Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T20:36:24.340Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  02 November 2018

Arthur Ogus
Affiliation:
University of California, Berkeley
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbes, A., and Saito, T. 2007. The Characteristic Class of an ℓ-adic Sheaf. Inventiones Mathematicae, 168, 56612.CrossRefGoogle Scholar
Artin, M., Grothendieck, A., and Verdier, J. L. 1972a. Théorie des Topos et Cohomologie Etale des Schémas (SGA 4) Tome I. Lecture Notes in Mathematics, vol. 269. New York: Springer-Verlag.Google Scholar
Artin, M., Grothendieck, A., and Verdier, J. L. 1972b. Théorie des Topos et Cohomologie Etale des Schémas (SGA 4) Tome II. Lecture Notes in Mathematics, vol. 270. New York: Springer-Verlag.Google Scholar
Authors, The Stacks Project. 2014. The Stacks Project. http://stacks.math.columbia.edu.Google Scholar
Bauer, W. 1995. On Smooth, Unramified, Étale and Flat Morphisms of Fine Logarithmic Schemes. Mathematische Nachrichten 176, 176(1), 516.CrossRefGoogle Scholar
Berthelot, P. 1974. Cohomologie Cristalline des Schémas de Caractéristique p > 0. Lecture Notes in Mathematics, vol. 407. New York: Springer-Verlag.Google Scholar
Berthelot, P., and Ogus, A. 1978. Notes on Crystalline Cohomology. Annals of Mathematics Studies, vol. 21. Princeton: Princeton University Press.Google Scholar
Borne, N., and Vistoli, A. 2012. Parabolic Sheaves on Logarithmic Schemes. Advances in Mathematics, 231(3–4), 13271363.Google Scholar
Conrad, B. 2007. Deligne’s Notes on Nagata Compactifications. Journal of the Ramanujan Mathematical Society, 22(3), 205257.Google Scholar
Cox, D., Little, J., and Schenck, H. 2011. Toric Varieties. Graduate Studies in Mathematics, vol. 124. Providence: American Mathematical Society.Google Scholar
Danilov, V. I. 1978. The Geometry of Toric Varieties. Russian Mathematical Surveys, 33, 97154.CrossRefGoogle Scholar
Deitmar, A. 2005. Schemes over F1 . ArXiv. arXiv:math.NT/0404185.Google Scholar
Deligne, P. 1970. Equations Différentielles à Points Singuliers Réguliers. Lecture Notes in Mathematics, vol. 163. New York: Springer-Verlag.CrossRefGoogle Scholar
Deligne, P. 1972. Théorie de Hodge II. Publications Mathématiques de l’I.H.É.S., 40, 557.Google Scholar
Deligne, P. 1977. Séminaire de Géométrie Algébrique du Bois-Marie SGA . Lecture Notes in Mathematics, vol. 569. New York: Springer-Verlag. Chap. Cohomologie Étale: les Points de Départ [Arcata].CrossRefGoogle Scholar
Deligne, P. 1982. Hodge Cycles on Abelian Varieties. In: Hodge Cycles, Motives, and Shimura Varieties. Lecture Notes in Mathematics, vol. 900. New York: Springer-Verlag.Google Scholar
Eisenbud, D. 1999. Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. New York: Springer-Verlag.Google Scholar
Faltings, G. 1989. Crystalline Cohomology and p-adic Galois representations. Pages 2580 of: Igusa, Jun-Ichi (ed), Algebraic Analysis, Geometry, and Number Theory. Baltimore and London: The Johns Hopkins University Press.Google Scholar
Faltings, G. 1990. Crystalline Cohomology on Open Varieties—Results and Conjectures. Pages 219248 of: The Grothendieck Festschrift, vol. II. Boston: Birkhauser.Google Scholar
Friedman, R. 1983. Global Smoothings of Varieties with Normal Crossings. Annals of Mathematics, 118(1), 75114.CrossRefGoogle Scholar
Fulton, W. 1993. Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131, no. 131. Princeton: Princeton University Press.CrossRefGoogle Scholar
Gabber, O., and Ramero, L. 2017 (October). Foundations for Almost Ring Theory. http://math.univ-lille1.fr/˜ramero/research.html.Google Scholar
Grillet, P. 1993. A Short Proof of Rédei’s Theorem. Pages 126127 of: Semigroup Forum, vol. 46. Springer-Verlag.Google Scholar
Gross, M., and Siebert, B. 2006. Mirror Symmetry via Logarithmic Degeneration Data I. Journal of Differential Geometry, 72(February), 169338.Google Scholar
Grothendieck, A. 1961. Éléments de Géométrie Algébrique (rédigés avec la collaboration de Jean Dieudonné): II. Étude Globale Élémentaire de Quelques Classes de Morphismes. Publications Mathématiques de l’I.H.É.S., 8, 5222. <http://www.numdam.org/item?id=PMIHES_1961__8__5_0>.Google Scholar
Grothendieck, A. 1964. Éléments de Géométrie Algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. Étude Locale des Schémas et des Morphismes des Schémas, Première Partie. Publications Mathématiques de l’I.H.É.S., 20, 2– 259. <http://www.numdam.org/item?id=PMIHES_1964__20__5_0>.Google Scholar
Grothendieck, A. 1965. Éléments de Géométrie Algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. Étude Locale des Schémas et des Morphismes des Schémas, Seconde Partie. Publications Mathématiques de l’I.H.É.S., 24, 5– 231. <http://www.numdam.org/item?id=PMIHES_1965__24__5_0>.Google Scholar
Grothendieck, A. 1966. On the de Rham Cohomology of Algebraic Varieties. Publications Mathématiques de l’I.H.É.S., 29(1), 351359.Google Scholar
[29] Grothendieck, A. 1967. Éléments de Géométrie Algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. Étude Locale des Schémas et des Morphismes des Schémas, Quatrième Partie. Publications Mathématiques de l’I.H.É.S., 32, 5361. <http://www.numdam.org/item?id=PMIHES_1967__32__5_0>.Google Scholar
Grothendieck, A., and Dieudonné, J. 1964. Éléments de Géométrie Algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. Étude Locale des Schémas et des Morphismes des Schémas, Troisième Partie. Publications Mathématiques de l’I.H.É.S., 28, 5255. <http://www.numdam.org/item?id=PMIHES 1966__28__5_0>.Google Scholar
Grothendieck, A., and Dieudonné, J. 1971. Éléments de Géométrie Algébrique. Grundlehren der Mathematischen, vol. 166. New York: Springer-Verlag.Google Scholar
Grothendieck, A., and Raynaud, M. 1971. Revêtements Étales et Groupe Fonda-mental (SGA 1). Lecture Notes in Mathematics, vol. 224. New York: Springer-Verlag.Google Scholar
Hartshorne, R. 1976. On the de Rham Cohomology of Algebraic Varieties. Publications Mathématiques de l.I.H.É.S., 45, 199.Google Scholar
Hartshorne, R. 1977. Algebraic Geometry. New York: Springer Verlag.Google Scholar
Hochschild, G. 1955. Simple Algebras with Purely Inseparable Splitting Fields of Exponent 1. Trans. A. M. S., 79, 477489.CrossRefGoogle Scholar
Hochster, M. 1972. Rings of Invariants of Tori, Cohen–Macaulay Rings Generated by Monomials, and Polytopes. Annals of Mathematics, 96, 318337.Google Scholar
Hyodo, O., and Kato, K. 1994. Semi-Stable Reduction and Crystalline Cohomology with Log Poles. Astérisque, 223, 241260.Google Scholar
Illusie, L. 1971. Complexe Cotangent et Déformations I. Lecture Notes in Mathematics, vol. 239. New York: Springer-Verlag.Google Scholar
Illusie, L. 2002. An Overview of the Work of K. Fujiwara, K. Kato, and C. Nakayamam on Logarithmic Étale Cohomology. Astérisque, 279, 271322.Google Scholar
Illusie, L., Kato, K., and Nakayama, C. 2005. Quasi-Unipotent Logarithmic Riemann–Hilbert Correspondences. Journal of Mathematical Sciences, The University of Tokyo, 12(1), 166.Google Scholar
Illusie, L., Nakayama, C., and Tsuji, T. 2013. On Log Flat Descent. Proceedings of the Japan Academy, Series A, 89(1), 15.Google Scholar
Illusie, L., Laszlo, Y., and Orgogozo, F. (eds). 2014. Travaux de Gabber sur l’Uniformisation Locale et la Cohomologie Étale des Schémas Quasi-Excellents. Séminaire á l’École Polytechnique 2006–2008. Astérisque, 363–364.Google Scholar
Jacobson, N. 1962 . Lie Algebras. Interscience Tracts in Pure and Applied Mathematics, vol. 10. John Wiley and Sons.Google Scholar
Kajiwara, T., and Nakayama, C. 2008. Higher Direct Images of Local Systems in Log Betti Cohomology. Journal of Mathematical Sciences, The University of Tokyo, 15(2), 291323.Google Scholar
Kato, F. 1994a. Logarithmic Embeddings and Logarithmic Semistable Reductions. arXiv. arXiv:alg-geom/9411006v2.Google Scholar
Kato, F. 1999. Exactness, Integrality, and Log Modifications. arXiv. arXiv:math/9907124v1[math.AG].Google Scholar
Kato, F. 2000. Log Smooth Deformation and Moduli of Log Smooth Curves. International Journal of Mathematics, 11(2), 215232.Google Scholar
Kato, K. 1989. Logarithmic Structures of Fontaine-Illusie. Pages 191224 of: Igusa, Jun-Ichi (ed), Algebraic Analysis, Geometry, and Number Theory. Baltimore and London: Johns Hopkins University Press.Google Scholar
Kato, K. 1994b. Toric Singularities. American Journal of Mathematics, 116, 10731099.CrossRefGoogle Scholar
Kato, K., and Nakayama, C. 1999. Log Betti Cohomology, Log Étale Cohomology, and Log De Rham Cohomology of Log Schemes over C. Kodai Math. Journal, 22(2), 161186.Google Scholar
Kato, K., and Saito, T. 2004. On the Conductor Formula of Bloch. Publ. Math. I.H.E.S., 100, 5151.CrossRefGoogle Scholar
Katz, N. 1970. Nilpotent Connections and the Monodromy Theorem: Applications of a Result of Turrittin. Inst. Hautes Études Sci. Publ. Math., 39, 175232.CrossRefGoogle Scholar
Knutson, D. 1971. Algebraic Spaces. Lecture Notes in Mathematics, vol. 203. New York: Springer-Verlag.Google Scholar
Miller, E., and Sturmfels, B. 2005. Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227. New York: Springer-Verlag.Google Scholar
Nagata, M. 1962. Imbeddings of an Abstract Variety in a Complete Variety. J. Math. Kyoto Univ., 2, 110.Google Scholar
Nakayama, C. 2009. Quasi-sections in Log Geometry. Osaka J. Math, 1163– 1173.Google Scholar
Nakayama, C., and Ogus, A. 2010. Relative Rounding in Toric and Logarithmic Geometry. Geometry & Topology, 14, 21892241.CrossRefGoogle Scholar
Niziol, W. 2006. Toric Singularities: Log-Blow-Ups and Global Resolutions. Journal of Algebraic Geometry, 15, 129.Google Scholar
Oda, T. 1993. The Algebraic de Rham Theorem for Toric Varieties. Tohoku Math. J., 231247.Google Scholar
Ogus, A. 1995. F-crystals on Schemes with Constant Log Structure. Compositio Mathematica, 97, 187225.Google Scholar
Ogus, A. 2003. On the Logarithmic Riemann–Hilbert Correspondence. Documenta Mathematica, 655–724. Extra Volume: Kazuya Kato’s Fiftieth Birthday.CrossRefGoogle Scholar
Olsson, M. 2003. Logarithmic geometry and algebraic stacks. Annales Scientifiques de l’École Normale Supérieure, Jan, 747–791.Google Scholar
Olsson, M. 2004. Semi-Stable Degenerations and Period Spaces for Polarized K3 Surfaces. Duke Mathematical Journal, 125(1), 397438.Google Scholar
Olsson, M. 2008a. Compactifying Moduli Spaces for Abelian Varieties. Lecture Notes in Mathematics, vol. 1958. New York: Springer Verlag.CrossRefGoogle Scholar
Olsson, M. 2008b. Logarithmic Interpretation of the Main Component in Toric Hilbert Schemes. Pages 231252 of: Curves and Abelian Varieties. Contemporary Mathematics, vol. 465. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
Raynaud, M., and Gruson, L. 1971. Critères de Platitude et de Projectivité. Inventiones Mathematicae, 13, 189.Google Scholar
Roby, N. 1963. Lois Polynômes et Lois Formelles en Théorie des Modules. Annales Scientifiques de l’École Normale Supérieure 3é série, 80, 213348.CrossRefGoogle Scholar
Saito, T. 2004. Log Smooth Extension of a Family of Curves and Semi-Stable Reduction. Journal of Algebraic Geometry, 13, 287321.Google Scholar
Serre, J.-P. 1956. Géométrie Algébrique et Géométrie Analytique. Ann. Inst. Fourier, 6, 146.Google Scholar
Seshadri, C. 1958–59. L’Opération de Cartier, Applications. Pages 1–29 of: Séminaire Chevalley, Exp. 5.Google Scholar
Shannon, R. T. 1974. Lazard’s Theorem in Algebraic Categories. Algebra Universalis, 4, 226228.Google Scholar
Sloane, N., and Plouffe, S. 1995. The Encyclopedia of Sequences. Cambridge, MA: Academic Press.Google Scholar
Steenbrink, J. 1976. Limits of Hodge Structures. Inventiones Mathematicae, 31, 229257.Google Scholar
Steenbrink, J. 1995. Logarithmic Embeddings of Varieties with Normal Crossings and Mixed Hodge Structures. Mathematische Annalen, 301(1), 105118.CrossRefGoogle Scholar
Tsuji, T. 1999. p-adic Étale Cohomology and Crystalline Cohomology in the Semi-Stable Reduction Case. Inventiones Mathematicae, 137, 233411.CrossRefGoogle Scholar
Tsuji, T. 2019. Saturated Morphisms of Logarithmic Schemes. Tunisian Journal of Mathematics, 1(2), 185220.Google Scholar
Vidal, I. 2001. Morphismes Log Étales et Descente par Homéomorphismes Uni-versels. C.R. Académie Sciences Paris, 332, 239244.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Arthur Ogus, University of California, Berkeley
  • Book: Lectures on Logarithmic Algebraic Geometry
  • Online publication: 02 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781316941614.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Arthur Ogus, University of California, Berkeley
  • Book: Lectures on Logarithmic Algebraic Geometry
  • Online publication: 02 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781316941614.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Arthur Ogus, University of California, Berkeley
  • Book: Lectures on Logarithmic Algebraic Geometry
  • Online publication: 02 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781316941614.007
Available formats
×