titanium oxide associations in a plagioclase-olivine inclusion (POI) in the Ningqiang carbonaceous chondrite (abstract). Lunar and Planetary Science 27, 755756.Google Scholar
Lin, Y. and Kimura, M. (1997) Titanium-rich oxide-bearing plagioclase-olivine inclusions in the unusual Ningqiang carbonaceous chondrite. Antarctic Meteorite Research 10, 227248.Google Scholar
Lin, Y., El Goresy, A., Boyer, M., Feng, L., Zhang, J., and Hao, J. (2011) Earliest solid condensates consisting of the assemblage oldhamite, sinoite, graphite and excess 36S in lawrencite from Almahata Sitta MS-17 EL3 chondrite. Workshop on Formation of the First Solids in the Solar System, Abstract #9040.Google Scholar
Lindgren, P., Hanna, R. D., Dobson, K. J., Tomkinson, T., and Lee, M. R. (2015) The paradox between low shock-stage and evidence of compaction in CM carbonaceous chondrites explained by multiple low-intensity impacts. Geochimica et Cosmochimica Acta 148, 159178.Google Scholar
Lindstrom, M. M., ed. (1990) New Meteorites. Antarctic Meteorite Newsletter 13, 924.Google Scholar
Litasov, K. D. and Podgornykh, N. M. (2017) Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. Journal of Raman Spectroscopy 48, 15181527.Google Scholar
Liu, N., Nittler, L. R., Pignatari, M., Alexander, C. M. O’D., and Wang, J. (2017) Stellar origin of 15N-rich presolar SiC grains of Type AB: Supernovae with explosive hydrogen burning. The Astrophysical Journal Letters 842, L1, 8 pp.Google Scholar
Liu, Y.Ma, C., Beckett, J. R., Chen, Y., and Guan, Y. (2016) Rare-earth-element minerals in martian breccia meteorites NWA 7034 and 7533: Implications for fluid-rock interaction in the martian crust. Earth and Planetary Science Letters 451, 251262.Google Scholar
Lock, S. J., Stewart, S. T., Petaev, M. I., Leinhardt, Z., Mace, M. T., Jacobsen, S. B., and Cuk, M. (2018) The origin of the Moon within a terrestrial synestria. Journal of Geophysical Research: Planets 123, 910951.Google Scholar
Lodders, K. and Amari, S. (2005) Presolar grains from meteorites: Remnants from the early times of the solar system. Chemie der Erde – Geochemistry 65, 93166.Google Scholar
Loeffler, M. J., Dukes, C. A., Chang, W. Y., McFadden, L. A., and Baragiola, R. A. (2008) Laboratory simulations of sulfur depletion at Eros. Icarus 195, 622629.Google Scholar
Lomax, B. A., Conti, M., Khan, N., Bennett, N. S., Ganin, A. Y., and Symes, M. D. (2020) Proving the viability of an electrochemical process for the simultaneous extraction of oxygen and production of metal alloys from lunar regolith. Planetary and Space Science 180, 104748. https://doi.org/10.1016./j.pss.2019.104748.Google Scholar
Lorenz, C. A., Nazarov, M. A., Brandstaetter, F., and Ntaflos, T. (2010) Metasomatic alterations of olivine inclusions in the Budulan mesosiderite. Petrology 18, 461470.Google Scholar
Lorenz, R. and Mitton, J. (2008) Titan Unveiled: Saturn’s Mysterious Moon Exlpored. Princeton, NJ: Princeton University Press, 264 pp.Google Scholar
Love, S. G. and Keil, K. (1995) Recognizing mercurian meteorites. Meteoritics 30, 269278.Google Scholar
Lovering, J. F., Wark, D. A., and Sewell, D. K. B. (1979) Refractory oxide, titanate, niobate and silicate accessory mineralogy of some type B Ca-Al inclusions in the Allende meteorite (abstract). Lunar and Planetary Science 10, 745746.Google Scholar
Lunning, N. G., Corrigan, C. M., McSween, H. Y., Tenner, T. J., Kita, N. T., and Bodnar, R. J. (2016) CV and CM chondrite impact melts. Geochimica et Cosmochimica Acta 189, 338358.Google Scholar
Lunning, N. G., Bischoff, A., Gross, J., Patzek, M., Corrigan, C. M., and McCoy, T. J. (2020) Insights into the formation of silica-rich achondrites from impact melts in Rumuruti-type chondrites. Meteoritics & Planetary Science 55, 130148.Google Scholar
Lyons, R. J., Bowling, T. J., Ciesla, F. J., Davison, T. M., and Collins, G. S. (2019) The effects of impacts on the cooling rates of iron meteorites. Meteoritics & Planetary Science 54, 16041618.Google Scholar
Ma, C. (2010) Hibonite-(Fe),(Fe, Mg)Al12O19, a new alteration mineral from the Allende meteorite. American Mineralogist 95, 188191.Google Scholar
Ma, C. (2011) Discovery of meteoritic lakargiite (CaZrO3), a new ultra-refractory mineral from the Acer 094 carbonaceous chondrite. Meteoritics & Planetary Science, 46 (S1), A144.Google Scholar
Ma, C. (2012) Discovery of meteoritic eringaite, Ca3(Sc,Y,Ti)2Si3O12, the first solar garnet? Meteoritics & Planetary Science, 47 (S1), A256.Google Scholar
Ma, C. (2015) Nanomineralogy of meteorites by advanced electron microscopy: Discovering new minerals and new materials from the early solar system. Microscopy and Microanalysis 21, 23532354.Google Scholar
Ma, C. (2018a) A closer look at shock meteorites: Discovery of new high-pressure minerals. American Mineralogist 103, 15211522.Google Scholar
Ma, C. (2018b) Discovery of meteoritic baghdadite, Ca3(Zr,Ti)Si2O9, in Allende: The first solar silicate with structurally essential zirconium? Meteoritics & Planetary Science, 53 (S1), Abstract #6358.Google Scholar
Ma, C. (2019) Discovery of kaitianite, Ti3+2Ti4+O5, in Allende: A new refractory mineral from the solar nebulaMeteoritics & Planetary Science 54 (S1), Abstract #6098.Google Scholar
Ma, C. (2020) Discovery of meteoritic calzirtite in Leoville: A new ultrarefractory phase from the solar nebula. Goldschmidt, Abstract #1674. DOI: 10.46427/gold2020.1674Google Scholar
Ma, C. (2021) Zolenskyite, IMA 2010-070. CNMNC Newsletter 59, European Journal oif Mineralogy 32.Google Scholar
Ma, C. and Beckett, J. R. (2016a) Burnettite, CaVAlSiO6, and paqueite, Ca3TiSi2(Al2Ti)O14, two new minerals from Allende: Clues to the evolution of a V-rich Ca-Al-rich inclusion. Lunar and Planetary Science 47, Abstract#1595.Google Scholar
Ma, C. and Beckett, J. R. (2016b) Majindeite, Mg2Mo3O8, a new mineral from the Allende meteorite and a witness to post-crystallization oxidation of a Ca-Al-rich refractory inclusion. American Mineralogist 101, 11611170.Google Scholar
Ma, C. and Beckett, J. R (2018) Nuwaite (Ni6GeS2) and butianite (Ni6SnS2), two new minerals from the Allende meteorite: Alteration products in the early solar systemAmerican Mineralogist 103, 19181924.Google Scholar
Ma, C. and Beckett, J. R. (2020) Kaitianite, Ti3+2Ti4+O5, a new titanium oxide mineral from Allende. Meteoritics & Planetary Science, early view. DOI: https://doi.org/10.1111/maps.13576.Google Scholar
Ma, C. and Krot, A. N. (2014Hutcheonite, Ca3Ti2(SiAl2)O12, a new garnet mineral from the Allende meteorite: An alteration phase in a Ca-Al-rich inclusion. American Mineralogist 99, 667670.Google Scholar
Ma, C. and Krot, A. N. (2018) Adrianite, Ca12(Al4Mg3Si7)O32Cl6, a new Cl-rich silicate mineral from the Allende meteorite: An alteration phase in a Ca-Al-rich inclusion. American Mineralogist 103, 13291334.Google Scholar
Ma, C. and Liu, Y. (2019a) Discovery of a zinc-rich mineral on the surface of lunar orange pyroclastic beadsAmerican Mineralogist 104, 447452.Google Scholar
Ma, C. and Liu, Y. (2019b) Nanomineralogy of lunar orange beads: Discovery of a Zinc-rich mineral (probably gordaite), derived from volcanic vapor condensates on the MoonLunar and Planetary Science 50, Abstract #1463.Google Scholar
Ma, C. and Prakapenka, V. (2018) Tschaunerite, IMA 2017-032a. CNMNC Newsletter No. 46, December 2018, page 1378; Mineralogical Magazine 82, 13691379.Google Scholar
Ma, C. and Rossman, G. R. (2006) Low voltage FESEM of geological materialsMicroscopy Today 14 (1), 2022.Google Scholar
Ma, C. and Rossman, G. R. (2008) Discovery of tazheranite (cubic zirconia) in the Allende Meteorite. Geochimica et Cosmochimica Acta 72, A577.Google Scholar
Ma, C. and Rossman, G. R. (2009a) Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. American Mineralogist 94, 841844.Google Scholar
Ma, C. and Rossman, G. R. (2009b) Davisite, CaScAlSiO6, a new pyroxene from the Allende meteorite. American Mineralogist 94, 845848.Google Scholar
Ma, C. and Rossman, G. R. (2009c) Grossmanite, CaTi3+AlSiO6, a new pyroxene from the Allende meteorite. American Mineralogist 94, 14911494.Google Scholar
Ma, C. and Rubin, A. E. (2019) Edscottite, Fe5C2, a new iron carbide mineral from the Ni-rich Wedderburn IAB iron meteoriteAmerican Mineralogist 104, 13511355.Google Scholar
Ma, C. and Tschauner, O. (2016) Discovery of tetragonal almandine, (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12, a new high-pressure mineral in Shergotty. Meteoritics & Planetary Science 51, Abstract#6124.Google Scholar
Ma, C. and Tschauner, O. (2017) Zagamiite, IMA 2015-022a. CNMNC Newsletter No. 36, April 2017, page 409. Mineralogical Magazine 81, 403409.Google Scholar
Ma, C. and Tschauner, O. (2018a) Feiite, IMA 2017-041a. CNMNC Newsletter No. 46, December 2018, page 1378; Mineralogical Magazine 82, 13691379.Google Scholar
Ma, C. and Tschauner, O. (2018b) Liuite, IMA 2017-042a. CNMNC Newsletter No. 46, December 2018, page 1378; Mineralogical Magazine 82, 13691379.Google Scholar
Ma, C., Goreva, J. S., and Rossman, G. R. (2002) Fibrous nanoinclusions in massive rose quartz: HRTEM and AEM investigationsAmerican Mineralogist 87, 269276.Google Scholar
Ma, C., Simon, S. B., Rossman, G. R., and Grossman, L. (2009) Calcium Tschermak’s pyroxene, CaAlAlSiO6, from the Allende and Murray meteorites: EBSD and micro-Raman characterizations. American Mineralogist 94, 14831486.Google Scholar
Ma, C., Beckett, J. R., and Rossman, G. R. (2011a) Murchisite, Cr5S6, a new mineral from the Murchison meteorite. American Mineralogist 96, 19051908.Google Scholar
Ma, C., Beckett, J. R., Tschauner, O., and Rossman, G. R. (2011b) Thortveitite (Sc2Si2O7), the first solar silicate? Meteoritics & Planetary Science 46, A144.Google Scholar
Ma, C., Connolly, H. C., Beckett, J. R., Tschauner, O., Rossman, G. R., Kampf, A. R., Zega, T. J., Smith, S. A. S. and Schrader, D. L. (2011c) Brearleyite, Ca12Al14O32Cl2, a new alteration mineral from the NWA 1934 meteorite. American Mineralogist 96, 11991206.Google Scholar
Ma, C., Kampf, A. R., Connolly, H. C., Beckett, J. R., Rossman, G. R., Smith, S. A. S. and Schrader, D. L. (2011d) Krotite, CaAl2O4, a new refractory mineral from the NWA 1934 meteorite. American Mineralogist 96, 709715.Google Scholar
Ma, C., Beckett, J. R., and Rossman, G. R. (2012a) Buseckite, (Fe,Zn,Mn)S, a new mineral from the Zakłodzie meteoriteAmerican Mineralogist 97, 12261233.Google Scholar
Ma, C., Beckett, J. R., and Rossman, G. R. (2012b) Browneite, MnS, a new sphalerite-group mineral from the Zakłodzie meteoriteAmerican Mineralogist 97, 20562059.Google Scholar
Ma, C., Tshauner, O., Beckett, J. R., Rossman, G. R., and Liu, W. (2012c) Panguite, (Ti4+,Sc,Al,Mg,Zr,Ca)1.8O3, a new ultra-refractory titania mineral from the Allende meteorite: Synchrotron micro-diffraction and EBSD. American Mineralogist 97, 12191225.Google Scholar
Ma, C., Beckett, J. R., Connolly, H. C., and Rossman, G. R. (2013a) Discovery of meteoritic loveringite, Ca(Ti,Fe,Cr,Mg)21O38, in an Allende chondrule: Late-stage crystallization in a melt droplet. Lunar and Planetary Science 44, Abstract #1443.Google Scholar
Ma, C., Krot, A. N., and Bizzarro, M. (2013b) Discovery of dmisteinbergite (hexagonal CaAl2Si2O8) in the Allende meteorite: A new member of refractory silicates formed in the solar nebula. American Mineralogist 98, 13681371.Google Scholar
Ma, C., Tschauner, O., Beckett, J. R., Rossman, G. R., and Liu, W. (2013c) Kangite, (Sc,Ti,Al,Zr,Mg,Ca, □)2O3, a new ultra-refractory scandia mineral from the Allende meteorite: Synchrotron micro-Laue diffraction and electron backscatter diffraction. American Mineralogist 98, 870878.Google Scholar
Ma, C., Beckett, J. R., and Rossman, G. R. (2014a) Allendeite (Sc4Zr3O12) and hexamolybdenum (Mo,Ru,Fe), two new minerals from an ultrarefractory inclusion from the Allende meteorite. American Mineralogist 99, 654666.Google Scholar
Ma, C., Beckett, J. R., and Rossman, G. R. (2014b) Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. American Mineralogist 99, 198205.Google Scholar
Ma, C., Krot, A. N., Beckett, J. R., Nagashima, K., and Tschauner, O. (2015a) Discovery of warkite, Ca2Sc6Al6O20, a new Sc-rich ultra-refractory mineral in Muchison and Vigarano. Meteoritics & Planetary Science 50, Abstract #5025.Google Scholar
Ma, C., Tschauner, O., Beckett, J. R., Liu, Y., Rossman, G. R., Zhuravlev, K., Prakapenka, V., Dera, P., and Taylor, L. A. (2015b) Tissintite, (Ca, Na,□)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite. Earth and Planetary Science Letters 422, 194205.Google Scholar
Ma, C., Paque, J. M., and Tschauner, O. (2016a) Discovery of beckettite, Ca2V6Al6O20, a new alteration mineral in a V-Rich Ca-Al-rich inclusion from Allende. Lunar and Planetery Science 47, Abstract #1704.Google Scholar
Ma, C., Tschauner, O., Beckett, J. R., Liu, Y., Rossman, G. R., Sinogeikin, S. V., Smith, J. S., and Taylor, L. A. (2016b) Ahrensite, γ-Fe2SiO4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars. Geochimica et Cosmochimica Acta 184, 240256.Google Scholar
Ma, C., Krot, A. N., and Nagashima, K. (2017a) Addibischoffite, Ca2Al6Al6O20, a new calcium aluminate mineral from the Acfer 214 CH carbonaceous chondrite: A new refractory phase from the solar nebulaAmerican Mineralogist 102, 15561560.Google Scholar
Ma, C., Lin, C., Bindi, L., and Steinhardt, P. J. (2017b) Hollisterite (Al3Fe), kryachkoite (Al,Cu)6(Fe,Cu), and stolperite (AlCu): Three new minerals from the Khatyrka CV3 carbonaceous chondrite American Mineralogist 102, 690693.Google Scholar
Ma, C., Tschauner, O., and Beckett, J. R. (2017c) A new high-pressure calcium aluminosilicate (CaAl2Si3.5O11) in martian meteorites: Another after-life for plagioclase and connections to the CAS phaseLunar and Planetary Science, 48, Abstract #1128.Google Scholar
Ma, C., Yoshizaki, T., Krot, A. N., Beckett, J. R., Nakamura, T., Nagashima, K., Muto, J., and Ivanova, M. A. (2017d) Discovery of rubinite, Ca3Ti3+2Si3O12, a new garnet mineral in refractory inclusions from carbonaceous chondrites. Meteoritics & Planetary Science 52 (S1), Abstract #6023.Google Scholar
Ma, C., Garvie, L. A. J., and Wittmann, A. (2018a) Carletonmooreite, IMA 2018-068. CNMNC Newsletter No. 45, October 2018, page 1042; European Journal of Mineralogy 30, 10371043.Google Scholar
Ma, C., Tschauner, O., Beckett, J. R., Rossman, G. R., Prescher, C., Prakapenke, V. B., Bechtel, H. A., and McDowell, A. (2018b) Liebermannite, KAlSi3O8, a new shock-metamorphic, high-pressure mineral from the Zagami martian meteoriteMeteoritics & Planetary Science 53, 5061.Google Scholar
Ma, C., Tschauner, O., and Beckett, J. R. (2019a) A closer look at Martian meteorites: Discovery of the new mineral zagamiite, CaAl2Si3.5O11, a shock-metamorphic, high-pressure, calcium aluminosilicate. Ninth International Conference on Mars, Abstract #6138.Google Scholar
Ma, C., Tschauner, O., and Beckett, J. R. (2019b) Discovery of a new high-pressure silicate phase, (Fe,Mg,Cr,Ti,Ca,□)2(Si,Al)O4 with a tetragonal spinelloid structure, in a shock melt pocket from the Tissint Martian meteorite. Lunar and Planetary Science 50, Abstract #1460.Google Scholar
Ma, C., Tschauner, O., Beckett, J. R., Liu, Y., Greenberg, E., and Prakapenka, V. B. (2019c) Chenmingite, FeCr2O4 in the CaFe2O4-type structure, a shock-induced, high-pressure mineral in the Tissint Martian meteoriteAmerican Mineralogist 104, 15211525.Google Scholar
Ma, C., Tschauner, O., Bindi, L., Beckett, J. R., and Xie, X. (2019d) A vacancy-rich, partially inverted spinelloid silicate, (Mg,Fe,Si)2(Si,□)O4, as a major matrix phase in shock melt veins of the Tenham and Suizhou L6 chondritesMeteoritics & Planetary Science, 54, 19071918.Google Scholar
Ma, C., Krot, A. N., Beckett, J. R., Nagashima, K., Tschauner, O., Rossman, G. R., Simon, S. B., and Bischoff, A. (2020a) Warkite, Ca2Sc6Al6O20, a new mineral in carbonaceous chondrites and a key-stone phase in ultrarefractory inclusions from the solar nebula. Geochimica et Cosmochimica Acta 277, 5286.Google Scholar
Ma, C., Tschauner, O., Kong, M., Beckett, J. R., Greenberg, E., Prakapenka, V. B., and Lee, Y. (2020b) Discovery of a highly-defective, shock-induced, high-pressure albitic jadeite, (Na,Ca,□1/4)(Al,Si)Si2O6: Natural occurrence of a clinopyroxene with excess Si. Lunar and Planetary Science 51, Abstract #1712.Google Scholar
Ma, C., Beckett, J. R., and Prakapenka, V. (2021a) Discovery of new high-pressure mineral tschaunerite, (Fe2+)(Fe2+Ti4+)O4, a shock-induced, post-spinel phase in the Martian meteorite Shergotty. Lunar and Planetary Science 52, Abstract #1720.Google Scholar
Ma, C., Tschauner, O. Beckett, J. R., and Prakapenka, V. (2021b) Discovery of feiite (Fe2+2 (Fe2+Ti4+)O5) and liuite (GdFeO3-type FeTiO3), two new shock-induced, high-pressure minerals in the Martian meteorite Shergotty. Lunar and Planetary Science 52, Abstract #1681.Google Scholar
Ma, L., Williams, D. B., and Goldstein, J. I. (1998) Determination of the Fe-rich portion of the Fe-Ni-S phase diagram. Journal of Phase Equilibria 19, 299309.Google Scholar
MacPherson, G. J. and Delaney, J. S. (1985) A fassaite-two olivine-pleonaste-bearing refractory inclusion from Karoonda (abstract). Lunar and Planetary Science 16, 515516.Google Scholar
MacPherson, G. J. and Krot, A. N. (2002) Distribution of Ca-, Fe-rich silicates in CV3 chondrites: Possible controls by parent-body compaction (abstract). Meteoritics & Planetary Science 37, A91.Google Scholar
MacPherson, G. J. and Krot, A. N. (2014) The formation of Ca-, Fe-rich silicates in reduced and oxidized CV chondrites: The roles of impact-modified porosity and permeability and heterogeneous distribution of water ices. Meteoritics & Planetary Science 49, 12501270.Google Scholar
MacPherson, G. J., Wark, D. A., and Armstrong, J. T. (1988) Primitive material surviving in chondrites: Refractory inclusions. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S. Tucson: University of Arizona, pp. 746807.Google Scholar
MacPherson, G. J., Huss, G. R., and Davis, A. M. (2003) Extinct 10Be in Type A calcium-aluminum-rich inclusions from CV chondrites. Geochimica et Cosmochimica Acta, 67, 31653179.Google Scholar
MacPherson, G. J., Lin, C., Hollister, L. S., Bindi, L., Andronicos, C. L., and Steinhardt, P. J. (2016) The Khatyrka meteorite: A summary of evidence for a natural origin of its remarkable Cu-Al alloys. Lunar and Planetary Science 47, Abstract #2655.Google Scholar
Maier, W. D., Andreoli, M. A. G., McDonald, I., Higgins, M. D., Boyce, A. J., Shukolyukov, A., Lugmair, G. W., Ashwal, L. D., Gräser, P., Ripley, E. M., and Hart, R. J. (2006) Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa. Nature 441, 203206.Google Scholar
Mangan, T. P., Salzmann, C. G., Plane, J. M. C., and Murray, B. J. (2017) CO2 ice structure and density under Martian atmospheric conditions. Icarus 294, 201208.Google Scholar
Manser, C. J., Gänsicke, B. T., Eggl, S., Hollands, M., Izquierdo, P., Koester, D., Landstreet, J. D., Lyra, W., Marsh, T. R., Meru, F., Mustill, A. J., Rodríguez-Gil, P., Toloza, O., Veras, D., Wilson, D. J., Burleigh, M. R., Davies, M. B., Farihi, J., Gentile Fusillo, N., de Martino, D., Parsons, S. G., Quirrenbach, A., Raddi, R., Reffert, S., Del Santo, M., Schreiber, M. R., Silvotti, R., Toonen, S., Villaver, E., Wyatt, M., Xu, S., and Portegies Zwart, S. (2019) A planetesimal orbiting within the debris disc around a white dwarf star. Science 364, 6669.Google Scholar
Maksimova, A. A., Petrova, E. V., Chukin, A. V., Karabanalov, M. S., Felner, I., Gritsevich, M., and Oshtrakh, M. I. (2020) Characterization of the matrix and fusion crust of the recent meteorite fall Ozerki L6. Meteoritics & Planetary Science 55, 231244.Google Scholar
Marchi, S., Delbo, M., Morbidelli, A., Paolicchi, P., and Lazzarin, M. (2009) Heating of near-Earth objects and meteoroids due to close approaches to the Sun. Monthly Notices of the Royal Astronomical Society 400, 147153.Google Scholar
Marvin, U. B. (1962) Cristobalite in the Carbo iron meteorite. Nature 196, 634636.Google Scholar
Marvin, U. B. (1983) The discovery and initial characterization of Allan Hills 81005: The first lunar meteorite. Geophysical Research Letters, 10, 775778.Google Scholar
Marvin, U. B. (2006) Meteorites in history: An overview from the Renaissance to the 20th century. In The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds, eds. McCall, G. J. H., Bowden, A. J., and Howarth, R. J. Geological Society, London, Special Publication 256. Bath, UK: The Geological Society Publishing House, pp. 1571.Google Scholar
Marvin, U. B. and Klein, C. (1964) Meteoritic zircon. Science 146, 919920.Google Scholar
Mason, B. (1962) Meteorites. New York: Wiley, 274 pp.Google Scholar
Mason, B. (1963) The pallasites. American Museum Novitates 2163, 19 pp.Google Scholar
Mason, B. (1982) In Antarctic Meteorite Newsletter 5, No. 4, November 1982.Google Scholar
Mason, B. and Jarosewich, E. (1967) The Winona meteorite. Geochimica et Cosmochimica Acta 31, 10971099.Google Scholar
Mason, B. and Wiik, H. B. (1966) The composition of the Bath, Frankfort, Kakangari, Rose City and Tadjera meteorites. American Museum Novitates 2272, 124.Google Scholar
Massalski, T. B., Park, F. R., and Vassamillet, L. F. (1966) Speculations about plessite. Geochimica et Cosmochimica Acta 30, 649662.Google Scholar
Matsumoto, M., Tsuchiyama, A., Nakato, A., Matsuno, J., Miyake, A., Kataoka, A., Ito, M., Tomioka, N., Kodama, Y., Uesugi, K., Takeuchi, A., Nakano, T., and Vaccaro, E. (2019) Ultra porous lithology, a fossil asteroidal ice, in carbonaceous chondrite Acfer 094: Implications for parent body formation by icy dust agglomeration. 82nd Annual Meeting of the Meteoritical Society, Abstract #6089.Google Scholar
Matsumoto, M., Tsuchiyama, A., Miyake, A., Ito, M., Tomioka, N., Kodama, Y., Uesugi, K., Takeuchi, A., Nakano, T., Matsuno, J., Nakato, A., and Vaccaro, E. (2020) Three dimensional microstructure and mineralogy of a cosmic symplectite in the Acfer 094 carbonaceous chondrite. Lunar and Planetary Science, 51, Abstract #1035.Google Scholar
Mayne, R. G., McSween, H. Y., McCoy, T. J., and Gale, A. (2009) Petrology of the unbrecciated eucrites. Geochimica et Cosmochimica Acta 73, 794819.Google Scholar
McCall, G. J. H. (1973) Meteorites and Their Origins. Newton Abbot, UK: David & Charles, 352 pp.Google Scholar
McCanta, M. C., Treiman, A. H., Dyar, M. D., Alexander, C. M. O’D., Rumble, D. III and Essene, E. J. (2008) The LaPaz Icefield 04840 meteorite: Mineralogy, metamorphism, and origin of an amphibole- and biotite-bearing R chondrite. Geochimica et Cosmochimica Acta 72, 57575780.Google Scholar
McCord, T. B., Adams, J. B., and Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science 168, 14451447.Google Scholar
McCoy, T. J., Steele, I. M., Keil, K., Leonard, B. F., and Endress, M. (1994) Chladniite, Na2CaMg7(PO4)6: A new mineral from the Carlton (IIICD) iron meteorite. American Mineralogist 79, 375380.Google Scholar
McCoy, T. J., Keil, K., Clayton, R. N., Mayeda, T. K., Bogard, D. D., Garrison, D. H., Huss, G. R., Hutcheon, I. D., and Wieler, R. (1996) A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting. Geochimica et Cosmochimica Acta 60, 26812708.Google Scholar
McCoy, T. J., Keil, K., Clayton, R. N., Mayeda, T. K., Bogard, D. D., Garrison, D. H., and Wieler, R. (1997) A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors. Geochimica et Cosmochimica Acta 61, 623637.Google Scholar
McCoy, T. J., Burbine, T. H., McFadden, L. A., Starr, R. D., Gaffey, M. J., Nittler, L. R., Evans, L. G., Izenberg, N., Lucey, P. G., Trombka, J. I., Bell, J. F., Clark, B. E., Clark, P. E., Squyres, S. W., Chapman, C. R., Boynton, W. V., and Veverka, J. (2001) The composition of 433 Eros: A mineralogical-chemical synthesis. Meteoritics & Planetary Science 36, 16611672.Google Scholar
McCoy, T. J., Corrigan, C. M., Nagashima, K., Reynolds, V. S., Ash, R. D., McDonough, W. F., Yang, J., Goldstein, J. I., and HIlton, C. D. (2019) The Milton pallasite and South Byron Trio irons: Evidence for oxidation and core crystallization. Geochimica et Cosmochimica Acta 259, 358370.Google Scholar
McCubbin, F. M., Tosca, N. J., Smirnov, A., Nekvasil, H., Steele, A., Fries, M., and Lindsley, D. H. (2009) Hydrothermal jarosite and hematite in a pyroxene-hosted melt inclusion in martian meteorite Miller Range (MIL) 03346: Implications for magmatic-hydrothermal fluids on Mars. Geochimica et Cosmochimica Acta 73, 49074917.Google Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D. F., Maechling, C. R., and Zare, R. N. (1996) Search for life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924930.Google Scholar
McKinley, S. G., Scott, E. R. D., Taylor, G. J., and Keil, K. (1981) A unique type 3 ordinary chondrite containing graphite-magnetite aggregates – Allan Hills A77011. Proceedings of the Lunar and Planetary Science Conference 12B, 10391048.Google Scholar
McSween, H. Y. (1976) A new type of chondritic meteorite found in lunar soil. Earth and Planetary Science Letters 31, 193199.Google Scholar
McSween, H. Y. (1977) Carbonaceous chondrites of the Ornans type: A metamorphic sequence. Geochimica et Cosmochimica Acta 41, 477491.Google Scholar
McSween, H. Y. (1994) What we have learned about Mars from SNC meteorites. Meteoritics 29, 757779.Google Scholar
McSween, H. Y. (2015) Petrology on Mars. American Mineralogist 100, 23802395.Google Scholar
McSween, H. Y. and Huss, G. R. (2010) Cosmochemistry. Cambridge: Cambridge University Press, 549 pp.Google Scholar
McSween, H. Y. and McLennan, S. M. (2014) Mars. In Treatise on Geochemistry, Vol. 2, 2nd ed., eds. Holland, H. D. and Turekian, K. K. Oxford: Elsevier, pp. 251300.Google Scholar
McSween, H. Y., Taylor, G. J., and Wyatt, M. B. (2009) Elemental composition of the martian crust. Science 324, 736739.Google Scholar
McSween, H. Y., Binzel, R. P., De Sanctis, M. C., Ammanito, E., Prettyman, T. H., Beck, A. W., Reddy, V., Le Corre, L., Gaffey, M. J., McCord, T. B., Raymond, C. A., Russell, C. T., and the Dawn Science Team (2013) Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science 48, 20902104.Google Scholar
McSween, H. Y., Raymond, C. A., Stolper, E. M., Mittlefehldt, D. W., Baker, M. B., Lunning, N. G., Beck, A. W., and Hahn, T. M. (2019) Differentiation and magmatic history of Vesta: Constraints from HED meteorites and Dawn spacecraft data. Chemie der Erde – Geochemistry 79, 125526.Google Scholar
Meier, M. M. M., Bindi, L., Heck, P. R., Neander, A. I., Spring, N. H., Riebe, M. E. I., Maden, C., Baur, H., Steinhardt, P. J., Wieler, R., and Busemann, H. (2018) Cosmic history and a candidate parent asteroid for the quasicrystal-bearing meteorite Khatyrka. Earth and Planetary Science Letters 490, 122131.Google Scholar
Melosh, H. J. (1989) Impact Cratering: A Geologic Process. Oxford, UK: Oxford University Press, 245 pp.Google Scholar
Mikouchi, T., Zolensky, M., Ivanova, M., Tachikawa, O., Komatsu, M., Le, L., and Gounelle, M. (2009) Dmitryivanovite: A new high-pressure calcium aluminum oxide from the Northwest Africa 470 CH3 chondrite characterized using electron backscatter diffraction analysis. American Mineralogist 94, 746750.Google Scholar
Mikouchi, T., Hagiya, K., Sawa, N., Kimura, M., Ohsumi, K., Komatsu, M., and Zolensky, M. (2016) Synchrotron radiation XRD analysis of indialite in Yamato-82094 ungrouped carbonaceous chondrite. Lunar and Planetery Science 47, Abstract #1919.Google Scholar
Mittlefehldt, D. W. (2015) Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Chemie der Erde – Geochemistry 75, 155183.Google Scholar
Mittlefehldt, D. W. and Lindstrom, M. M. (2001) Petrology and geochemistry of Patuxent Range 91501, a clast-poor impact melt from the L-chondrite parent body and Lewis Cliff 88663, an L7 chondrite. Meteoritics & Planetary Science 36, 439457.Google Scholar
Mittlefehldt, D. W., Rubin, A. E., and Davis, A. M. (1992) Mesosiderite clasts with the most extreme positive europium anomalies among solar system rocks. Science 257, 10961099.Google Scholar
Mittlefehldt, D. W., Lindstrom, M. M., Wang, M.-S., and Lipschutz, M. E. (1995) Geochemistry and origin of achondritic inclusions in Yamato-75097, -793241 and -794046 chondrites. Proceeding of the NIPR Symposium on Antarctic Meteorites 8, 251271.Google Scholar
Mittlefehldt, D. W., Lindstrom, M. M., Bogard, D. D., Garrison, D. H., and Field, S. W. (1996) Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology and origin. Geochimica et Cosmochimica Acta 60, 867882.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., and Kracher, A. (1998) Non-chondritic meteorites from asteroidal bodies. In Planetary Materials, Reviews in Mineralogy & Geochemistry, Vol. 36, ed. Papike, J. J. Washington, DC: Mineralogical Society of America, pp. 4-1 – 4-195.Google Scholar
Mittlefehldt, D. W., Bogard, D. D., Berkley, J. L., and Garrison, D. H. (2003) Brachinites: Igneous rocks from a differentiated asteroid. Meteoritics & Planetary Science 38, 16011625.Google Scholar
Miyahara, M., Ohtani, E., El Goresy, A. E., Lin, Y., Feng, L., Zhang, J.-C., Gillet, P., Nagase, T., Muto, J., and Nishijima, M. (2015) Unique large diamonds in a ureilite from Almahata Sitta 2008 TC3 asteroid. Geochimica et Cosmochimica Acta 163, 1426.Google Scholar
Miyake, G. T. and Goldstein, J. I. (1974) The Tucson meteorite. Geochimica et Cosmochimica Acta 38, 12011212.Google Scholar
Morota, T., Sugita, S., Cho, Y., Kanamaru, M., Tatsumi, E., Sakatani, N., Honda, R., Hirata, N., Kikuchi, H., Yamada, M., Yokota, Y., Kameda, S., Matsuoka, M., Sawada, H., Honda, C., Kouyama, T., Ogawa, K., Suzuki, H., Yoshioka, K., Hayakawa, M., Hirata, N., Hirabayashi, M., Miyamoto, H., Michikami, T., Hiroi, T., Hemmi, R., Barnouin, O. S., Ernst, C. M., Kitazato, K., Nakamura, T., Riu, L., Senshu, H., Kobayashi, H., Sasaki, S., Komatsu, G., Tanabe, N., Fujii, Y., Irie, T., Suemitsu, M., Takaki, N., Sugimoto, C., Yumoto, K., Ishida, M., Kato, H., Moroi, K., Domingue, D., Michel, P., Pilorget, C., Iwata, T., Abe, M., Ohtake, M., Nakauchi, Y., Tsumura, K., Yabuta, H., Ishihara, Y., Noguchi, R., Matsumoto, K., Miura, A., Namiki, N., Tachibana, S., Arakawa, M., Ikeda, H., Wada, K., Mizuno, T., Hirose, C., Hosoda, S., Mori, O., Shimada, T., Soldini, S., Tsukizaki, R., Yano, H., Ozaki, M., Takeuchi, H., Yamamoto, Y., Okada, T., Shimaki, Y., Shirai, K., Iijima, Y., Noda, H., Kikuchi, S., Yamaguchi, T., Ogawa, N., Ono, G., Mimasu, Y., Yoshikawa, K., Takahashi, T., Takei, Y., Fujii, A., Nakazawa, S., Terui, F., Tanaka, S., Yoshikawa, M., Saiki, T., Watanabe, S., Tsuda, Y. (2020) Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution. Science 368, 654659.Google Scholar
Morris, M. A., Garvie, L. A. J., and Knauth, L. P. (2015) New insight into the solar system’s transition disk phase provided by the metal-rich carbonaceous chondrite Isheyevo. Astrophysical Journal Letters 801, L22, 5 pp.Google Scholar
Morrison, S. M. and Hazen, R. M. (2020) An evolutionary system of mineralogy, Part II: Interstellar and solar nebula primary condensation mineralogy (>4.565 Ga). American Mineralogist, 105, 15081535. https://doi.org/10.2138/am-2020-7447.4.565+Ga).+American+Mineralogist,+105,+1508–1535.+https://doi.org/10.2138/am-2020-7447.>Google Scholar
Munayco, P., Munayco, J., Varela, M. E., and Scorzelli, R. B. (2013) The new Peruvian meteorite Carancas: Mössbauer spectroscopy and X-ray diffraction studies. Earth, Moon, Planets 110, 19.Google Scholar
Muxworthy, A. R., Bland, P. A., Davison, T. M., Moore, J., Collins, G. S., and Ciesla, F. J. (2017) Evidence for an impact-induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization. Meteoritics & Planetary Science 52, 21322146.Google Scholar
Nabiei, F., Badro, J., Dennenwaldt, T., Oveisi, E., Cantoni, M., Hébert, C., El Goresy, A., Barrat, J.-A., and Gillet, P. (2018) A large planetary body inferred from diamond inclusions in a ureilite meteorite. Nature Communications 9, 16. https://doi.org/ 10.1038/s41467-018-03808-6.Google Scholar
Nakamura, T. (2005) Post-hydration thermal metamorphism of carbonaceous chondrites. Journal of Mineralogical and Petrological Sciences 100, 260272.Google Scholar
Nakamura, T., Noguchi, T., Tanaka, M., Zolensky, M. E., Kimura, M., Tsuchiyama, A., Nakato, A., Ogami, T., Ishida, H., Uesugi, M., Yada, T., Shirai, K., Fujimura, A., Okazaki, R., Sandford, S. A., Ishibashi, Y., Abe, M., Okada, T., Ueno, M., Mukai, T., Yoshikawa, M., and Kawaguchi, J. (2011) Itokawa dust particles: A direct link between S-Type asteroids and ordinary chondrites. Science 333, 11131116.Google Scholar
Nakamura, A., Miyahara, M., Suga, H., Yamaguchi, A., Daisuke, W., Yamashita, S., Takeichi, Y., and Ohtani, E. (2020) The discovery of Mn-precipitates in nakhlite Yamato 000802. Eleventh Symposium on Polar Science, abstract.Google Scholar
Nakamura-Messenger, K., Keller, L. P., Clemett, S. J., Messenger, S., Jones, J. H., Palma, R. L., Pepin, R. O., Klöck, W., Zolensky, M. E., and Tatsuoka, H. (2010) Brownleeite: A new manganese silicide mineral in an interplanetary dust particle. American Mineralogist 95, 221228.Google Scholar
Nakamura-Messenger, K., Clemett, S. J., Rubin, A. E., Choi, B.-G., Zhang, S., Rahman, Z., Oikawa, K., and Keller, L.P. (2012) Wassonite: A new titanium monosulfide mineral in the Yamato 691 enstatite chondrite. American Mineralogist 97, 807815.Google Scholar
Nakamuta, Y. and Aoki, Y. (2000) Mineralogical evidence for the origin of diamond in ureilites. Meteoritics & Planetary Science 35, 487493.Google Scholar
Nakashima, D., Nakamura, T., and Okazaki, R. (2006) Cosmic-ray exposure age and heliocentric distance of the parent bodies of enstatite chondrites ALH 85119 and MAC 88136. Meteoritics & Planetary Science 41, 851862.Google Scholar
Nelson, V. E. and Rubin, A. E. (2002) Size-frequency distributions of chondrules and chondrule fragments in LL3 chondrites: Implications for parent-body fragmentation of chondrules. Meteoritics & Planetary Science 37, 13611376.Google Scholar
Németh, P., Garvie, L. A. J., Aoki, T., Dubrovinskaia, N., Dubrovinsky, L., and Buseck, P. R. (2014) Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete mineral. Nature Communications 5, 5447. https://doi.org/10.1038/ncomms6447.Google Scholar
Nesse, W. D. (2012) Introduction to Mineralogy, 4th ed. New York: Oxford University Press, 384 pp.Google Scholar
Neumann, W., Henke, S., Breuer, D., Gail, H.-P., Schwarz, W. H., Trieloff, M., Hopp, J., and Spohn, T. (2018) Modeling the evolution of the parent body of acapulcoites and lodranites: A case study for partially differentiated asteroids. Icarus 311, 146169.Google Scholar
Newton, J., Bischoff, A., Arden, J. W., Franchi, I. A., Geiger, T., Greshake, A., and Pillinger, C. T. (1995) Acfer 094, a uniquely primitive carbonaceous chondrite from the Sahara. Meteoritics 30, 4756.Google Scholar
Nickel, E. H. and Graham, J. (1987) Paraotwayite: A new nickel hydroxide mineral from Western Australia. Canadian Meteorologist 25, 409411.Google Scholar
Nielsen, H. P. and Buchwald, V. F. (1981) Roaldite, a new nitride in iron meteorites. Proceedings Lunar and Planetary Science Conference 12, 13431348.Google Scholar
Nishiizumi, K., Caffee, M. W., Hamajima, Y., Reedy, R. C., and Welton, K. C. (2014) Exposure history of the Sutter’s Mill carbonaceous chondrite. Meteoritics & Planetary Science 49, 20562063.Google Scholar
Nittler, L. R. and Ciesla, F. (2016) Astrophysics with extraterrestrial materials. Annual Review of Astronomy and Astrophysics 54, 5393.Google Scholar
Nittler, L. R., Stroud, R. M., Trigo-Rodriguez, J. M., De Gregorio, B. T., Alexander, C. M. O’D., Davidson, J., Moyano-Cambero, C. E., and Tanbakouei, S. (2019) A cometary building block in a primitive asteroidal meteorite. Nature Astronomy 3, 659666. https://doi.org/10.1038/s41550-019-0737-8.Google Scholar
Nittler, L. R., Alexander, C. M. O’D., Foustoukos, D., Patzer, A., and Verdier-Paoletti, M. J. (2020) Asuka 12236, the most pristine CM chondrite to date. Lunar and Planetary Science 51, Abstract #2276.Google Scholar
Norton, O. R. and Chitwood, L. A. (2008) Field Guide to Meteors and Meteorites. London: Springer, 287 pp.Google Scholar
Nyström, J. O. and Wickman, F. E. (1991) The Ordovician chondrite from Brunflo, central Sweden, II. Secondary minerals. Lithos 27, 167185.Google Scholar
Nyström, J. O., Lindström, M., and Wickman, F. E. (1988) Discovery of a second Ordovician meteorite using chromite as a tracer. Nature 336, 572574.Google Scholar
Ohtsuka, K., Arakida, H., Ito, T., Kasuga, T., Watanabe, J., Kinoshita, D., Sekiguchi, T., Asher, D. J., and Nakano, S. (2007) Apollo asteroids 1566 Icarus and 2007 MK6: Icarus family members? Astrophysical Journal 668, L71L74.Google Scholar
Okada, A. and Keil, K. (1982) Caswellsilverite, NaCrS2: A new mineral in the Norton County enstatite achondrite. American Mineralogist 67, 132136Google Scholar
Okada, A., Keil, K., and Taylor, G. J. (1981) Unusual weathering products of oldhamite parentage in the Norton County enstatite achondrite. Meteoritics 16, 141152.Google Scholar
Okada, A., Keil, K., Leonard, B. F., and Hutcheon, I. D. (1985) Schollhornite, Na0.3(H2O)1[CrS2], a new mineral in the Norton County enstatite achondrite. American Mineralogist 70, 638643.Google Scholar
Okada, A., Keil, K., Taylor, G. J., and Newsom, H. (1988) Igneous history of the aubrite parent asteroid: Evidence from the Norton County enstatite achondrite. Meteoritics 23, 5974.Google Scholar
Okada, A., Kobayashi, K., Ito, T., and Sakurai, T. (1991) Structure of synthetic perryite (Ni,Fe)8(Si,P)3. Acta Crystallographica C47, 13581361.Google Scholar
Olsen, E. (1979) Meteor-wrongs. Field Museum of Natural History Bulletin 50, No. 4, 1821.Google Scholar
Olsen, E. (1981) Vugs in ordinary chondrites. Meteoritics 16, 4559.Google Scholar
Olsen, E. and Fredriksson, K. (1966) Phosphates in iron and pallasite meteorites. Geochimica et Cosmochimica Acta 30, 459470.Google Scholar
Olsen, E. and Fuchs, L. H. (1968) Krinovite, NaMg2CrSi3O10: A new meteorite mineral. Science 161, 786787.Google Scholar
Olsen, E. and Jarosewich, E. (1971) Chondrules: First occuurrennce in an iron meteorite. Science 174, 583585.Google Scholar
Olsen, E. J. and Steele, I. M. (1997) Galileiite: A new meteoritic phosphate mineral. Meteoritics & Planetary Science 32, A155A156.Google Scholar
Olsen, E., Huebner, J. S., Douglas, J. A. V., and Plant, A. G. (1973) Meteoritic amphiboles. American Mineralogist 58, 869872.Google Scholar
Olsen, E., Erlichman, J., Bunch, T. E., and Moore, P. B. (1977) Buchwaldite, a new meteoritic phosphate mineral. American Mineralogist 62, 362364.Google Scholar
Olsen, E. J., Kracher, A., Davis, A. M., Steele, I. M., Hutcheon, I. D., and Bunch, T. E. (1999) The phosphates of IIIAB iron meteorites. Meteoritics & Planetary Science 34, 285300.Google Scholar
Ott, U. (1996) Interstellar grains: Some facts, implications, and ideas (abstract). Meteoritics & Planetary Science 31, A102A103.Google Scholar
Oulton, J., Humayun, M., Fedkin, A., and Grossman, L. (2016) Chemical evidence for differentiation, evaportation and recondensation from silicate clasts in Gujba. Geochimica et Cosmochimica Acta 177, 254274.Google Scholar
Paar, W. H., Ma, C., Topa, D., Culetto, F. J., Hammer, V. F. M., Guan, Y., Braithwaite, R. S. W. (2019) Discovery of native aluminum on Variscan metagranitoids in Upper Carinthia, Austria: Natural or anthropogenic origin? Rendiconti Lincei. Scienze Fisiche e Naturali 30, 167184.Google Scholar
Palme, H. and Jones, A. (2005) Solar system abundances of the elements. In Meteorites, Comets and Planets, ed. Davis, A. Amsterdam: Elsevier, pp. 4161.Google Scholar
Pang, R.-L., Zhang, A.-C., Wang, S.-Z., Wang, R.-C., and Yurimoto, H. (2016) High-pressure minerals in eucrite suggest a small source crater on Vesta. Scientific Reports 6, 26063. https://doi.org/10.1038/srep26063.Google Scholar
Pang, R.-L., Harries, D., Pollok, K., Zhang, A.-C., and Langenhorst, F. (2018) Vestaite, (Ti4+Fe2+)Ti4+3O9, a new mineral in the shocked eucrite Northwest Africa 8003. American Mineralogist 103, 15021511.Google Scholar
Pang, R. L., Du, W., Zhang, A. C., Liu, J., and Qin, L. (2020) Unique achondrite Dhofar 778: A mantle-derived fragment from a new differentiated body? Lunar and Planetary Science 51, Abstract #1947.Google Scholar
Papike, J., Taylor, L., and Simon, S. (1991) Lunar minerals. In Lunar Sourcebook: A User’s Guide to the Moon, eds. Heiken, G. H., Vaniman, D. T., and French, B. M. Cambridge: Cambridge University Press, pp. 121181.Google Scholar
Papike, J. J., Ryder, G., and Shearer, C. K. (1998) Lunar samples. In Planetary Materials, ed. Papike, J. J., Washington, DC: Mineralogical Society of America, pp. 5-1–5-234.Google Scholar
Paque, J. M., Beckett, J. R., Barber, D. J., and Stolper, E. M. (1994) A new titanium-bearing calcium aluminosilicate phase: I. Meteoritic occurrences and formation in synthetic systems. Meteoritics 29, 673682.Google Scholar
Patzer, A., Hill, D. H., and Boynton, W. V. (2001) Itqiy: A metal‐rich enstatite meteorite with achondritic texture. Meteoritics & Planetary Science 36, 14951505.Google Scholar
Pederson, T. P. (1999) Schwertmannite and awaruite as alteration products in iron meteorites. Meteoritics 62, 5117.Google Scholar
Pekov, I. (1998) Minerals First Discovered on the Territory of the Former Soviet Union. Moscow: Ocean Pictures Ltd., 369 pp.Google Scholar
Pekov, I. V., Perchiazzi, N., Merlino, S., Kalachev, V. N., Merlini, M., and Zadov, A. E. (2007) Chukanovite, Fe2(CO3)(OH)2, a new mineral from the weathered iron meteorite Dronino. European Journal of Mineralogy 19, 891898.Google Scholar
Pepin, R. O. (1985) Evidence of martian origins. Nature, 317, 473475.Google Scholar
Peplowski, P. N., Lawrence, D. J., Prettyman, T. H., Yamashita, N., Bazell, D., Feldman, W. C, Le Corre, L., McCoy, T. J., Reddy, V., Reedy, R. C., Russell, C. T., and Toplis, M. J. (2013) Compositional variability on the surface of 4 Vesta revealed through GRaND measurements of high-energy gamma rays. Meteoritics & Planetary Science 48, 22522270.Google Scholar
Peplowski, P. N., Klima, R. L., Lawrence, D. J., Ernst, C. M., Denevi, B. W., Frank, E. A., Goldsten, J. O., Murchi, S. L., Nittler, L. R. and Solomon, S. C. (2016) Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geoscience 9, 273276.Google Scholar
Petaev, M. I. and Wood, J. A. (1998) The condensation with partial isolation (CWPI) model of condensation in the solar nebula. Meteoritics & Planetary Science 33, 11231137.Google Scholar
Petaev, M. I., Clarke, R. S., Olsen, E. J., Jarosewich, E., Davis, A. M., Steele, I. M., Lipschutz, M. E., Wang, M.-S., Clayton, R. N., Mayeda, T. K., and Wood, J. A. (1993) Chaunskij: The most highly metamorphosed, shock-modified and metal-rich mesosiderite abstract. Lunar and Planetary Science Conference 24, 11311132.Google Scholar
Petranek, S. L. (2015) How We’ll Live on Mars. New York: TEDBooks, Simon & Schuster, 96 pp.Google Scholar
Phillips, W. R. and Griffen, D. T. (1981) Optical Mineralogy: The Nonopaque Minerals. San Francisco: Freeman, 677 pp.Google Scholar
Pickersgill, A. E., Flemming, R. L., and Osinski, G. R. (2015) Toward quantification of strain-related mosaicity in shocked lunar and terrestrial plagioclase by in situ micro-X-ray diffraction. Meteoritics & Planetary Science 50, 18511862.Google Scholar
Pieters, C. M. (1978) Mare basalt types on the front side of the Moon: A summary of spectral reflectance data. Lunar and Planetary Science Conference Proceedings 9, 28252849.Google Scholar
Plummer, C., Carlson, D., and Hammersley, L. (2019) Physical Geology, 16th ed., New York: McGraw-Hill, 672 pp.Google Scholar
Poch, O., Istiqomah, I., Quirico, E., Beck, P., Schmitt, B., Theulé, P., Faure, A., Hily-Blant, P., Bonal, L., Raponi, A., Ciarniello, M., Rousseau, B., Potin, S., Brissaud, O., Flandinet, L., Filacchione, G., Pommerol, A., Thomas, N., Kappel, D., Mennella, V., Moroz, L., Vinogradoff, V., Arnold, G., Erard, S., Bockelée-Morvan, D., Leyrat, D., Capaccioni, F., De Sanctis, M. C., Longobardo, A., Mancarella, F., Palomba, E., and Tosi, F. (2020) Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science 367, eaaw7462. https://doi.org/ 10.1126/science.aaw7462.Google Scholar
Pokorný, P., Sarantos, M., and Janches, D. (2017) Reconciling the dawn-dusk asymmetry in Mercury‘s exosphere with the micrometeoroid impact directionality. The Astrophysical Journal Letters 842, L17.Google Scholar
Pratesi, G., Bindi, L., and Moggi-Cecchi, V. (2006) Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054 acapulcoite. American Mineralogist 94, 451454.Google Scholar
Price, G. D., Putnis, A., and Agrell, S. O. (1979) Electron petrography of shock-produced veins in the Tenham chondrite. Contributions to Mineralogy and Petrology 71, 211218.Google Scholar
Prinz, M., Nehru, C. E., Weisberg, M. K., and Delaney, J. S. (1984) Type 3 enstatite chondrites: A newly recognized group of unequilibrated enstatite chondrites (UEC’s). Lunar and Planetary Science 15, Abstract #1331, 653654.Google Scholar
Prior, G. T. (1920) The classification of meteorites. Mineralogical Magazine 19, 5163.Google Scholar
Prior, G. T. (1953) Catalogue of Meteorites. British Museum, London, 432 pp.Google Scholar
Przylibski, T. A., Zagożdżon, P. P., Kryza, R., and Pilski, A. S. (2005) The Zakłodzie enstatite meteorite: Mineralogy, petrology, origin, and classification. Meteoritics & Planetary Science 40, A185A200.Google Scholar
Quirico, E., Bonal, L., Alexander, C. M. O’D., Yabuta, H., Nakamura, T., Nakato, A., Flandinet, L., Montagnac, G., Schmitt-Kopplin, P., and Herd, C. D. K. (2018) Prevalence and nature of heating processes in CM and C2-ungrouped chondrites as revealed by insoluble organic matter. Geochimica et Cosmochimica Acta 241, 1737.Google Scholar
Ramdohr, P. (1963) Opaque minerals in stony meteorites. Journal of Geophysical Research 68, 20112036.Google Scholar
Ramdohr, P. (1967) Die Schmelzkruste der Meteoriten. Earth and Planetary Science Letters 2, 197209.Google Scholar
Ramdohr, P. (1969) The Ore Minerals and Their Intergrowths. Oxford: Pergamon Press, 1,174 pp.Google Scholar
Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Amsterdam: Elsevier, 245 pp.Google Scholar
Rampe, E. B., Blake, D. F., Bristow, T. F., Ming, D. W., Vaniman, D. T., Morris, R. V., Achilles, C. N., Chipera, S. J., Morrison, S. M., Tu, V. M., Yen, A. S., Castle, N., Downs, G. W., Downs, R. T., Grotzinger, J. P., Hazen, R. M., Treiman, A. H., Peretyazhko, T. S., Des Marais, D. J., Walroth, R. C., Craig, P. I., Crisp, J. A., Lafuente, B., Morookian, J. M., Sarrazin, P. C., Thorpe, M. T., Bridges, J. C., Edgar, L. A., Fedo, C. M., Freissinet, C., Gellert, R., Mahaffy, P. R., Newsom, H. E., Johnson, J. R., Kah, L. C., Siebach, K. L., Schieber, J., Sun, V. Z., Vasavada, A. R., Webster, C., Wellington, D., and Wiens, R. C. (2020) Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six earth years of exploration with Curiosity. Chemie der Erde – Geochemistry 80, 125605. https://doi.org/10.1016/j.chemer.2020.125605.Google Scholar
Rancourt, D. G. and Scorzelli, R. B. (1995) Low-spin γ-Fe-Ni (γLS) proposed as a new mineral in Fe-Ni-bearing meteorites: epitaxial intergrowth of γLS and tetrataenite as a possible equilibrium state at∼ 20–40 at% Ni. Journal of Magnetism and Magnetic Materials 150, 3036.Google Scholar
Reisener, R. J. and Goldstein, J. I. (2003) Ordinary chondrite metallography: Part 2. Formation of zoned and unzoned metal particles in relatively unshocked H, L, and LL chondrites. Meteoritics & Planetary Science 38, 16791696.Google Scholar
Reuter, K. B., Williams, D. B., and Goldstein, J. I. (1987) Determination of the Fe-Ni phase diagram below 400°C. Metallurgical Transactions A 20A, 719725.Google Scholar
Reuter, K. B., Williams, D. B., and Goldstein, J. I. (1988) Low temperature transformations in the metallic phases of iron and stony-iron meteorites. Geochimica et Cosmochimica Acta 52, 617626.Google Scholar
Rickwood, P. C. (1981) The largest crystals. American Mineralogist 66, 885907.Google Scholar
Rivkin, A. S. and Emery, J. P. (2010) Detection of ice and organics on an asteroidal surface. Nature 464, 13221323.Google Scholar
Rubin, A. E. (1983a) Impact melt-rock clasts in the Hvittis enstatite chondrite breccia: Implications for a genetic relationship between EL chondrites and aubrites. Proceedings of the Fourteenth Lunar and Planetary Science Conference, B293–B300.Google Scholar
Rubin, A. E. (1983b) The Adhi Kot breccia and implications for the origin of chondrules and silica-rich clasts in enstatite chondrites. Earth and Planetary Science Letters 64, 201212.Google Scholar
Rubin, A. E. (1984) The Blithfield meteorite and the origin of sulfide-rich, metal-poor clasts and inclusions in brecciated enstatite chondrites. Earth and Planetary Science Letters 67, 273283.Google Scholar
Rubin, A. E. (1985) Impact melt products of chondritic material. Reviews of Geophysics 23, 277300.Google Scholar
Rubin, A. E. (1990) Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relationships. Geochimica et Cosmochimica Acta 54, 12171232.Google Scholar
Rubin, A. E. (1991) Euhedral awaruite in the Allende meteorite: Implications for the origin of awaruite- and magnetite-bearing nodules in CV3 chondrites. American Mineralogist 76, 13561362.Google Scholar
Rubin, A. E. (1992) A shock-metamorphic model for silicate darkening and compositionally variable plagioclase in CK and ordinary chondrites. Geochimica et Cosmochimica Acta 56, 17051714.Google Scholar
Rubin A, E. (1994a) Euhedral tetrataenite in the Jelica meteorite. Mineralogical Magazine 58, 215221.Google Scholar
Rubin, A. E. (1994b) Metallic copper in ordinary chondrites. Meteoritics 29, 9398.Google Scholar
Rubin, A. E. (1995) Fractionation of refractory siderophile elements in metal from the Rose City meteorite. Meteoritics 30, 412417.Google Scholar
Rubin, A. E. (1997a) Mineralogy of meteorite groups. Meteoritics & Planetary Science 32, 231247.Google Scholar
Rubin, A. E. (1997b) Mineralogy of meteorite groups: An update. Meteoritics & Planetary Science 32, 733734.Google Scholar
Rubin, A. E. (1997c) The Hadley Rille enstatite chondrite and its agglutinate-like rim: Impact melting during accretion to the Moon. Meteoritics & Planetary Science 32, 135141.Google Scholar
Rubin, A. E. (1999) Formation of large metal nodules in ordinary chondrites. Journal of Geophysical Research – Planets 104, 3079930804.Google Scholar
Rubin, A. E. (2000) Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth Science Reviews 50, 327.Google Scholar
Rubin, A. E. (2002a) Post-shock annealing of MIL99301 (LL6): Implications for impact heating of ordinary chondrites. Geochimica et Cosmochimica Acta 66, 33273337.Google Scholar
Rubin, A. E. (2002b) The Smyer H-chondrite impact-melt breccia and evidence for sulfur vaporization. Geochimica et Cosmochimica Acta 66, 683695.Google Scholar
Rubin, A. E. (2003) Chromite-plagioclase assemblages as a new shock indicator; implications for the shock and thermal histories of ordinary chondrites. Geochimica et Cosmochimica Acta 67, 26952709.Google Scholar
Rubin, A. E. (2004) Aluminian low-Ca pyroxene in a Ca-Al-rich chondrule from the Semarkona meteorite. American Mineralogist 89, 867872.Google Scholar
Rubin, A. E. (2006) Shock, post-shock annealing and post-annealing shock in ureilites. Meteoritics & Planetary Science 41, 125133.Google Scholar
Rubin, A. E. (2007) Petrogenesis of acapulcoites and lodranites: A shock-melting model. Geochimica et Cosmochimica Acta 71, 23832401.Google Scholar
Rubin, A. E. (2008) Explicating the behavior of Mn‐bearing phases during shock melting and crystallization of the Abee EH‐chondrite impact‐melt breccia. Meteoritics & Planetary Science 43, 14811485.Google Scholar
Rubin, A. E. (2010a) Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments. Geochimica et Cosmochimica Acta 74, 48074828.Google Scholar
Rubin, A. E. (2010b) Impact melting in the Cumberland Falls and Mayo Belwa aubrites. Meteoritics & Planetary Science 45, 265275.Google Scholar
Rubin, A. E. (2011) Origin of the differences in refractory-lithophile-element abundances among chondrite groups. Icarus 213, 547558.Google Scholar
Rubin, A. E. (2012a) A new model for the origin of Type‐B and Fluffy Type‐A CAIs: Analogies to remelted compound chondrules. Meteoritics & Planetary Science 47, 10621074.Google Scholar
Rubin, A. E. (2012b) Collisional facilitation of aqueous alteration of CM and CV carbonaceous chondrites. Geochimica et Cosmochimica Acta 90, 181194.Google Scholar
Rubin, A. E. (2013a) Multiple melting in a four-layered barred-olivine chondrule with compositionally heterogeneous glass from LL3.0 Semarkona. Meteoritics & Planetary Science 48, 445456.Google Scholar
Rubin, A. E. (2013b) An amoeboid olivine inclusion (AOI) in CK3 NWA 1559, comparison to AOIs in CV3 Allende, and the origin of AOIs in CK and CV chondrites. Meteoritics & Planetary Science 48, 432444.Google Scholar
Rubin, A. E. (2014) Shock and annealing in the amphibole‐ and mica‐bearing R chondrites. Meteoritics & Planetary Science 49, 10571075.Google Scholar
Rubin, A. E. (2015a) Impact features of enstatite-rich meteorites. Chemie der Erde – Geochemistry 75, 128.Google Scholar
Rubin, A. E. (2015b) Maskelynite in asteroidal, lunar and planetary basaltic meteorites: An indicator of shock pressure during impact ejection from their parent bodies. Icarus 257, 221229.Google Scholar
Rubin, A. E. (2015c) An American on Paris: Extent of aqueous alteration of a CM chondrite and the petrography of its refractory and amoeboid olivine inclusions. Meteoritics & Planetary Science 50, 15951612.Google Scholar
Rubin, A. E. (2015d) Shock and annealing in aubrites: Implications for parent-body history. Meteoritics & Planetary Science 50, 12171227.Google Scholar
Rubin, A. E. (2016) Impact melting of the largest known enstatite meteorite: Al Haggounia 001, a fossil EL chondrite. Meteoritics & Planetary Science 51, 15761587.Google Scholar
Rubin, A. E. (2018) Carbonaceous and non-carbonaceous iron meteorites: Differences in chemical, physical and collective properties. Meteoritics & Planetary Science 53, 23572371.Google Scholar
Rubin, A. E. and Grossman, J. N. (2010) Meteorite and meteoroid: New comprehensive definitions. Meteoritics & Planetary Science 45, 114122.Google Scholar
Rubin, A. E. and Huber, H. (2005) A weathering index for CK and R chondrites. Meteoritics & Planetary Science 40, 11231130.Google Scholar
Rubin, A. E. and Jerde, E. A. (1987) Diverse eucritic pebbles in the Vaca Muerta mesosiderite. Earth and Planetary Science Letters 84, 114.Google Scholar
Rubin, A. E. and Jerde, E. A. (1988) Compositional differences between basaltic and gabbroic clasts in mesosiderites. Earth and Planetary Science Letters 87, 485490.Google Scholar
Rubin, A. E. and Kallemeyn, G. W. (1990) Lewis Cliff 85332: A unique carbonaceous chondrite. Meteoritics 25, 215225.Google Scholar
Rubin, A. E. and Kallemeyn, G. W. (1993) Carlisle Lakes chondrites: Relationship to other chondrite groups (abstract). Meteoritics 28, 424425.Google Scholar
Rubin, A. E. and Keil, K. (1983) Mineralogy and petrology of the Abee enstatite chondrite breccia and its dark inclusions. Earth & Planetary Science Letters 62, 118131.Google Scholar
Rubin, A. E. and Li, Y. (2019) Formation and destruction of magnetite in CO3 chondrites and other chondrite groups. Chemie der Erde – Geochemistry 79, 125528.Google Scholar
Rubin, A. E. and Ma, C. (2017) Meteoritic minerals and their origins. Chemie der Erde – Geochemistry 77, 325385.Google Scholar
Rubin, A. E. and Mittlefehldt, D. W. (1992) Classification of mafic clasts from mesosiderites: Implications for endogenous igneous processes. Geochimica et Cosmochimica Acta 56, 827840.Google Scholar
Rubin, A. E. and Mittlefehldt, D. W. (1993) Evolutionary history of the mesosiderite asteroid: A chronologic and petrologic synthesis. Icarus 101, 232252.Google Scholar
Rubin, A. E. and Moore, W. B. (2011) What’s up? Preservation of gravitational direction in the LAR 06299 LL impact-melt breccia. Meteoritics & Planetary Science 46, 737747.Google Scholar
Rubin, A. E. and Scott, E. R. D. (1997) Abee and related EH chondrite impact-melt breccias. Geochimica et Cosmochimica Act 61, 425435.Google Scholar
Rubin, A. E. and Wasson, J. T. (2011) Shock effects in “EH6” enstatite chondrites and implications for collisional heating of the EH and EL parent asteroids. Geochimica et Cosmochimica Acta 75, 37573780.Google Scholar
Rubin, A. E., Scott, E. R. D., and Keil, K. (1982) Microchondrule-bearing clast in the Pinacaldoli LL3 meteorite: A new kind of type 3 chondrites and its relevance to the history of chondrules. Geochimica et Cosmochimica Acta 46, 17631776.Google Scholar
Rubin, A. E., Scott, E. R. D., Taylor, G. J., Keil, K., Allen, J. S. B., Mayeda, T. K., Clayton, R. N., and Bogard, D. D. (1983) Nature of the H chondrite parent body regolith: Evidence from the Dimmitt breccia. Proceedings of the Thirteenth Lunar and Planetary Science Conference, A741–A754.Google Scholar
Rubin, A. E., Jerde, E., Zong, P., Wasson, J. T., Westcott, J. W., Mayeda, T. K., and Clayton, R. N. (1986) Properties of the Guin ungrouped iron meteorite: The origin of Guin and of group-IIE irons. Earth &Planetary Science Letters 76, 209226.Google Scholar
Rubin, A. E., Scott, E. R. D., and Keil, K. (1997) Shock metamorphism of enstatite chondrites. Geochimica et Cosmochimica Acta 61, 847858.Google Scholar
Rubin, A. E., Sailer, A. L., and Wasson, J. T. (1999) Troilite in the chondrules of type-3 ordinary chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta 63, 22812298.Google Scholar
Rubin, A. E., Ulff-Møller, F., Wasson, J. T., and Carlson, W. D. (2001) The Portales Valley meteorite breccia: Evidence for impact-induced melting and metamorphism of an ordinary chondrite. Geochimica et Cosmochimica Acta 65, 323342.Google Scholar
Rubin, A. E., Kallemeyn, G. W., Wasson, J. T., Clayton, R. N., Mayeda, T. K., Grady, M., Verchovsky, A. B., Eugster, O., and Lorenzetti, S. (2003) Formation of metal and silicate nodules in Gujba: A new Bencubbin-like meteorite fall. Geochimica et Cosmochimica Acta 67, 32833298.Google Scholar
Rubin, A. E., Trigo-Rodríguez, J. M., Kunihiro, T., Kallemeyn, G. W., and Wasson, J. T. (2005) Carbon-rich chondritic clast PV1 from the Plainview H-chondrite regolith breccia: Formation from H3 chondrite material by possible cometary impact. Geochimica et Cosmochimica Acta 69, 34193430.Google Scholar
Rubin, A. E., Trigo-Rodríguez, J. M., Huber, H., and Wasson, J. T. (2007) Progressive aqueous alteration of CM carbonaceous chondrites. Geochimica et Cosmochimica Acta 71, 23612382.Google Scholar
Rubin, A. E., Griset, C. D., Choi, B.-G., and Wasson, J. T. (2009) Clastic matrix in EH3 chondrites. Meteoritics & Planetary Science 44, 589601.Google Scholar
Rubin, A. E., Breen, J. P., Wasson, J. T., and Pitt, D. (2015) Shock effects in the Willamette iron meteorite. Meteoritics & Planetary Science 50, 19841994.Google Scholar
Rubin, A. E., Breen, J. P., Isa, J., and Tutorow, S. (2017) NWA 10214 – An LL3 chondrite breccia with an assortment of metamorphosed, shocked, and unique chondrite clasts. Meteoritics & Planetary Science 52, 372390.Google Scholar
Russell, S. S., Pillinger, C. T., Arden, J. W., Lee, M. R., and Ott, U. (1992) A new type of meteoritic diamond in the enstatite chondrite Abee. Science 256, 206209.Google Scholar
Russell, S. S., Connolly, H. C., and Krot, A. N., eds. (2018) Chondrules: Records of Protoplanetary Disk Processes. Cambridge, UK: Cambridge University Press, 450 pp.Google Scholar
Ruzicka, A. (2014) Silicate-bearing iron meteorites and their implications for the evolution of asteroidal parent bodies. Chemie der Erde – Geochemistry 74, 348.Google Scholar
Ruzicka, A., Killgore, M., Mittlefehldt, D. W., and Fries, M. D. (2005) Portales Valley: Petrology of a metallic-melt meteorite breccia. Meteoritics & Planetary Science 40, 261295.Google Scholar
Ruzicka, A., Hugo, R., and Hutson, M. (2015) Deformation and thermal histories of ordinary chondrites: Evidence for post-deformation annealing and syn-metamorphic shock. Geochimica et Cosmochimica Acta 163, 219233.Google Scholar
Saal, A. E., Hauri, E. H., Cascio, M. L., Van Orman, J. A., Rutherford, M. C., and Cooper, R. F. (2008) Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192195.Google Scholar
Saini-Eidukat, B., Kucha, H., and Keppler, H. (1994) Hibbingite, γ-Fe2(OH)3Cl, a new mineral from the Duluth Complex, Minnesota, with implications for the oxidation of Fe-bearing compounds and transport of metals. American Mineralogist 79, 555561.Google Scholar
Sakamoto, N., Seto, Y., Itoh, S., Kuramoto, K., Fujino, K., Nagashima, K., Krot, A. N., and Yurimoto, H. (2007) Remnants of the early solar system water enriched in heavy oxygen isotopes. Science 317, 231233.Google Scholar
Sanborn, M. E., Wimpenny, J., Williams, C. D., Yamakawa, A., Amelin, Y., Irving, A. J., and Yin, Q.-Z. (2019) Carbonaceous achondrites Northwest Africa 6704/6693: Milestones for early Solar System chronology and genealogy. Geochimica et Cosmochimica Acta 245, 577596.Google Scholar
Sanders, I. S., Scott, E. R. D., and Delaney, J. S. (2017) Origin of mass-independent oxygen isotope variation among ureilites: Clues from chondrites and primitive achondrites. Meteoritics & Planetary Science 52, 690708.Google Scholar
Sasaki, S., Nakamura, K., Hamabe, Y., Kurahashi, E., and Hiroi, T. (2001) Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature 410, 555557.Google Scholar
Satterwhite, C., Mason, B., and MacPherson, G. J. (1993) Description of LEW88774. Antarctic Meteorite Newsletter 16 (1), 15.Google Scholar
Scambos, T. A., Campbell, G. G., Pope, A., Haran, T., Muto, A., Lazzara, M., Reijmer, C. H., and van den Broeke, M. R. (2018) Ultralow surface temperatures in East Antarctica from satellite thermal infrared mapping: The coldest places on Earth. Geophysical Research Letters 45, 61246133.Google Scholar
Schmieder, M., Buchner, E., and Kröchert, J. (2009) ‘Ballen silica’ in impactites and magmatic rocks. Lunar and Planetary Science Conference 40, Abstract #1020.Google Scholar
Schmitt, H. H. (2006) Return to the Moon: Exploration, Enterprise, and Energy in the Human Settlement of Space. New York: Copernicus Books, 335 pp.Google Scholar
Schmitz, B. (2013) Extraterrestrial spinels and the astronomical perspective on Earth’s geological record and evolution of life. Chemie der Erde – Geochemistry 73, 117145.Google Scholar
Schmitz, B., Tassinari, M., and Peucker-Ehrenbrink, B. (2001) A rain of ordinary chondritic meteorites in the early Ordovician. Earth and Planetary Science Letters 194, 115.Google Scholar
Schmitz, B., Yin, Q.-Z., Sanborn, M.E., Tassinari, M., Caplan, C. E., and Huss, G. R. (2016) A new type of solar-system material recovered from Ordovician marine limestone. Nature Communications 7, 17.Google Scholar
Schrader, D. L., Lauretta, D. S., Connolly, H. C., Goreva, Y. S., Hill, D. H., Domanik, K. J., Berger, E. L., Yang, H., and Downs, R. T. (2010) Sulfide-rich impact melts from chondritic parent bodies. Meteoritics & Planetary Science 45, 743758.Google Scholar
Schrader, D. L., Franchi, I. A., Connolly, H. C., Greenwood, R. C., Lauretta, D. S., and Gibson, J. M. (2011) The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition. Geochimica et Cosmohimica Acta 75, 308325.Google Scholar
Schrader, D. L., McCoy, T. J., and Gardner-Vandy, K. (2017) Relict chondrules in primitive achondrites: Remnants from their precursor parent bodies. Geochimica et Cosmochimica Acta 205, 295312.Google Scholar
Schultz, P. H. (1988) Cratering on Mercury: A relook. In Mercury, eds. Vilas, F., Chapman, C. R., and Matthews, M. S. Tucson: University of Arizona Press, pp. 274335.Google Scholar
Schulze, H., Bischoff, A., Palme, H., Spettel, B., Dreibus, G., and Otto, J. (1994) Mineralogy and chemistry of Rumuruti: The first meteorite fall of the new R chondrite group. Meteoritics 29, 275286.Google Scholar
Schwinger, S., Dohmen, R., and Schertle, H.-P. (2016) A combined diffusion and thermal modeling approach to determine peak temperatures of thermal metamorphism experienced by meteorites. Geochimica et Cosmochimia Acta 191, 255276.Google Scholar
Scott, E. R. D. (2007) Chondrites and the protoplanetary disk. Annual Review of Earth and Planetary Science 35, 577620.Google Scholar
Scott, E. R. D. (2020) Iron meteorites: Composition, age, and origin. In Oxford Research Encyclopedia of Planetary Science. Oxford: Oxford University Press. DOI: 10.1093/acrefore/9780190647926.013.206Google Scholar
Scott, E. R. D. and Agrell, S. O. (1971) The occurrence of carbides in iron meteorites (abstract). Meteoritics 6, 312313.Google Scholar
Scott, E. R. D. and Jones, R. H. (1990) Disentangling nebular and asteroidal features of CO3 carbonaceous chondrites. Geochimica et Cosmochimica Acta 54, 24852502.Google Scholar
Scott, E. R. D. and Krot, A. N. (2005) Chondrites and their components. In Meteorites, Comets, and Planets, ed. Davis, A. M.. Amsterdam: Elsevier, pp. 143200.Google Scholar
Scott, E. R. D. and Krot, A. N. (2014) Chondrites and their components. In Meteorites, Comets, and Planets, 2nd ed., ed. Davis, A. M. Amsterdam: Elsevier, pp. 65137.Google Scholar
Scott, E. R. D. and Wasson, J. T. (1975) Classification and properties of iron meteorites. Reviews of Geophysics and Space Physics 13, 527546.Google Scholar
Scott, E. R. D., Wasson, J. T., and Buchwald, V. F. (1973) The chemical classification of iron meteorites, 7, A reinvestigation of irons with Ge concentrations between 25 and 80 ppm. Geochimica et Cosmochimica Acta 37, 19571983.Google Scholar
Scott, E. R. D., Taylor, G. J., Rubin, A. E., Okada, A., and Keil, K. (1981a) Graphite-magnetite aggregates in ordinary chondritic meteorites. Nature 291, 544546.Google Scholar
Scott, E. R. D., Rubin, A. E., Taylor, G. J., and Keil, K. (1981b) New kind of type 3 chondrite with a graphite-magnetite matrix. Earth & Planetary Science Letters 56, 1931.Google Scholar
Scott, E. R. D., Rubin, A. E., Taylor, G. J., and Keil, K. (1984) Matrix material in type 3 chondrites – occurrence, heterogeneity and relationship with chondrules. Geochimica et Cosmochimica Acta 48, 17411757.Google Scholar
Scott, E. R. D., Brearley, A. J., Keil, K., Grady, M. M., Pillinger, C. T., Calyton, R. N., Mayeda, T. K., Wieler, R., and Signer, P. (1988a) Nature and origin of C-rich ordinary chondrites and chondritic clasts. Proceedings of the Lunar and Planetary Science Conference 18, 513523.Google Scholar
Scott, E. R. D., Barber, D. J., Alexander, C. M. O’D., Hutchison, R., and Peck, J. A. (1988b) Primitive material surviving in chondrites: Matrix. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S. Tucson: University of Arizona Press, pp. 718745Google Scholar
Scott, E. R. D., Keil, K., and Stöffler, D. (1992) Shock metamorphism of carbonaceous chondrites. Geochimica et Cosmochimica Acta 56, 42814293.Google Scholar
Scott, E. R. D., Krot, A. N., and Sanders, I. S. (2018) Isotopic dichotomy among meteorites and its bearing on the protoplanetary disc. Astrophysical Journal 854, 164, 12 pp.Google Scholar
Sears, D. W. G. (1980) Formation of E chondrites and aubrites – a thermodynamic model. Icarus 43, 184202.Google Scholar
Sears, D. W. G. (2004) The Origin of Chondrules and Chondrites. Cambridge, UK: Cambridge University Press, 209 pp.Google Scholar
Sears, D. W. G. (2018) Shedding Light: The Luminescent Glow of Meteorites and Moon Rocks. Published by the author. CreateSpace Independent Publishing Platform, 158 pp.Google Scholar
Sears, D. W. G., Grossman, J. N., Melcher, C. L., Ross, L. M., and Mills, A. A. (1980) Measuring metamorphic history of unequilibrated ordinary chondrites. Nature 287, 791795.Google Scholar
Sears, D. W. G., Grossman, J. N., and Melcher, C. L. (1982) Chemical and physical studies of type 3 chondrites – I: Metamorphism related studies of Antarctic and other type 3 ordinary chondrites. Geochimica et Cosmochimica Acta, 46, 24712481.Google Scholar
Sears, D. W., Kallemeyn, G. W., and Wasson, J. T. (1983) Composition and origin of clasts and inclusions in the Abee enstatite chondrite breccia. Earth and Planetary Science Letters 62, 180192.Google Scholar
Sears, D. W. G., Batchelor, J. D., Lu, J., and Keck, B. D. (1991a) Metamorphism of CO and CO-like chondrites and comparison with type 3 ordinary chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites 4, 319343.Google Scholar
Sears, D. W. G., Hasan, E. A., Batchelor, J. D., and Lu, J. (1991b) Chemical and physical studies of type 3 chondrites – XI: Metamorphism, pairing, and brecciation of ordinary chondrites. Proceedings of the Lunar and Planetary Science Conference 21, 493512.Google Scholar
Sears, D. W. G., Ninagawa, K., and Singhvi, A. K. (2018) Glimmerings from the Past: The Luminescence Properties of Meteorites and Lunar Samples with an Emphasis on Applications. Published by the author. CreateSpace Independent Publishing Platform, 194 pp.Google Scholar
Seto, Y., Sakamoto, N., Fujino, K., Kaito, T., Oikawa, T., Yurimoto, H. (2008) Mineralogical characterization of a unique material having heavy oxygen isotope anomaly in matrix of the primitive carbonaceous chondrite Acfer 094. Geochimica et Cosmochimica Acta 72, 27232734.Google Scholar
Sharygin, V. V., Ripp, G. S., Yakovlev, G. A., Seryotkin, Y. V., Karmanov, N. S., Izbrodin, I. A., Grokhovsky, V. I., and Khromova, E. A. (2020) Uakitite, VN, a new mononitride from Uakit iron meteorite (IIAB). Minerals 10(2), 150. https://doi.org/10.3390/min10020150.Google Scholar
Shearer, C. K., Burger, P. V., Papike, J. J., Sharp, Z. D., and McKeegan, K. D. (2011) Fluids on differentiated asteroids: Evidence from phosphates in differentiated meteorites GRA 06128 and GRA 06129. Meteoritics & Planetary Science 46, 13451362.Google Scholar
Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W. (1984) Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters 53, 19511953.Google Scholar
Sheng, Y. J., Hutcheon, I. D., and Wasserburg, G. J. (1991) Origin of plagioclase-olivine inclusions in carbonaceous chondrites. Geochimica et Cosmochimica Acta 55, 581599.Google Scholar
Shimizu, M., Yoshida, H., and Mandarino, J. A. (2002) The new mineral species keilite, (Fe, Mg)S, the iron-dominant analogue of niningerite. The Canadian Mineralogist 40, 16871692.Google Scholar
Shrivastava, J. P. and Rani, N. (2012) Introduction to Ore Microscopy. New Delhi: PHI Learning Private Ltd., 112 pp.Google Scholar
Shukolyukov, Y. A., Nazarov, M. A., and Schultz, L. (2002) A new Martian meteorite: The Dhofar 019 shergottite with an exposure age of 20 million years. Solar System Research 36, 125135.Google Scholar
Simon, S. B. and Grossman, L. (1992) Low-temperature exsolution in refractory siderophile element-rich opaque assemblages from the Leoville carbonaceous chondrite. Earth and Planetary Science Letters 110, 6775.Google Scholar
Simon, S. B., Sutton, S. R., Brearley, A. J., Krot, A. N., and Nagashima, K. (2019) The effects of thermal metamorphism as recorded in CO3.0 through CO3.2 chondrites. Lunar and Planetary Science 50, Abstract #1444.Google Scholar
Simpson, E. S. (1938) Some new and little-known meteorites found in western Australia. Mineralogical Magazine 25, 157171, 154 plates.Google Scholar
Smith, J. V. (1974) Lunar mineralogy: A heavenly detective story. Presidential Address. Part I. American Mineralogist 59, 231243.Google Scholar
Smith, J. V. and Steele, I. M. (1976) Lunar mineralogy: A heavenly detective story. Part II. American Mineralogist 61, 10591116.Google Scholar
Snetsinger, K. G. and Keil, K. (1969) Ilmenite in ordinary chondrites. American Mineralogist 54, 780786.Google Scholar
Socolar, J. E. S., Steinhardt, P. J., and Levine, D. (1985) Quasicrystals with arbitary orientational symmetry. Physical Review B 32, 55475550.Google Scholar
Solomon, S. C., Nittler, L. R., and Anderson, B. J., eds. (2019) Mercury: The View after MESSENGER. Cambridge, UK: Cambridge University Press, 596 pp.Google Scholar
Spicuzza, M. J., Day, J. M. D., Taylor, L. A., and Valley, J. W. (2007) Oxygen isotope constraints on the origin and differentiation of the Moon. Earth and Planetary Science Letters 253, 254265.Google Scholar
Spudis, P. D. (2016) How to Explore, Live, and Prosper in Space Using the Moon’s Resources. Washington, DC: Smithsonian Books, 272 pp.Google Scholar
Squiller, S. F. and Sclar, C. B. (1980) Genesis of the Sterling Hill zinc deposit, Sussex County, New Jersey. In International Association on the Genesis of Ore Deposits Symposium, 5th, ed. Ridge, J. D. Vol. 1, 759–766.Google Scholar
Squyres, S. W. (2005) Roving Mars: Spirit, Opportunity, and the Exploration of the Red Planet. New York: Hyperion, 422 pp.Google Scholar
Srinivasan, P., Dunlap, D. R., Agee, C. B., Wadhwa, M., Coleff, D., Ziegler, K., Ziegler, R., and McCubbin, F. M. (2018) Silica-rich volcanism in the early solar system dated at 4.565 Ga. Nature Communications 9, 3036. https://doi.org/ 10.1038/s41467-018-05501-0.Google Scholar
Stagno, V., Bindi, L., Steinhardt, P. J., and Fei, Y. (2017) Phase equilibria in the nominally Al65Cu23Fe12 system at 3, 5 and 21 GPa: Implications for the quasicrystal-bearing Khatyrka meteorite. Physics of the Earth and Planetary Interiors 271, 4756.Google Scholar
Steinhardt, P. J. (2019) The Second Kind of Impossible: The Extraordinary Quest for a New Form of Matter. New York: Simon and Schuster, 400 pp.Google Scholar
Steinhardt, P. J. and Bindi, L. (2012) In search of natural quasicrystals. Reports on Progress in Physics 75, 092601092611.Google Scholar
Stevenson, D. J. (1987) Origin of the Moon – The collision hypothesis. Annual Review of Earth and Planetary Science 15, 271315.CrossRefGoogle Scholar
Stinchcomb, B. L. (2011) Meteorites. Atglen, PA: Schiffer Publishing, 160 pp.Google Scholar
Stöffler, D., Keil, K., and Scott, E. R. D. (1991) Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55, 38453867.Google Scholar
Stöffler, D., Hamann, C., and Metzler, K. (2018) Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteoritics & Planetary Science 53, 549.Google Scholar
Suttle, M. D. and Genge, M. J. (2017) Diagenetically altered fossil micrometeorites suggest cosmic dust is common in the geological record. Earth and Planetary Science Letters 476, 132142.Google Scholar
Suttle, M. D., Twegar, K., Nava, J., Spiess, R., Spratt, J., Campanale, F., and Folco, L. (2019) A unique CO-like micrometeorite hosting an exotic Al-Cu-Fe-bearing assemblage – close affinities with the Khatyrka meteorite. Scientific Reports 9, 12426.Google Scholar
Suttle, M. D., Greshake, A., King, A. J., Schofield, P. F., Tomkins, A., and Russell, S. S. (2020) The alteration history of the CY chondrites, investigated through analysis of a new member: Dhofar 1988. Geochimica et Cosmochimica Acta, doi.org/10.1016/j.gca.2020.11.008.Google Scholar
Takeda, H. and Graham, A. L. (1991) Degree of equilibration of eucritic pyroxenes and thermal metamorphism of the earliest planetary crust. Meteoritics 26, 129134.Google Scholar
Tarbuck, E. J., Lutgens, F. K., Tasa, D. G., and Linneman, S. (2019) Earth: An Introduction to Physical Geology, 13th ed. New York: Pearson, 784 pp.Google Scholar
Tarduno, J. A., Cottrell, R. D., Nimmo, F., Hopkins, J., Voronov, J., Erickson, A., Blackman, E., Scott, E. R. D., and McKinley, R. (2012) Evidence for a dynamo in the main group pallasite parent body. Science 338, 939942.Google Scholar
Taylor, G. J. (2009) Ancient lunar crust: Origin, composition, and implications. Elements 5, 1722.Google Scholar
Taylor, G. J., Okada, A., Scott, E. R. D., Rubin, A. E., Huss, G. R., and Keil, K. (1981) The occurrence and implications of carbide-magnetite assemblages in unequilibrated ordinary chondrites (abstract). Lunar and Planetary Science 12, 10761078.Google Scholar
Taylor, G. J., Warren, P., Ryder, G., Delano, J., Pieters, C., and Lofgren, G. (1991) Lunar rocks. In Lunar Sourcebook: A User’s Guide to the Moon, eds. Heiken, G. H., Vaniman, D. T., and French, B. M. Cambridge: Cambrdige University Press, pp. 183284.Google Scholar
Taylor, L. A., Nazarov, M. A., Demidova, S. I., and Patchen, A. D. (2001) Dhofar 287: A new lunar mare basalt from Oman. Meteoritics & Planetary Science 36, 204.Google Scholar
Terada, K., Sano, Y., Takahata, N., Ishida, A., Tsuchiyama, A., Nakamura, T., Noguchi, T., Karouji, Y., Uesugi, M., Yada, T., Nakabayashi, M., Fukuda, K., and Nagahara, H. (2018) Thermal and impact histories of 25143 Itokawa recorded in Hayabusa particles. Scientific Reports 8, 17. Article #11806, https://doi.org/10.1038/s41598-018-30192-4.CrossRefGoogle ScholarPubMed
Tomeoka, K. (1990) Mineralogy and petrology of Belgica-7904: A new kind of carbonaceous chondrite from Antarctica. Proceedings of the NIPR Symposium on Antarctic Meteorites 3, 4054.Google Scholar
Tomeoka, K. and Buseck, P. R. (1985) Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mieral containing Fe, S, O and Ni. Geochimica et Cosmochimica Acta 49, 21492163.Google Scholar
Tomeoka, K. and Buseck, P. R. (1988) Matrix mineralogy of the Orgueil CI carbonaceous chondrite. Geochimica et Cosmochimica Acta 52, 16271640.Google Scholar
Tomeoka, K. and Kojima, T. (1998) Arcuate band texture in a dark inclusion from the Vigarano CV3 chondrite: Possible evidence for early sedimentary processes. Meteoritics & Planetary Science 33, 519525.Google Scholar
Tomioka, N. and Fujino, K. (1999) Akimotoite, (Mg, Fe) SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite. American Mineralogist 84, 267271.Google Scholar
Tomioka, N. and Miyahara, M. (2017) High-pressure minerals in shocked meteorites. Meteoritics & Planetary Science 33, 331227.Google Scholar
Tomioka, N., Miyahara, M., and Ito, M. (2016) Discovery of natural MgSiO3 tetragonal garnet in a shocked chondritic meteorite. Science Advances 2, e1501725.Google Scholar
Tomioka, N., Bindi, L., Okuchi, T., Miyahara, M., Iitaka, T., Li, Z., Kawatsu, T., Xie, X., Purevjav, N., Tani, R., and Kodama, Y. (2021) Poirierite, a dense metastable polymorph of magnesium iron silicate in shocked meteorites. Communications Earth & Environment 2, Article No. 16.Google Scholar
Tomkins, A. G. (2009) What metal-troilite textures can tell us about post-impact metamorphism in chondrite meteorites. Meteoritics & Planetary Science 44, 11331149.Google Scholar
Tonui, E., Zolensky, M., Hiroi, T., Nakamura, T., Lipschutz, M. E., Wang, M.-S., and Okudaira, K. (2014) Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I: CI and CM chondrites. Geochimica et Cosmochimica Acta 126, 284306.CrossRefGoogle Scholar
Tornabene, H., Hilton, C. D., Ash, R. D., and Walker, R. J. (2019) New insights to the genetics, age, and crystallization of Group IIC iron meteorites. Lunar and Planetary Science, 50, Abstract #1236.Google Scholar
Treiman, A. H. (1985) Amphibole and hercynite spinel in Shergotty and Zagami: Magmatic water, depth of crystallization, and metasomatism. Meteoritics 20, 229243.CrossRefGoogle Scholar
Treiman, A. H. (2005) The nakhlite meteorites: Augite-rich igneous rocks from Mars. Chemie der Erde – Geochemistry 65, 203270.Google Scholar
Trigo-Rodriguez, J. M., Llorca, J., Borovička, J., and Fabregat, J. (2003) Chemical abundances determined from meteor spectra: I. Ratios of the main chemical elements. Meteoritics & Planetary Science 38, 12831294.Google Scholar
Tsai, A.-P., Inoue, A., and Matsumoto, T. (1987) A stable quasicrystal in Al-Cu-Fe system. Japanese Journal of Applied Physics 26, L1505L1507.Google Scholar
Tschauner, O. and Ma, C. (2017) Stöfflerite, IMA 2017-062. CNMNC Newsletter No. 39, October 2017, page 1285; Mineralogical Magazine 81, 12791286.Google Scholar
Tschauner, O., Ma, C., Beckett, J. R., Prescher, C., Prakapenka, V. B., and Rossman, G. R. (2014) Discovery of bridgmannite, the most abundant mineral in Earth, in a shocked meteorite. Science 346, 1100−1102.CrossRefGoogle Scholar
Tsuda, Y., Yoshikawa, M., Saiki, T., Nakazawa, S., and Watanabe, S. (2019) Hayabusa 2 – Sample return and kinetic impact mission to near-earth asteroid Ryugu. Acta Astronautica 156, 387393.Google Scholar
Ulff-Møller, F., Choi, B.-G., Rubin, A. E., Tran, J., and Wasson, J. T. (1998) Paucity of sulfide in a large slab of Esquel: New perspectives on pallasite formation. Meteoritics & Planetary Science 33, 221227.Google Scholar
Ulyanov, A. A. (1991) The meteorite minerals. In 14th Brown-Vernadsky Microsymposium on Comparative Planetology, Moscow.Google Scholar
Utas, J. A., Rubin, A. E., and Ziegler, K. (2017) Northwest Africa 10085: An equilibrated Kakangari chondrite. Lunar and Planetary Science, 48, Abstract #2906.Google Scholar
Vacher, L. G., Truche, L., Faure, F., Tissandier, L., Mosser-Ruck, R., and Marrocchi, Y. (2019) Deciphering the conditions of tochilinite and cronstedtite formation in CM chondrites from low temperature hydrothermal experiments. Meteoritics & Planetary Science 54, 18701889.Google Scholar
Váci, Z., Yang, S., Humayun, M., and Agee, C. B. (2020a) Petrology and geochemistry of andesitic ungrouped achondrites Northwest Africa 6698 and 11575. Lunar and Planetary Science 51, Abstract #1697.Google Scholar
Váci, Z., Agee, C. B., Humayun, M., Ziegler, K., Asmerom, Y., Polyak, V., Busemann, H., Krietsch, D., Heizler, M., Sanborn, M. E., and Yin, Q.-Z. (2020b) Unique achondrite Northwest Africa 11042: Exploring the melting and breakup of the L chondrite parent body. Meteoritics & Planetary Science 55, 127. https://doi.org/ 1111/maps.13456.Google Scholar
Van Niekerk, D. and Keil, K. (2011) Metal/sulfide-silicate intergrowth textures in EL3 meteorites: Origin by impact melting on the EL parent body. Meteoritics & Planetary Science 46, 14841497.Google Scholar
Van Roosbroek, N., Debaille, V., Pittarello, L., Goderis, S., Humayun, M., Hecht, L., Jourdan, F., Spicuzza, M. J., Vanhaecke, F., and Claeys, P. (2015) The formation of IIE iron meteorites investigated by the chondrule-bearing Mont Dieu meteorite. Meteoritics & Planetary Science 50, 11731196.Google Scholar
Van Schmus, W. R. and Wood, J. A. (1967) A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta 31, 747765.Google Scholar
Vdovykin, G. P. (1969) New hexagonal modification of carbon in meteorites. Geochemistry International 6, 915918.Google Scholar
Vdovykin, G. P. (1972) Forms of carbon in the new Havero ureilite of Finland. Meteoritics 7, 547552.Google Scholar
Velbel, M. A. (1988) The distribution and significance of evaporitic weathering products on Antarctic meteorites. Meteoritics 23, 151159.CrossRefGoogle Scholar
Velbel, M. A. (2012) Aqueous alteration in Martian meteorites: Comparing mineral relations in igneous-rock weathering of Martian meteorites and in the sedimentary cycle of Mars. Sedimentary Geology of Mars 102, 97117.Google Scholar
Vernazza, P., Zanda, B., Nakamura, T. Scott, E., and Russell, S. (2015) The formation and evolution of ordinary chondrite parent bodies. In Asteroids IV, eds. Michel, P., Demeo, F. E., and Bottke, W. F. Tucson: University of Arizona Press, pp. 617634.Google Scholar
Vokrouhlicky, D., Bottke, W. F., and Nesvorny, D. (2016) Capture of trans-Neptunian planetesimals in the main asteroid belt. Astronomical Journal 152, 39.Google Scholar
Vondrak, R. R. (1974) Creation of an artificial lunar atmosphere. Nature 248, 657659.Google Scholar
Wampler, J., Thiemens, M., Cheng, S., Zhu, Y., and Schuller, I. K. (2020) Superconductivity found in meteorites. Proceedings of the National Academy of Sciences 117, 76457649. https://doi.org/10.1073/pnas.1918056117.Google Scholar
Wang, K. (1986) Zhanghengite – a new mineral. Acta Mineralogica Sinica 6, 220223.Google Scholar
Wark, D. A. and Lovering, J. F. (1977) Marker events in the early evolution of the solar system: Evidence from rims on Ca-Al-rich inclusions in carbonaceous chondrites. Lunar and Planetary Science Conference Proceedings 8, 95112.Google Scholar
Wark, D. A. and Lovering, J. F. (1978) Refractory/platinum metals and other opaque phases in Allende Ca-Al-rich inclusions (CAI’s) (abstract). Lunar and Planetary Science 9, 12141216.Google Scholar
Warren, P. H. (2011a) Stable-isotope anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters 331, 93100.Google Scholar
Warren, P. H. (2011b) Stable isotopes and the noncarbonaceous derivation of ureilites, in common with nearly all differentiated planetary materials. Geochimica et Cosmochimica Acta 75, 69126926.Google Scholar
Warren, P. H. and Jerde, E. A. (1987) Composition and origin of Nuevo Laredo Trend eucrites. Geochimica et Cosmochimica Acta 51, 713725.Google Scholar
Warren, P. H. and Kallemeyn, G. W. (1989a) Allan Hills 84025: The second Brachinite, far more differentiated than Brachina, and an ultramafic achondritic clast from L chondrite Yamato 75097. Lunar and Planetary Science Conference Proceedings 19, 475486.Google Scholar
Warren, P. H. and Kallemeyn, G. W. (1989b) Geochemistry of polymict ureilite EET83309: And a partially disruptive impact model for ureilite origin. Meteoritics 24, 233246.Google Scholar
Warren, P. H. and Kallemeyn, G. W. (1994) Petrology of LEW88774: An extremely Cr-rich ureilite (abstract). Lunar and Planetery Science Conference 25, 14651466.Google Scholar
Warren, P. H. and Rubin, A. E. (2010) Pigeonite-selective impact smelting in ureilites. Geochimica et Cosmochimica Acta 74, 51095133.Google Scholar
Warren, P. H. and Rubin, A. E. (2020) Trace element and textural evidence favoring lunar, not terrestrial, origin of the mini-granite in Apollo sample 14321. Icarus, 346, Article #113779. https://doi.org/10.1016/j.icarus.2020.113771.Google Scholar
Warren, P. H., Taylor, G. J., Keil, K., Shirley, D. N., and Wasson, J. T. (1983) Petrology and chemistry of two “large” granite clasts from the moon. Earth & Planetary Science Letters 64, 175185.Google Scholar
Warren, P. H., Rubin, A. E., Isa, J., Brittenham, S., Ahn, I., and Choi, B.-G. (2013) Northwest Africa 6693: A new type of FeO-rich, low-Δ17O, poikilitic cumulate achondrite. Geochimica et Cosmochimica Acta 107, 135154.Google Scholar
Warren, P. H., Rubin, A. E., Isa, J., Gessler, N., Ahn, I., and Choi, B.-G. (2014) Northwest Africa 5738: Multistage fluid-driven secondary alteration in an extraordinarily evolved eucrite. Geochimica et Cosmochimica Acta 141, 199227.Google Scholar
Wasserburg, G. J., Sanz, H. G., and Bence, A. E. (1968) Potassium-feldspar phenocrysts in the surface of Colomera, and iron meteorite. Science 161, 684687.Google Scholar
Wasserburg, G. J., Lee, T., and Papanastassiou, D. A. (1977) Correlated O and Mg isotopic anomalies in Allende inclusions: II. Magnesium. Geophysical Research Letters 4, 299302.Google Scholar
Wasson, J. T. (1969) The chemical classification of iron meteorites—III. Hexahedrites and other irons with germanium concentrations between 80 and 200 ppm. Geochimica et Cosmochimica Acta 33, 859876.Google Scholar
Wasson, J. T. (1985) Meteorites: Classification and Properties. New York: Springer-Verlag, 316 pp.Google Scholar
Wasson, J. T. (1988) The building stones of the planets. In Mercury, eds. Vilas, F., Chapman, C. R., and Matthews, M.S. Tucson: University of Arizona Press, pp. 622650.Google Scholar
Wasson, J. T. (2017) Formation of non-magmatic iron-meteorite group IIE. Geochimica et Cosmochimica Acta 197, 396416.Google Scholar
Wasson, J. T. and Choe, W.-H. (2009) The IIG iron meteorites: Probable formation in the IIAB core. Geochimica et Cosmochimica Acta 73, 48794890.Google Scholar
Wasson, J. T. and Choi, B.-G. (2003) Main-group pallasites: Chemical composition, relation to IIIAB irons, and origin. Geochimica et Cosmochimica Acta 67, 30793096.Google Scholar
Wasson, J. T. and Kallemeyn, G. W. (2002) The IAB iron-meteorite complex: A group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts. Geochimica et Cosmochimica Acta 66, 24452473.Google Scholar
Wasson, J. T. and Rubin, A. E. (2009) Composition and matrix in the CR chondrite LAP 02342. Geochimica et Cosmochimica Acta 73, 14361460.Google Scholar
Wasson, J. T. and Wai, C. M. (1970) Composition of the metal, schreibersite and perryite of enstatite achondrites and the origin of enstatite chondrites and achondrites. Geochimica et Cosmochimica Acta 34, 169184.Google Scholar
Wasson, J. T., Boynton, W. V., Chou, C.-L., and Baedecker, P. A. (1975) Compositional evidence regarding the influx of interplanetary materials onto the lunar surface. Moon 13, 121141.Google Scholar
Wasson, J. T., Rubin, A. E., and Kallemeyn, G. W. (1993) Reduction during metamorphism of four ordinary chondrites. Geochimica et Cosmochimica Acta 57, 18671878.Google Scholar
Wasson, J. T., Lange, D. E., Francis, C. A., and Ulff-Møller, F. (1999) Massive chromite in the Brenham pallasite and the fractionation of Cr during the crystallization of asteroidal cores. Geochimica et Cosmochimica Acta 63, 12191239.Google Scholar
Wasson, J. T., Matsunami, Y., and Rubin, A. E. (2006) Silica and pyroxene in IVA irons; possible formation of the IVA magma by impact melting and reduction of L-LL-chondrite materials followed by crystallization and cooling. Geochimica et Cosmochimica Acta 70 31493172.Google Scholar
Watt, L. E., Bland, P. A., Prior, D. J., and Russell, S. S. (2006) Fabric analysis of Allende matrix using EBSD. Meteoritics & Planetary Science 41, 9891001.Google Scholar
Watters, T. R. and Prinz, M. (1979) Aubrites: Their origin and relationship to chondrites. Lunar and Planetary Science Conference 10, 10731093.Google Scholar
Weber, D. and Bischoff, A. (1994a) Grossite (CaAl4O7) – A rare phase in terrestrial rocks and meteorites. European Journal of Mineralogy 6, 591594.Google Scholar
Weber, D. and Bischoff, A. (1994b) The occurrence of grossite (CaAl4O7) in chonrdites. Geochimica et Cosmochimica Acta 58, 38553877.Google Scholar
Weber, D., Clayton, R. N., Mayeda, T. K., and Bischoff, A. (1996) Unusual equilibrated carbonaceous chondrites and CO3 meteorites from the Sahara (abstract). Lunar and Planetary Science 27, 13951396.Google Scholar
Wegener, A. (1924) The Origin of Continents and Oceans. London: Methuen Publishing.Google Scholar
Weidenschilling, S. J. (2019) Accretion of the asteroids: Implications for their thermal evolution. Meteoritics & Planetary Science 54, 11151132.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., and Solomon, S. C. (2014) Variations in the abundance of iron on Mercury‘s surface from MESSENGER X-ray spectrometer observations. Icarus 235, 170186.Google Scholar
Weisberg, M. K. and Huber, H. (2007) The GRO 95577 CR1chondrite and hydration of the CR parent body. Meteoritics & Planetary Science 42, 14951503.Google Scholar
Weisberg, M. K. and Kimura, M. (2010) Petrology and Raman spectroscopy of high pressure phases in the Gujba CB chondrite and the shock history of the CB parent body. Meteoritics & Planetary Science 45, 873884.Google Scholar
Weisberg, M. K. and Kimura, M. (2012) The unequilibrated enstatite chondrites. Chemie der Erde – Geochemistry 72, 101115.Google Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., and Mayeda, T. K. (1993) The CR (Renazzo-type) carbonaceous chondrite group and its implications. Geochimica et Cosmochimica Acta 57, 15671586.Google Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., Mayeda, T. K., Grady, M. M., Franchi, I., Pillinger, C. T., and Kallemeyn, G. W. (1996) The K (Kakangari) chondrite grouplet. Geochimica et Cosmochimica Acta 60, 42534263.Google Scholar
Weisberg, M. K., Connolly, H. C., and Ebel, D. S. (2004) Petrology and origin of amoeboid olivine aggregates in CR chondrites. Meteoritics & Planetary Science 39, 17411753.Google Scholar
Weisberg, M. K., Connolly, H., Ebel, D. S., and Kimura, M. (2006) Sulfide-metal nodules in EH3 chondrites. Meteoritics & Planetary Science 69, 5317.Google Scholar
Weisberg, M. K., Zolensky, M. E., Kimura, M., and Ebel, D. S. (2014) Primitive fine-grained matrix in the unequilibrated enstatite chondrites. Lunar and Planetary Science 45, Abstract #1551.Google Scholar
Weisberg, M. K., Ebel, D. S., Nakashima, D., Kita, N. T., and Humayun, M. (2015) Petrology and geochemistry of chondrules and metal in NWA 5492 and GRO 95551: A new type of metal-rich chondrite. Geochimica et Cosmochimica Acta, 167, 269285.CrossRefGoogle Scholar
Weisberg, M. K., Zolensky, M. E., Kimura, M., Howard, K. T., Ebel, D. S., and Bolega, Y. (2019) Northwest Africa (NWA) 8785, an EL3 chondrite with FeO-rich matrix. Meteoritics & Planetary Science, Abstract #6340.Google Scholar
Weisberg, M. K., Zolensky, M. E., Howard, K. T., Kimura, M., Ebel, D. S., Alexander, C. M. O’D., and Bolega, Y. (2020) Petrologic evidence of hydrothermal activity on the EL3 parent asteroid. Lunar and Planetary Science 51, Abstract #1683.Google Scholar
Welten, K. C., Huber, L., Caffee, M. W., Wittmann, A., Kring, D. A., Wieler, R., and Nishiizumi, K. (2014) What heated H/L chondrite LaPaz Icefield 031047 ~0.5 million years ago? 77th Annual Meeting of the Meteoritical Society, held September 7–12, 2014, in Casablanca, Morocco. LPI Contribution No. 1800. Abstract#5422.Google Scholar
Wentworth, S. J. and Gooding, J. L. (1994) Carbonates and sulfates in the Chassigny meteorite: Further evidence for aqueous chemistry on the SNC parent planet. Meteoritics 29, 860863.Google Scholar
Whipple, F. L. (1983) 1983 TB and the Geminid meteors. International Astronomical Union Circular, 3881 (Oct.). http://www.cbat.eps.harvard.edu/iauc/03800/03881.htmlGoogle Scholar
White, J. S., Henderson, E. P., and Mason, B. (1967) Secondary minerals produced by weathering of the Wolf Creek meteorite. American Mineralogist 52, 11901197.Google Scholar
Widom, E., Rubin, A. E., and Wasson, J. T. (1986) Composition and formation of metal nodules and veins in ordinary chondrites. Geochimica et Cosmochimica Acta 50, 19891995.Google Scholar
Wiechert, V., Halliday, A. N., Lee, D.-C., Snyder, G. A., Taylor, L. A., and Rumble, D. (2001) Science 294, 345348.Google Scholar
Wiegert, P. and Galiazzo, M. A. (2017) Meteorites from Phobos and Deimos at Earth? Planetary and Space Science 142, 4852.Google Scholar
Wittmann, A., Friedrich, J. M., Troiano, J., Macke, R. J., Britt, D. T., Swindle, T. D., Weirich, J. R., Rumble, D., Lasue, J., and Kring, D. A. (2011) H/L chondrite LaPaz Icefield 031047 – A feather of Icarus? Geochimica et Cosmochimica Acta 75, 61406159.Google Scholar
Wittmann, A., Korotev, R. L., Jolliff, B. L., Irving, A. J, Moser, D. E., Barker, I., and Rumble, D. (2015) Petrography and composition of martian regolith breccia meteorite Northwest Africa 7475. Meteoritics & Planetary Science 50, 326352.Google Scholar
Wlotzka, F. (1993) A weathering scale for the ordinary chondrites (abstract). Meteoritics 28, 460.Google Scholar
Wlotzka, F. (2005) Cr spinel and chromite as petrogenetic indicators in ordinary chondrites: Equilibration temperatures of petrologic types 3.7 to 6. Meteoritics & Planetary Science 40, 16731702.Google Scholar
Wojnarowska, A., Dziel, T., and Gałązka-Friedman, J. (2008) New mineralogical phases identified by Mössbauer measurements in Morasko meteorite. Hyperfine Interactions 186, 167171.Google Scholar
Wood, J. A. (1964) The cooling rates and parent planets of several iron meteorites. Icarus 3, 429459.Google Scholar
Wood, J. A., Marvin, U. B., Reed, J. B., Taylor, G. J., Bower, J. F., Powell, B. N., and Dickey, J. S. (1971) Mineralogy and petrology of the Apollo 12 lunar sample. Smithsonian Astrophysical Observatory Special Report 333, 177.Google Scholar
Wopenka, B. and Swan, P. D. (1985) Identification of micron-sized phases in meteorites by lasar Raman microprobe spectroscopy (abstract). Meteoritics, 20, 788789.Google Scholar
Wyckoff, S. (1982) Overview of comet observations. In Comets, ed. Wilkening, L. L. Tucson: University of Arizona Press, pp. 355.CrossRefGoogle Scholar
Xie, X., Minitti, M. E., Chen, M., Mao, H. K., Wang, D., Shu, J., and Fei, Y. (2003) Tuite, γ-Ca3(PO4)2: A new mineral from the Suizhou L6 chondrite. European Journal of Mineralogy 15, 10011005.Google Scholar
Xie, X., Gu, X., Yang, H., Chen, M., and Li, K. (2016) Wangdaodeite, IMA 2016-007. CNMNC Newsletter No. 31. June 2016, page 695. Mineralogical Magazine 80, 691697.Google Scholar
Xing, W., Lin, Y., Zhang, C., Zhang, M., Hu, S., Hofmann, B. A., Sekine, T., Xiao, L., and Gu, L. (2020) Discovery of reidite in the lunar meteorite Sayh al Uhaymir 169. Geophysical Research Letters 47, e2020GL089583.Google Scholar
Xiong, Y., Zhang, A.-C., Kawasaki, N., Ma, C., Sakamoto, N., Chen, J.-N., Gu, L.-X., and Yurimoto, H. (2020) Mineralogical and oxygen isotopic study of a new ultrarefractory inclusion in the Northwest Africa 3118 CV3 chondrite. Meteoritics & Planetary Science 55, 21642205.Google Scholar
Xu, Y., Zinner, E., Gallino, R., Heger, A., Pignatari, M., and Lin, Y. (2015) Sulfur isotopic compositions of submicrometer SiC grains from the Murchison meteorite. The Astrophysical Journal 799, 156 (23 pp).Google Scholar
Yagi, K., Lovering, J. F., Shima, M., and Okada, A. (1978) Petrology of the Yamato meteorites (j), (k), (l), and (m) from Antarctica. Meteoritics 13, 2345.Google Scholar
Yamaguchi, A., Taylor, G. J., and Keil, K. (1996) Global crustal metamorphism of the eucrite parent body. Icarus 124, 97112.Google Scholar
Yanai, K. (1981) Photographic Catalog of the Selected Antarctic Meteorites. Tokyo: National Institute of Polar Research, 104 pp.Google Scholar
Yanai, K. and Kojima, H. (1987) Photographic Catalog of the Selected Antarctic Meteorites. Tokyo: National Institute of Polar Research, 298 pp.Google Scholar
Yang, J. and Goldstein, J. I. (2005) The formation mechanism of the Widmanstätten structure in meteorites. Meteoritics & Planetary Science 40, 239253.Google Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. D. (2007) Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature 446, 888891.Google Scholar
Yang, J., Goldstein, J. I., Scott, E. R. D., Michael, J. R., Kotula, P. G., Grimberg, A., and Leya, I. (2014) Thermal and collisional history of Tishomingo iron meteorite: More evidence for early disruption of differentiated planetesimals. Geochimica et Cosmohcimica Acta 124, 3453.Google Scholar
Yang, T., Zhao, Y. L., Tong, Y., Jiao, Z. B., Wei, J., Cai, J. X., Han, X. D., Chen, D., Hu, A., Kai, J. J., Lu, K., Liu, Y., and Liu, C. T. (2018) Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362, 933937.Google Scholar
Yin, Q.-Z., Sanborn, M. E., and Ziegler, K. (2017) Testing the common source hypothesis for CV and CK chondrites parent body using Δ17O-ε54Cr isotope systematics. Lunar and Planetary Science 48, Abstract #1771.Google Scholar
Young, E. D., Kohl, I. E., Warren, P. H., Rubie, D. C., Jacobson, S. A., and Morbidelli, A. (2016) Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 351, 493496.Google Scholar
Yu, Z. (1984) Two new minerals gupeiite and xifengite in cosmic dusts from Yanshan. Acta Petrologica Mineralogica et Analytica 3, 230237.Google Scholar
Yudin, I. A. and Kolomenskiy, V. D. (1987) Mineralogy of Meteorites (in Russian). Sverdlovsk, Russia: Academy of Sciences, 200 pp.Google Scholar
Yurimoto, H., Abe, K., Abe, M., Ebihara, M., Fujimura, A., Hashiguchi, M., Hashizume, K., Ireland, T. R., Itoh, S., Katayama, J., Kato, C., Kawaguchi, J., Kawasaki, N., Kitajima, F., Kobayashi, S., Meike, T., Mukai, T., Nagao, K., Nakamura, T., Naraoka, H., Noguchi, T., Okazaki, R., Park, C., Sakamoto, N., Seto, Y., Takei, M., Tsuchiyama, A., Uesugi, M., Wakaki, S., Yada, T., Yamamoto, K., Yoshikawa, M., and Zolensky, M. E. (2011) Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science 333, 11161119.Google Scholar
Zhang, A. C., Ma, C., Sakamoto, N., Wang, R. C., Hsu, W.B., and Yurimoto, H. (2015) Mineralogical anatomy and implications of a Ti–Sc-rich ultrarefractory inclusion from Sayh al Uhaymir 290 CH3 chondrite. Geochimica et Cosmochimica Act 163, 2739.Google Scholar
Zhang, A.-C., Pang, R.-L., Sakamoto, N., and Yurimoto, H. (2020) The Cr-Zr-Ca armalcolite in lunar rocks is loveringite: Constraints from electron backscatter diffraction measurements. American Mineralogist 105, 10211029.Google Scholar
Zinner, E. K. (2005) Presolar grains. In Meteorites, Comets, and Planets, ed. Davis, A. M. Oxford: Elsevier, pp. 1739.Google Scholar
Zinner, E. (2014) Presolar grains. In Meteorites and Cosmochemical Processes, eds. Holland, H. D. and Turekian, K. K. Treatise on Geochemistry, Vol. 1. Oxford: Elsevier, pp. 181210.Google Scholar
Zolensky, M. E. (1997) Structural water in the Bench Crater chondrite returned from the Moon. Meteoritics & Planetary Science 32, 1518.Google Scholar
Zolensky, M. E. and Gooding, J. L. (1986) Aqueous alteration on carbonaceous-chondrite parent bodies as inferred from weathering of meteorites in Antarctica (abstract). Meteoritics 21, 548549.Google Scholar
Zolensky, M. and Ivanov, A. V. (2003) The Kaidun microbreccia meteorite: A harvest from the inner and outer asteroid belt. Chemie der Erde – Geochemistry 63, 185246.Google Scholar
Zolensky, M. E. and Krot, A. N. (1996) Mineralogical and compositional study of an Allende dark inclusion (abstract). Lunar and Planetary Science 27, 15031504.Google Scholar
Zolensky, M. E. and McSween, H. Y. (1988) Aqueous alteration. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S. Tucson: University of Arizona Press, pp. 114143.Google Scholar
Zolensky, M. E., Ivanov, A. V., Yang, V., and Oshsumi, K. (1996) The Kaidun meteorite: Mineralogy of an unusual CM1 clast. Meteoritics & Planetary Science 31, 484493.Google Scholar
Zolensky, M. E., Mittlefehldt, D. W., Lipschutz, M. E., Wang, M.-S., Clayton, R. N., Mayeda, T. K., Grady, M. M., Pillinger, C., and Barber, D. J. (1997) CM chondrites exhibit the complete petrologic range from 2 to 1. Geochimica et Cosmochimica Acta 61, 50995115.Google Scholar
Zolensky, M., Abell, P., and Tonui, E. (2005) Metamorphosed CM and CI cabonaceous chondrites could be from the breakup of the same Earth-crossing asteroid. Lunar & Planetary Science 36, Abstract #2084.Google Scholar
Zolensky, M., Gounelle, M., Mikouchi, T., Ohsumi, K., Le, L., Hagiya, K., and Tachikawa, O. (2008) Andreyivanovite: A second new phosphide from the Kaidun meteorite. American Mineralogist 93, 12951299.Google Scholar
Zolensky, M., Mikouchi, T., Fries, M., Bodnar, R., Jenniskens, P., Yin, Q.-Z., Hagiya, K., Ohsumi, K., Konatsu, M., Colbert, N., Hanna, R., Maisano, J., Ketcham, R., Kebukawa, Y., Nakamura, T., Matsuoka, M., Sasaki, S., Tsuchiyama, A., Gounelle, M., Le, L., Martinez, J., Ross, K., and Rahman, Z. (2014) The Sutter’s Mill CM meteorite. Meteoritics & Planetary Science 49, 19972016.Google Scholar
Zolensky, M. E., Fries, M. D., Chan, Q. H.-S., Kebukawa, Y., Bodnar, R., Burton, A., Callahan, M., Steele, A., and Sandford, S. (2015a) Survival of organic materials in ancient cryovolcanically-produced halite crystals. Workshop on the Potential for Finding Life in a Europa Plume, Mofft Field, CA.Google Scholar
Zolensky, M., Mikouchi, T., Hagiya, K., Ohsumi, K., Kumatsu, M., and Le, L. (2015b) Evidence for impact shock melting in CM and CI chondrite regolith samples. Lunar and Planetary Science 46, Abstract#2261.Google Scholar
Zolensky, M. E., Bodnar, R. J., Fries, M., Chan, Q. H.-S., Kebukawa, Y., Mikouchi, T., Hagiya, K., Komatsu, M., Ohsumi, K., and Steele, A. (2016a) Ceres revealed in a grain of salt (abstract). 26th Goldschmidt Conference 2016; June 26, 2016, to July 1, 2016; Yokohama, Japan.Google Scholar
Zolensky, M., Mikouchi, T., Hagiya, K., Ohsumi, K., Komatsu, M., Chan, Q.H.S., Le, L., Kring, D., Cato, M., Fagan, A. L., Gross, J., Tanaka, A., Takegawa, D., Hoshikawa, T., Yoshida, T., and Sawa, N. (2016b) Unique view of C asteroid regolith from the Jbilet Winselwan CM chondrite. Lunar and Planetary Science, 47, Abstract#2148.Google Scholar
Zolotov, M. Y., Mironenko, M. V., and Shock, E. L. (2006) Thermodynamic constraints on fayalite formation on parent bodies of chondrites. Meteoritics & Planetary Science 41, 17751796.Google Scholar
Zubkova, N. V., Pekov, I.V., Chukanov, N. V., Pushcharovsky, D. Y., and Kazantsev, S. S. (2008) Nickelhexahydrite from the weathered meteorite Dronino: Variations of chemical composition, crystal structure, and genesis. Doklady Earth Sciences 422, 11091112.Google Scholar
Zubrin, R. (2011) The Case for Mars: The Plan to Settle the Red Planet and Why We Must. New York: Free Press, Simon & Schuster, 416 pp.Google Scholar
Zurfluh, F. J., Hofmann, B. A., Gnos, E., Eggenberger, U., and Jull, A. J. (2016) Weathering of ordinary chondrites from Oman: Correlation of weathering parameters with 14C terrestrial ages and a refined weathering scale. Meteoritics & Planetary Science 51, 116.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alan Rubin, University of California, Los Angeles, Chi Ma
  • Book: Meteorite Mineralogy
  • Online publication: 11 August 2021
  • Chapter DOI: https://doi.org/10.1017/9781108613767.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alan Rubin, University of California, Los Angeles, Chi Ma
  • Book: Meteorite Mineralogy
  • Online publication: 11 August 2021
  • Chapter DOI: https://doi.org/10.1017/9781108613767.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alan Rubin, University of California, Los Angeles, Chi Ma
  • Book: Meteorite Mineralogy
  • Online publication: 11 August 2021
  • Chapter DOI: https://doi.org/10.1017/9781108613767.017
Available formats
×