Published online by Cambridge University Press: 06 August 2010
Veni, vidi, vici.
Julius CaesarEvery network N, with underlying graph G, has one or more dominating sets. Historically, this concept originated with von Neumann in his pioneering work with Morgenstern (1944) on the theory of games. In game theory, a given game may have several strategies deciding which move to make in any given game situation. A strategy is said to dominate another one if the person using the first strategy defeats his opponent using the second one in a two-person game. This was formalized to domination in digraphs by Richardson (1953) and studied by Harary and Richardson (1959).
Ore (1962) generalized the concept of domination in digraphs to graphs G. This is entirely analogous to the domination of the 64 squares of a conventional chessboard by Queens. This Queen domination problem was mentioned in Chapter 1. In particular, the placing of eight Queens on a chessboard so that no Queen threatens (dominates) any other Queen was completely solved by Euler in the eighteenth century.
Ore defined a node v in G as dominating itself and all nodes adjacent to it, that is, v dominates its closed neighborhood N[v]. Domination in graphs is now the most active area of research in graph theory (Laskar and Walikar 1981; Hedetniemi and Laskar 1990).
For our present purposes, every island network has some dominating set of islands. We now use the combinatorial model of domination in graphs to describe local political hierarchies in the Caroline Islands in Micronesia, alliance structures in the Tuamotu Islands in Polynesia, and pottery monopolies in two trade networks in Melanesia.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.