Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T03:05:48.435Z Has data issue: false hasContentIssue false

Chapter 28 - Microfluidics for Sperm Sample Preparation and Sperm Identification

from Section 4 - Laboratory Evaluation and Treatment of Male Infertility

Published online by Cambridge University Press:  06 December 2023

Douglas T. Carrell
Affiliation:
Utah Center for Reproductive Medicine
Alexander W. Pastuszak
Affiliation:
University of Utah
James M. Hotaling
Affiliation:
Utah Center for Reproductive Medicine
Get access

Summary

This chapter briefly introduces microfluidics as an enabling technology for medicine, focusing on microfluidic-enabled treatments for male infertility. The first section provides a brief overview of microfluidics-based applications in biomedical research and assisted reproductive technology (ART). In the following sections, we review notable demonstrations of microfluidic technology applied to sperm sample preparation and sperm identification. Finally, we conclude the chapter by providing our perspective on the application of microfluidics technology for male infertility treatment, and the challenges/opportunities for further growth of microfluidics-enabled ART for male infertility.

Type
Chapter
Information
Men's Reproductive and Sexual Health Throughout the Lifespan
An Integrated Approach to Fertility, Sexual Function, and Vitality
, pp. 218 - 223
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Whitesides, G. The origins and the future of microfluidics. Nature. 2006;442(7101):368373. doi:10.1038/nature05058Google Scholar
Hu, C, Chen, Y, Tan, MJA, Ren, K, Wu, H. Microfluidic technologies for vasculature biomimicry. Analyst. 2019;144(15):44614471. doi:10.1039/c9an00421aGoogle Scholar
Kaushik, G, Leijten, J, Khademhosseini, A. Concise review: organ engineering: design, technology, and integration. Stem Cells. 2017;35(1):5560. doi:10.1002/stem.2502CrossRefGoogle ScholarPubMed
Pamme, N. Continuous flow separations in microfluidic devices. Lab Chip. 2007;7:16441659. doi:10.1039/b712784gCrossRefGoogle ScholarPubMed
Feng, H, Magda, JJ, Gale, BK. Viscoelastic second normal stress difference dominated multiple-stream particle focusing in microfluidic channels. Appl Phys Lett. 2019;115(26). doi:10.1063/1.5129281CrossRefGoogle ScholarPubMed
Jin, D, Deng, B, Li, JX, et al. A microfluidic device enabling high-efficiency single cell trapping. Biomicrofluidics. 2015;9(1):014101. doi:10.1063/1.4905428Google Scholar
Schibel, AEP, Ervin, EN. Decreasing the limits of detection and analysis time of ion current rectification biosensing measurements via a mechanically applied pressure differential. Anal Chem. 2015;87(13): 66466653. doi:10.1021/acs.analchem.5b00757Google Scholar
Convery, N, Gadegaard, N. 30 years of microfluidics. Micro Nano Eng. 2019;2:7691. doi:10.1016/j.mne.2019.01.003Google Scholar
Kashaninejad, N, Shiddiky, MJA, Nguyen, N-T, Kashaninejad, N, Nguyen, N-T, Shiddiky, MJA. Advances in microfluidics-based assisted reproductive technology: from sperm sorter to reproductive system-on-a-chip. Adv Biosyst. 2018;2(3):1700197. doi:10.1002/adbi.201700197Google Scholar
Smith, GD, Takayama, S. Application of microfluidic technologies to human assisted reproduction. Mol Hum Reprod. 2017;23(4):257268. doi:10.1093/molehr/gaw076Google Scholar
Samuel, R, Badamjav, O, Murphy, KE, et al. Microfluidics: the future of microdissection TESE? Syst Biol Reprod Med. 2016;62(3). doi:10.3109/19396368.2016.1159748Google Scholar
Schuster, TG, Cho, B, Keller, LM, Takayama, S, Smith, GD. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed Online. 2003;7(1):7581. doi:10.1016/S1472-6483(10)61732-4Google Scholar
Oseguera-López, I, Ruiz-Díaz, S, Ramos-Ibeas, P, Pérez-Cerezales, S. Novel techniques of sperm selection for improving IVF and ICSI outcomes. Front Cell Dev Biol. 2019;7. doi:10.3389/fcell.2019.00298Google Scholar
Chinnasamy, T, Kingsley, JL, Inci, F, et al. Guidance and self-sorting of active swimmers: 3D periodic arrays increase persistence length of human sperm selecting for the fittest. Adv Sci. 2018;5(2):1700531. doi:10.1002/advs.201700531CrossRefGoogle ScholarPubMed
Quinn, MM, Jalalian, L, Ribeiro, S, et al. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples. Hum Reprod. 2018;33(8):13881393. doi:10.1093/humrep/dey239Google Scholar
Knowlton, SM, Sadasivam, M, Tasoglu, S. Microfluidics for sperm research. Trends Biotechnol. 2015;33(4):221229. doi:10.1016/j.tibtech.2015.01.005CrossRefGoogle ScholarPubMed
Zhang, X, Khimji, I, Gurkan, UA, et al. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting. Lab Chip. 2011;11(15):25352540. doi:10.1039/c1lc20236gCrossRefGoogle ScholarPubMed
Asghar, W, Velasco, V, Kingsley, JL, et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Healthc Mater. 2014;3(10):16711679. doi:10.1002/adhm.201400058CrossRefGoogle ScholarPubMed
Nosrati, R, Vollmer, M, Eamer, L, et al. Rapid selection of sperm with high DNA integrity. Lab Chip. 2014;14(6):11421150. doi:10.1039/c3lc51254aGoogle Scholar
Gaffney, EA, Gadêlha, H, Smith, DJ, Blake, JR, Kirkman-Brown, JC. Mammalian sperm motility: observation and theory. Annu Rev Fluid Mech. 2011;43(1):501528. doi:10.1146/annurev-fluid-121108-145442Google Scholar
Chen, Y-A, Huang, Z-W, Tsai, F-S, Chen, C-Y, Lin, C-M, Wo, AM. Analysis of sperm concentration and motility in a microfluidic device. Microfluid Nanofluidics. 2011;10(1):5967. doi:10.1007/s10404-010-0646-8Google Scholar
Xie, L, Ma, R, Han, C, et al. Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin Chem. 2010;56(8):12701278. doi:10.1373/clinchem.2010.146902Google Scholar
Ma, R, Xie, L, Han, C, et al. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal Chem. 2011;83(8):29642970. doi:10.1021/ac103063gGoogle Scholar
Li, Z, Liu, W, Qiu, T, et al. The construction of an interfacial valve-based microfluidic chip for thermotaxis evaluation of human sperm. Biomicrofluidics. 2014;8(2):024102. doi:10.1063/1.4866851Google Scholar
Liu, W, Chen, W, Liu, R, et al. Separation of sperm and epithelial cells based on the hydrodynamic effect for forensic analysis. Biomicrofluidics. 2015;9(4):044127. doi:10.1063/1.4928453CrossRefGoogle ScholarPubMed
Son, J, Murphy, K, Samuel, R, Gale, BK, Carrell, DT, Hotaling, JM. Non-motile sperm cell separation using a spiral channel. Anal Methods. 2015;7:17. doi:10.1039/C5AY02205CGoogle Scholar
Son, J, Samuel, R, Gale, BK, Carrell, DT, Hotaling, JM. Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel. Biomicrofluidics. 2017;11(5):054106. doi:10.1063/1.4994548Google Scholar
Rosales-Cruzaley, E, Cota-Elizondo, PA, Sánchez, D, Lapizco-Encinas, BH. Sperm cells manipulation employing dielectrophoresis. Bioprocess Biosyst Eng. 2013;36(10):13531362. doi:10.1007/s00449-012-0838-6Google Scholar
de Wagenaar, B, Dekker, S, de Boer, HL, et al. Towards microfluidic sperm refinement: impedance-based analysis and sorting of sperm cells. Lab Chip. 2016;16(8):15141522. doi:10.1039/C6LC00256KGoogle Scholar
Cho, BS, Schuster, TG, Zhu, X, Chang, D, Smith, GD, Takayama, S. Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem. 2003;75(7):16711675. doi:10.1021/ac020579eGoogle Scholar
Shirota, K, Yotsumoto, F, Itoh, H, et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil Steril. 2016;105(2):315321. doi:10.1016/j.fertnstert.2015.10.023Google Scholar
Wu, J-K, Chen, P-C, Lin, Y-N, Wang, C-W, Pan, L-C, Tseng, F-G. High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis. Analyst. 2017;142(6):938944. doi:10.1039/C6AN02420CGoogle Scholar
Horsman, KM, Barker, SLR, Ferrance, JP, Forrest, KA, Koen, KA, Landers, JP. Separation of sperm and epithelial cells in a microfabricated device: potential application to forensic analysis of sexual assault evidence. Anal Chem. 2005;77(3):742749. doi:10.1021/ac0486239Google Scholar
Phiphattanaphiphop, C, Leksakul, K, Phatthanakun, R, Suthummapiwat, A. Real-time single cell monitoring: measurement and counting of motile sperm using LCR impedance-integrated microfluidic device. Micromachines. 2019;10(10):647. doi:10.3390/mi10100647Google Scholar
Segerink, LI, Sprenkels, AJ, ter Braak, PM, Vermes, I, van den Berg, A. On-chip determination of spermatozoa concentration using electrical impedance measurements. Lab Chip. 2010;10(8):10181024. doi:10.1039/b923970gCrossRefGoogle ScholarPubMed
Samuel, R, Feng, H, Jafek, A, Despain, D, Jenkins, T, Gale, B. Microfluidic-based sperm sorting & analysis for treatment of male infertility. Transl Androl Urol. 2018;7(S3):S336S347. doi:10.21037/tau.2018.05.08Google Scholar
Gode, F, Bodur, T, Gunturkun, F, et al. Comparison of microfluid sperm sorting chip and density gradient methods for use in intrauterine insemination cycles. Fertil Steril. 2019;112(5):842848.e1. doi:10.1016/j.fertnstert.2019.06.037Google Scholar
Jafek, A, Feng, H, Brady, H, et al. An automated instrument for intrauterine insemination sperm preparation. Sci Rep. 2020;10(1):21385. doi:10.1038/s41598-020-78390-3Google Scholar
Jenkins, T, Samuel, R, Jafek, A, et al. Rapid microfluidic sperm isolation from microtese samples in men with non-obstructive azoospermia. Fertil Steril. 2017;108(3):e244. doi:10.1016/j.fertnstert.2017.07.733Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×