Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:33:54.025Z Has data issue: false hasContentIssue false

Section 4: - Dyscoordinative and Otherwise Inappropriate Motor Behaviors

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Schmahmann, JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004;16:367378.CrossRefGoogle ScholarPubMed
D’Angelo, E. Physiology of the cerebellum. Handb Clin Neurol 2018;154:85108.CrossRefGoogle ScholarPubMed
Diener, HC, Dichgans, J. Pathophysiology of cerebellar ataxia. Mov Disord 1992;7:95109.CrossRefGoogle ScholarPubMed
Stoodley, CJ, Schmahmann, JD. Functional topography of the human cerebellum. Handb Clin Neurol 2018;154:5970.CrossRefGoogle ScholarPubMed
Shemesh, AA, Zee, DS. Eye movement disorders and the cerebellum. J Clin Neurophysiol 2019;36:405–14.CrossRefGoogle ScholarPubMed
Konigsmark, BW, Weiner, LP. The olivopontocerebellar atrophies: a review. Medicine 1970;49:227242.CrossRefGoogle ScholarPubMed
Harding, AE. Classification of the hereditary ataxias and paraplegias. Lancet 1983;1(8334):11511155.CrossRefGoogle ScholarPubMed
Jackson, JF, Currier, RD, Terasaki, PI, Morton, NE. Spinocerebellar ataxia and HLA linkage. N Engl J Med 1977;296:11381141.CrossRefGoogle ScholarPubMed
Orr, HT, Chung, MY, Banfi, S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993;4:221226.CrossRefGoogle ScholarPubMed
Campuzano, V, Montermini, L, Moltò, MD, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996;271:14231427.CrossRefGoogle ScholarPubMed
Ruano, L, Melo, C, Silva, MC, Coutinho, P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 2014;42:174183.CrossRefGoogle ScholarPubMed
Van De Warrenburg, BPC, Sinke, RJ, Verschuuren-Bemelmans, CC, et al. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology 2002;58:702708.CrossRefGoogle ScholarPubMed
Pareyson, D, Gellera, C, Castellotti, B, et al. Clinical and molecular studies of 73 Italian families with autosomal dominant cerebellar ataxia type I: SCA1 and SCA2 are the most common genotypes. J Neurol 1999;246:389393.CrossRefGoogle ScholarPubMed
Velázquez Pérez, L, Cruz, GS, Santos Falcón, N, et al. Molecular epidemiology of spinocerebellar ataxias in Cuba: insights into SCA2 founder effect in Holguin. Neurosci Lett 2009;454:157160.CrossRefGoogle ScholarPubMed
Dürr, A. Friedreich’s ataxia: treatment within reach. Lancet Neurol 2002;1:370374.CrossRefGoogle ScholarPubMed
Swift, M, Morrell, D, Cromartie, E, et al. The incidence and gene frequency of ataxia–telangiectasia in the United States. Am J Hum Genet 1986;39:573583.Google ScholarPubMed
Nanetti, L, Cavalieri, S, Pensato, V, et al. SETX mutations are a frequent genetic cause of juvenile and adult onset cerebellar ataxia with neuropathy and elevated serum alpha-fetoprotein. Orphanet J Rare Dis 2013;8:123.CrossRefGoogle ScholarPubMed
Vermeer, S, Meijer, RPPRPP, Pijl, BJBJ, et al. ARSACS in the Dutch population: a frequent cause of early-onset cerebellar ataxia. Neurogenetics 2008;9:207214.CrossRefGoogle ScholarPubMed
Guergueltcheva, V, Azmanov, DN, Angelicheva, D, et al. Autosomal-recessive congenital cerebellar ataxia is caused by mutations in metabotropic glutamate receptor 1. Am J Hum Genet 2012;91:553564.CrossRefGoogle ScholarPubMed
Davarniya, B, Hu, H, Kahrizi, K, et al. The role of a novel TRMT1 gene mutation and rare GRM1 gene defect in intellectual disability in two Azeri families. PLoS One 2015;10(8):e0129631,CrossRefGoogle ScholarPubMed
Hagerman, R, Hagerman, P. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome. Lancet Neurol 2013;12:786798.CrossRefGoogle ScholarPubMed
Brussino, A, Gellera, C, Saluto, A, et al. FMR1 gene premutation is a frequent genetic cause of late-onset sporadic cerebellar ataxia. Neurology 2005;64:145147.CrossRefGoogle ScholarPubMed
Van Esch, H, Dom, R, Bex, D, et al. Screening for FMR-1 premutations in 122 older flemish males presenting with ataxia. Eur J Hum Genet 2005;13:121123.CrossRefGoogle ScholarPubMed
Klockgether, T, Lüdtke, R, Kramer, B, et al. The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain 1998;121:589600.CrossRefGoogle ScholarPubMed
Trouillas, P, Takayanagi, T, Hallett, M, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci 1997;145:205211.CrossRefGoogle ScholarPubMed
Schmitz-Hübsch, T, Du Montcel, STT, Baliko, L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006;66:17171720.CrossRefGoogle ScholarPubMed
Baets, J, Deconinck, T, Smets, K, et al. Mutations in SACS cause atypical and late-onset forms of ARSACS. Neurology 2010;75:11811188.CrossRefGoogle ScholarPubMed
Ophoff, RA, Terwindt, GM, Vergouwe, MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996;87:543552.CrossRefGoogle ScholarPubMed
Nabais Sá, MJ, Olson, AN, Yoon, G, et al. De novo variants in EEF2 cause a neurodevelopmental disorder with benign external hydrocephalus. Hum Mol Genet 2021;29:38923899.CrossRefGoogle Scholar
Lise, S, Clarkson, Y, Perkins, E, et al. Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development. PLoS Genet 2012;8(12):e1003074.CrossRefGoogle ScholarPubMed
Elsayed, SM, Heller, R, Thoenes, M, et al. Autosomal dominant SCA5 and autosomal recessive infantile SCA are allelic conditions resulting from SPTBN2 mutations. Eur J Hum Genet 2014;22:286288.CrossRefGoogle ScholarPubMed
Galatolo, D, Tessa, A, Filla, A, Santorelli, FM. Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia–spasticity spectrum. A retrospective analysis. Neurogenetics 2018;19:18.CrossRefGoogle ScholarPubMed
Arning, L, Epplen, JT, Rahikkala, E, et al. The SETX missense variation spectrum as evaluated in patients with ALS4-like motor neuron diseases. Neurogenetics 2013;14:5361.CrossRefGoogle ScholarPubMed
Pyle, A, Smertenko, T, Bargiela, D et al. Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain 2015;138:276283.CrossRefGoogle ScholarPubMed
da Graça, FF, Peluzzo, TM, Bonadia, LC, et al. Diagnostic yield of whole exome sequencing for adults with ataxia: a Brazilian perspective. Cerebellum 2022;21:4954.CrossRefGoogle ScholarPubMed
Shakya, S, Kumari, R, Suroliya, V, et al. Whole exome and targeted gene sequencing to detect pathogenic recessive variants in early onset cerebellar ataxia. Clin Genet 2019;96:566574.CrossRefGoogle ScholarPubMed
Vermeer, S, Hoischen, A, Meijer, RPPRPP, et al. Targeted next-generation sequencing of a 12.5 Mb homozygous region reveals ANO10 mutations in patients with autosomal-recessive cerebellar ataxia. Am J Hum Genet 2010;87:813819.CrossRefGoogle ScholarPubMed
Dupré, N, Gros-Louis, F, Chrestian, N, et al. Clinical and genetic study of autosomal recessive cerebellar ataxia type 1. Ann Neurol 2007;62:9398.CrossRefGoogle ScholarPubMed
Marras, C, Lang, A, van de Warrenburg, BP, et al. Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society task force. Mov Disord 2017;32:724725.CrossRefGoogle ScholarPubMed
Moro, A, Moscovich, M, Farah, M, et al. Nonmotor symptoms in spinocerebellar ataxias (SCAs). Cerebellum Ataxias 2019;6:12.CrossRefGoogle ScholarPubMed
Scott, SS de O, Pedroso, JL, Barsottini, OGP, França-Junior, MC, Braga-Neto, P. Natural history and epidemiology of the spinocerebellar ataxias: insights from the first description to nowadays. J Neurol Sci 2020;417:117082.CrossRefGoogle ScholarPubMed
Globas, C, du Montcel, ST, Baliko, L, et al. Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord 2008;23:22322238.CrossRefGoogle ScholarPubMed
Seidel, K, Siswanto, S, Brunt, ERP, et al. Brain pathology of spinocerebellar ataxias. Acta Neuropathol 2012;124:121.CrossRefGoogle ScholarPubMed
Menon, RP, Nethisinghe, S, Faggiano, S, et al. The role of interruptions in polyQ in the pathology of SCA1. PLoS Genet 2013;9(7):e1003648.CrossRefGoogle ScholarPubMed
Elden, AC, Kim, HJ, Hart, MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010;466:10691075.CrossRefGoogle ScholarPubMed
Ramos, EM, Martins, S, Alonso, I, et al. Common origin of pure and interrupted repeat expansions in spinocerebellar ataxia type 2 (SCA2). Am J Med Genet Part B Neuropsychiatr Genet 2010;153:524531.CrossRefGoogle Scholar
Van De Warrenburg, BPC, Frenken, CWGM, Ausems, MGEM, et al. Striking anticipation in spinocerebellar ataxia type 7: the infantile phenotype. J Neurol 2001;248:911914.CrossRefGoogle ScholarPubMed
Koob, MD, Moseley, ML, Schut, LJ, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999;21:379384.CrossRefGoogle ScholarPubMed
Moseley, ML, Zu, T, Ikeda, Y, et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 2006;38:758769.CrossRefGoogle ScholarPubMed
Zu, T, Gibbens, B, Doty, NS, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 2011;108:260265.CrossRefGoogle ScholarPubMed
Izumi, Y, Maruyama, H, Oda, M, et al. SCA8 repeat expansion: large CTA/CTG repeat alleles are more common in ataxic patients, including those with SCA6. Am J Hum Genet 2003;72:704709.CrossRefGoogle ScholarPubMed
Factor, SA, Qian, J, Lava, NS, Hubbard, JD, Payami, H. False-positive SCA8 gene test in a patient with pathologically proven multiple system atrophy. Ann Neurol 2005;57:462463.CrossRefGoogle Scholar
Lieto, M, Riso, V, Galatolo, D, et al. The complex phenotype of spinocerebellar ataxia type 48 in eight unrelated Italian families. Eur J Neurol 2020;27:498505.CrossRefGoogle ScholarPubMed
Cocozza, S, Pontillo, G, De Michele, G, et al. The “crab sign”: an imaging feature of spinocerebellar ataxia type 48. Neuroradiology 2020;62:10951103.CrossRefGoogle ScholarPubMed
Shi, CH, Schisler, JC, Rubel, CE, et al. Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP. Hum Mol Genet 2014;23:10131024.CrossRefGoogle Scholar
Pakdaman, Y, Berland, S, Bustad, HJ, et al. Genetic dominant variants in stub1, segregating in families with SCA48, display in vitro functional impairments indistinctive from recessive variants associated with SCAR16. Int J Mol Sci 2021;22:5870.CrossRefGoogle ScholarPubMed
Jen, JC, Graves, TD, Hess, EJ, et al. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 2007;130:24842493.CrossRefGoogle ScholarPubMed
Piarroux, J, Riant, F, Humbertclaude, V, et al. FGF14-related episodic ataxia: delineating the phenotype of episodic ataxia type 9. Ann Clin Transl Neurol 2020;7:565572.CrossRefGoogle ScholarPubMed
Schesny, M, Joncourt, F, Tarnutzer, AA. Acetazolamide-responsive episodic ataxia linked to novel splice site variant in FGF14 gene. Cerebellum 2019;18:649653.CrossRefGoogle ScholarPubMed
Yoon, T, Cowan, JA. Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J Biol Chem 2004;279:2594325946.CrossRefGoogle ScholarPubMed
Berry-Kravis, E, Abrams, L, Coffey, SM, et al. Fragile X-associated tremor/ataxia syndrome: clinical features, genetics, and testing guidelines. Mov Disord 2007;22:20182030.CrossRefGoogle ScholarPubMed
Schon, K, van Os, NJH, Oscroft, N, et al. Genotype, extrapyramidal features, and severity of variant ataxia-telangiectasia. Ann Neurol 2019;85:170180.CrossRefGoogle ScholarPubMed
Verhagen, MMM, Abdo, WF, Willemsen, MAAP, et al. Clinical spectrum of ataxia–telangiectasia in adulthood. Neurology 2009;73:430437.CrossRefGoogle ScholarPubMed
Bronstein, AM, Mossman, S, Luxon, LM. The neck–eye reflex in patients with reduced vestibular and optokinetic function. Brain 1991;114A:111.Google Scholar
Szmulewicz, DJ, Waterston, JA, Macdougall, HG, et al. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS): a review of the clinical features and video-oculographic diagnosis. Ann N Y Acad Sci 2011;1233:139147.CrossRefGoogle ScholarPubMed
Traschütz, A, Cortese, A, Reich, S, et al. Natural history, phenotypic spectrum, and discriminative features of multisystemic RFC1 disease. Neurology 2021;96:e1369–1382.CrossRefGoogle ScholarPubMed
Cortese, A, Simone, R, Sullivan, R, et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet 2019;51:649658.CrossRefGoogle ScholarPubMed
Le Ber, I, Bouslam, N, Rivaud-Péchoux, S, et al. Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain 2004;127:759767.CrossRefGoogle ScholarPubMed
Anheim, M, Fleury, M, Monga, B, et al. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics 2010;11:112.CrossRefGoogle ScholarPubMed
Bras, J, Alonso, I, Barbot, C, et al. Mutations in PNKP cause recessive ataxia with oculomotor apraxia type 4. Am J Hum Genet 2015;96:474479.CrossRefGoogle ScholarPubMed
Suraweera, A, Becherel, OJ, Chen, P, et al. Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. J Cell Biol 2007;177:969979.CrossRefGoogle ScholarPubMed
Richard, P, Feng, S, Tsai, YL, et al. SETX (senataxin), the helicase mutated in AOA2 and ALS4, functions in autophagy regulation. Autophagy 2021;17:18891906.CrossRefGoogle ScholarPubMed
Tarnutzer, AA, Gerth-Kahlert, C, Timmann, D, et al. Boucher–Neuhäuser syndrome: cerebellar degeneration, chorioretinal dystrophy and hypogonadotropic hypogonadism: two novel cases and a review of 40 cases from the literature. J Neurol 2015;262:194202.CrossRefGoogle Scholar
Delague, V, Bareil, C, Bouvagnet, P, et al. Nonprogressive autosomal recessive ataxia maps to chromosome 9q34–9qter in a large consanguineous Lebanese family. Ann Neurol 2001;50:250253.CrossRefGoogle Scholar
Tranebjaerg, L, Teslovich, TM, Jones, MP, et al. Genome-wide homozygosity mapping localizes a gene for autosomal recessive non-progressive infantile ataxia to 20q11–q13. Hum Genet 2003;113:293295.CrossRefGoogle ScholarPubMed
Huang, L, Chardon, JW, Carter, MT, et al. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 2012;7:67.CrossRefGoogle ScholarPubMed
De Bot, ST, Willemsen, MAAP, Vermeer, S, et al. Reviewing the genetic causes of spastic-ataxias. Neurology 2012;79:15071514.CrossRefGoogle ScholarPubMed
Mancini, C, Giorgio, E, Rubegni, A, et al. Prevalence and phenotype of the c.1529C>T SPG7 variant in adult‐onset cerebellar ataxia in Italy. Eur J Neurol 2019;26:8086.CrossRefGoogle ScholarPubMed
Bourassa, C V., Meijer, IA, Merner, ND, et al. VAMP1 mutation causes dominant hereditary spastic ataxia in newfoundland families. Am J Hum Genet 2012;91:548552.CrossRefGoogle ScholarPubMed
Corbett, MA, Schwake, M, Bahlo, M, et al. A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am J Hum Genet 2011;88:657683.CrossRefGoogle ScholarPubMed
Boissé Lomax, L, Bayly, MA, Hjalgrim, H, et al. “North Sea” progressive myoclonus epilepsy: phenotype of subjects with GOSR2 mutation. Brain 2013;136:11461154.CrossRefGoogle ScholarPubMed
Gilman, S, Little, R, Johanns, J, et al. Evolution of sporadic olivopontocerebellar atrophy into multiple system atrophy. Neurology 2000;55:527532.CrossRefGoogle ScholarPubMed
Lin, DJ, Hermann, KL, Schmahmann, JD. The diagnosis and natural history of multiple system atrophy, cerebellar type. Cerebellum 2016;15:663679.CrossRefGoogle ScholarPubMed
Pellecchia, MT, Stankovic, I, Fanciulli, A, et al. Can autonomic testing and imaging contribute to the early diagnosis of multiple system atrophy? A systematic review and recommendations by the Movement Disorder Society Multiple System Atrophy Study Group. Mov Disord Clin Pract 2020;7:750762.CrossRefGoogle Scholar
Sturm, E, Stefanova, N. Multiple system atrophy: genetic or epigenetic? Exp Neurobiol 2014;23:277291.CrossRefGoogle ScholarPubMed
Katzeff, JS, Phan, K, Purushothuman, S, Halliday, GM, Kim, WS. Cross-examining candidate genes implicated in multiple system atrophy. Acta Neuropathol Commun 2019;7:117.CrossRefGoogle ScholarPubMed
Boxer, AL, Yu, JT, Golbe, LI, et al. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 2017;16:552563.CrossRefGoogle ScholarPubMed
Nath, U, Ben-Shlomo, Y, Thomson, RG, et al. The prevalence of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome) in the UK. Brain 2001;124:14381449.CrossRefGoogle ScholarPubMed
Hadjivassiliou, M. Immune-mediated acquired ataxias. Handb Clin Neurol 2012;103:189199.CrossRefGoogle ScholarPubMed
Wang, Y, Tourkevich, R, Bosley, J, Gold, DR, Newsome, SD. Ocular motor and vestibular characteristics of antiglutamic acid decarboxylase–associated neurologic disorders. J Neuroophthalmol. 2021;41:e665e681.CrossRefGoogle ScholarPubMed
Lin, CY, Wang, MJ, Tse, W, et al. Serum antigliadin antibodies in cerebellar ataxias: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2018;89:11741180.CrossRefGoogle ScholarPubMed
Chan, JL, Murphy, KA, Sarna, JR. Myoclonus and cerebellar ataxia associated with COVID-19: a case report and systematic review. J Neurol 2021;1:132.Google Scholar
Manto, M, Dupre, N, Hadjivassiliou, M, al. Medical and paramedical care of patients with cerebellar ataxia during the COVID-19 outbreak: seven practical recommendations of the COVID 19 Cerebellum Task Force. Front Neurol 2020;11:516.CrossRefGoogle ScholarPubMed
Ilg, W, Bastian, AJ, Boesch, S, et al. Consensus paper: Management of degenerative cerebellar disorders. Cerebellum 2014;13:248268.CrossRefGoogle ScholarPubMed
Ilg, W, Synofzik, M, Brötz, D, et al. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 2009;73:18231830.CrossRefGoogle ScholarPubMed
Synofzik, M, Ilg, W. Motor training in degenerative spinocerebellar disease: ataxia-specific improvements by intensive physiotherapy and exergames. Biomed Res Int 2014;2014:583507.CrossRefGoogle ScholarPubMed
Romano, S, Coarelli, G, Marcotulli, C, et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2015;14:985991.CrossRefGoogle ScholarPubMed
Zesiewicz, TA, Hancock, J, Ghanekar, SD, et al. Emerging therapies in Friedreich’s ataxia. Expert Rev Neurother 2020;20:12151228.CrossRefGoogle ScholarPubMed
Kearney, M, Orrell, RW, Fahey, M, Brassington, R, Pandolfo, M. Pharmacological treatments for Friedreich ataxia. Cochrane Database Syst Rev 2016;(8):CD007791.CrossRefGoogle Scholar
Anheim, M, Tranchant, C, Koenig, M. The autosomal recessive cerebellar ataxias. N Engl J Med 2012;366:636646.CrossRefGoogle ScholarPubMed
Tarnutzer, AA, Straumann, D, Salman, MS. Neuro-ophthalmologic assessment and investigations in children and adults with cerebellar diseases. Handb Clin Neurol 2018;154:305327.CrossRefGoogle ScholarPubMed
Parker, JL, Santiago, M. Oculomotor aspects of the hereditary cerebellar ataxias. Handb Clin Neurol 2012;103:6383.CrossRefGoogle ScholarPubMed
Press, GA, Murakami, J, Courchesne, E, et al. The cerebellum in sagittal plane - anatomic-MR correlation: 2. The cerebellar hemispheres. Am J Roentgenol 1989;153:837846.CrossRefGoogle ScholarPubMed
Schmahmann, JD, Doyon, J, McDonald, D, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 1999;10:233260.CrossRefGoogle ScholarPubMed
Kremer, B. Ataxia: pathophysiology and classification. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 589611.Google Scholar
Tarnutzer, A. Ataxia: clinical considerations, diagnosis and treatment. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 613647.Google Scholar

References

Ramirez-Zamora, A, Zeigler, W, Desai, N, Biller, J. Treatable causes of cerebellar ataxia. Mov Disord 2015;30(5):614623.CrossRefGoogle ScholarPubMed
Mitoma, H, Manto, M, Gandini, J. Recent advances in the treatment of cerebellar disorders. Brain Sci 2019;10(1):E11.CrossRefGoogle ScholarPubMed
Mitoma, H, Manto, M. The physiological basis of therapies for cerebellar ataxias. Ther Adv Neurol Disord 2016;9(5):396413.CrossRefGoogle ScholarPubMed
Schmucker, S, Puccio, H. Understanding the molecular mechanisms of Friedreich’s ataxia to develop therapeutic approaches. Hum Mol Genet 2010;19(R1):R103–110.CrossRefGoogle ScholarPubMed
Cooper, JM, Korlipara, LVP, Hart, PE, Bradley, JL, Schapira, AHV. Coenzyme Q10 and vitamin E deficiency in Friedreich’s ataxia: predictor of efficacy of vitamin E and coenzyme Q10 therapy. Eur J Neurol 2008;15(12):13711379.CrossRefGoogle ScholarPubMed
Meier, T, Perlman, SL, Rummey, C, Coppard, NJ, Lynch, DR. Assessment of neurological efficacy of idebenone in pediatric patients with Friedreich’s ataxia: data from a 6-month controlled study followed by a 12-month open-label extension study. J Neurol 2012;259(2):284291.CrossRefGoogle ScholarPubMed
van de Warrenburg, BPC, van Gaalen, J, Boesch, S, et al. EFNS/ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur J Neurol 2014;21(4):552562.CrossRefGoogle ScholarPubMed
Seyer, L, Greeley, N, Foerster, D, et al. Open-label pilot study of interferon gamma-1b in Friedreich ataxia. Acta Neurol Scand 2015;132(1):715.CrossRefGoogle ScholarPubMed
Gotoda, T, Arita, M, Arai, H, et al. Adult-onset spinocerebellar dysfunction caused by a mutation in the gene for the alpha-tocopherol-transfer protein. N Engl J Med 1995;333(20):13131318.CrossRefGoogle ScholarPubMed
Gabsi, S, Gouider-Khouja, N, Belal, S, et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol 2001;8(5):477481.CrossRefGoogle ScholarPubMed
Beaudin, M, Matilla-Dueñas, A, Soong, BW, et al. The classification of autosomal recessive cerebellar ataxias: a consensus statement from the Society for Research on the Cerebellum and Ataxias Task Force. Cerebellum 2019;18(6):10981125.CrossRefGoogle Scholar
Muller, DP, Lloyd, JK, Wolff, OH. The role of vitamin E in the treatment of the neurological features of abetalipoproteinaemia and other disorders of fat absorption. J Inherit Metab Dis 1985;8(1Suppl 1):8892.CrossRefGoogle ScholarPubMed
Lee, J, Hegele, RA. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management. J Inherit Metab Dis 2014;37(3):333339.CrossRefGoogle ScholarPubMed
Vanier, MT, Millat, G. Niemann–Pick disease type C. Clin Genet 2003;64(4):269281.CrossRefGoogle ScholarPubMed
Vanier, MT. Niemann–Pick disease type C. Orphanet J Rare Dis 2010;5:16.CrossRefGoogle ScholarPubMed
Sévin, M, Lesca, G, Baumann, N, et al. The adult form of Niemann–Pick disease type C. Brain J Neurol 2007;130(Pt 1):120133.CrossRefGoogle ScholarPubMed
McKay Bounford, K, Gissen, P. Genetic and laboratory diagnostic approach in Niemann Pick disease type C. J Neurol 2014:261(Suppl 2):S569575.CrossRefGoogle ScholarPubMed
NP-C Guidelines Working Group, Wraith, JE, Baumgartner, MR, et al. Recommendations on the diagnosis and management of Niemann–Pick disease type C. Mol Genet Metab 2009;98(1–2):152165.CrossRefGoogle ScholarPubMed
Lyseng-Williamson, KA. Miglustat: a review of its use in Niemann–Pick disease type C. Drugs 2014;74:(1):6174.CrossRefGoogle ScholarPubMed
Patterson, MC, Vecchio, D, Prady, H, Abel, L, Wraith, JE. Miglustat for treatment of Niemann–Pick C disease: a randomised controlled study. Lancet Neurol 2007;6(9):765772.CrossRefGoogle ScholarPubMed
Moghadasian, MH, Salen, G, Frohlich, JJ, Scudamore, CH. Cerebrotendinous xanthomatosis: a rare disease with diverse manifestations. Arch Neurol 2002;59(4):527529.CrossRefGoogle ScholarPubMed
KP, D, Kishore, A. Treatable cerebellar ataxias. Clin Park Relat Disord 2020;3:100053.Google Scholar
Yahalom, G, Tsabari, R, Molshatzki, N, et al. Neurological outcome in cerebrotendinous xanthomatosis treated with chenodeoxycholic acid: early versus late diagnosis. Clin Neuropharmacol 2013;36(3):7883.CrossRefGoogle ScholarPubMed
Ito, S, Kuwabara, S, Sakakibara, R, et al. Combined treatment with LDL-apheresis, chenodeoxycholic acid and HMG-CoA reductase inhibitor for cerebrotendinous xanthomatosis. J Neurol Sci 2003;216(1):179182.CrossRefGoogle ScholarPubMed
Mukherji, M, Chien, W, Kershaw, NJ, et al. Structure–function analysis of phytanoyl-CoA 2-hydroxylase mutations causing Refsum’s disease. Hum Mol Genet 2001;10(18):19711982.CrossRefGoogle ScholarPubMed
Weinstein, R. Phytanic acid storage disease (Refsum’s disease): clinical characteristics, pathophysiology and the role of therapeutic apheresis in its management. J Clin Apheresis 1999;14(4):181184.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Masters-Thomas, A, Bailes, J, Billimoria, JD, et al. Heredopathia atactica polyneuritiformis (Refsum’s disease): 1. Clinical features and dietary management. J Hum Nutr 1980;34(4):245250.Google ScholarPubMed
Wills, AJ, Manning, NJ, Reilly, MM. Refsum’s disease. QJM Mon J Assoc Physicians 2001;94(8):403406.CrossRefGoogle ScholarPubMed
Emmanuele, V, López, LC, Berardo, A, et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch Neurol 2012;69(8):978983.CrossRefGoogle ScholarPubMed
Lamperti, C, Naini, A, Hirano, M, et al. Cerebellar ataxia and coenzyme Q10 deficiency. Neurology 2003;60(7):12061208.CrossRefGoogle ScholarPubMed
Pineda, M, Montero, R, Aracil, A, et al. Coenzyme Q(10)-responsive ataxia: 2-year-treatment follow-up. Mov Disord 2010;25(9):12621268.CrossRefGoogle ScholarPubMed
Gatti, RA, Berkel, I, Boder, E, et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature 1988;336(6199):577580.CrossRefGoogle ScholarPubMed
Zannolli, R, Buoni, S, Betti, G, et al. A randomized trial of oral betamethasone to reduce ataxia symptoms in ataxia telangiectasia. Mov Disord 2012;27(10):13121316.CrossRefGoogle ScholarPubMed
Jen, JC, Graves, TD, Hess, EJ, et al. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain J Neurol 2007;130(Pt 10):24842493.CrossRefGoogle ScholarPubMed
Jen, J, Kim, GW, Baloh, RW. Clinical spectrum of episodic ataxia type 2. Neurology 2004;62(1):1722.CrossRefGoogle ScholarPubMed
Baloh, RW, Yue, Q, Furman, JM, Nelson, SF. Familial episodic ataxia: clinical heterogeneity in four families linked to chromosome 19p. Ann Neurol 1997;41(1):816.CrossRefGoogle ScholarPubMed
Strupp, M, Kalla, R, Dichgans, M, Freilinger, T, Glasauer, S, Brandt, T. Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology 2004;62(9):16231625.CrossRefGoogle ScholarPubMed
Scoggan, KA, Friedman, JH, Bulman, DE. CACNA1A mutation in a EA-2 patient responsive to acetazolamide and valproic acid. Can J Neurol Sci 2006;33(1):6872.CrossRefGoogle Scholar
Zanni, G, Bertini, E. X-linked ataxias. Handb Clin Neurol 2018;155:175189.CrossRefGoogle ScholarPubMed
Zanni, G, Bertini, ES. X-linked disorders with cerebellar dysgenesis. Orphanet J Rare Dis 2011;6:24.CrossRefGoogle ScholarPubMed
Muzar, Z, Lozano, R. Current research, diagnosis, and treatment of fragile X-associated tremor/ataxia syndrome. Intractable Rare Dis Res 2014;3(4):101109.CrossRefGoogle ScholarPubMed
Yang, J-C, Niu, Y-Q, Simon, C, et al. Memantine effects on verbal memory in fragile X-associated tremor/ataxia syndrome (FXTAS): a double-blind brain potential study. Neuropsychopharmacology 2014;39(12):27602768.CrossRefGoogle ScholarPubMed
dos Santos Ghilardi, MG, Gisbert Cury, M, Silva dos Ângelos, J, et al. Long-term improvement of tremor and ataxia after bilateral DBS of VoP/zona incerta in FXTAS. Neurology 2015;84(18):19041906.CrossRefGoogle ScholarPubMed
Di Nuzzo, C, Ruggiero, F, Cortese, F, et al. Non-invasive cerebellar stimulation in cerebellar disorders. CNS Neurol Disord Drug Targets 2018;17(3):193198.CrossRefGoogle ScholarPubMed
Grimaldi, G, Oulad Ben Taib, N, Manto, M, Bodranghien, F. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front Syst Neurosci 2014;8:9.CrossRefGoogle ScholarPubMed
Benussi, A, Koch, G, Cotelli, M, Padovani, A, Borroni, B. Cerebellar transcranial direct current stimulation in patients with ataxia: a double-blind, randomized, sham-controlled study. Mov Disord 2015;30(12):17011705.CrossRefGoogle ScholarPubMed
Benussi, A, Dell’Era, V, Cotelli, MS, et al. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimulat 2017;10(2):242250.CrossRefGoogle ScholarPubMed
Zesiewicz, TA, Wilmot, G, Kuo, SH, et al. Comprehensive systematic review summary: treatment of cerebellar motor dysfunction and ataxia: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018;90(10):464471.Google Scholar

References

Nutt, JG, Marsden, CD, Thompson, PD. Human walking and higher‐level gait disorders, particularly in the elderly. Neurology 1993;43(2):268279.CrossRefGoogle ScholarPubMed
Fasano, A, Bloem, BR. Gait disorders. Continuum (Minneap Minn) 2013;19(5):13441382.Google ScholarPubMed
Stolze, H, Klebe, S, Baecker, C, et al. Prevalence of gait disorders in hospitalized neurological patients. Mov Disord 2005;20(1):8994.CrossRefGoogle ScholarPubMed
Wenning, GK, Ebersbach, G, Verny, M, et al. Progression of falls in postmortem-confirmed Parkinsonian disorders. Mov Disord 1999;14(6):947950.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Mahlknecht, P, Kiechl, S, Bloem, BR, et al. Prevalence and burden of gait disorders in elderly men and women aged 60–97 years: a population-based study. PLoS One 2013;8(7):e69627.CrossRefGoogle ScholarPubMed
Bhatia, KP, Bain, P, Bajaj, N, et al. Consensus statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord 2018;33(1):7587.CrossRefGoogle ScholarPubMed
Capelli, P, Pivetta, C, Esposito, MS, Arber, S. Locomotor speed control circuits in the caudal brainstem. Nature 2017;551(7680):373377.CrossRefGoogle ScholarPubMed
Lawrence, DG, Kuypers, HG. The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain 1968;91(1):1536.CrossRefGoogle ScholarPubMed
Mori, S. Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol 1987;28(2):161195.CrossRefGoogle ScholarPubMed
Mackinnon, CD. Sensorimotor anatomy of gait, balance, and falls. Handb Clin Neurol 2018;159:326.CrossRefGoogle ScholarPubMed
Grillner, S, El Manira, A. Current principles of motor control, with special reference to vertebrate locomotion. Physiol Rev 2020;100(1):271320.CrossRefGoogle ScholarPubMed
Schniepp, R, Möhwald, K, Wuehr, M. Gait ataxia in humans: vestibular and cerebellar control of dynamic stability. J Neurol 2017;264(S1):8792.CrossRefGoogle ScholarPubMed
Tanaka, M, Kunimatsu, J, Suzuki, TW, et al. Roles of the cerebellum in motor preparation and prediction of timing. Neuroscience 2021;462:220234.CrossRefGoogle ScholarPubMed
da Silva, JA, Tecuapetla, F, Paixão, V, Costa, RM. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 2018;554(7691):244249.CrossRefGoogle ScholarPubMed
Takakusaki, K. Functional neuroanatomy for posture and gait control. J Mov Disord 2017;10(1):117.CrossRefGoogle ScholarPubMed
Wu, T, Hallett, M, Chan, P. Motor automaticity in Parkinson’s disease. Neurobiol Dis 2015;82:226234.CrossRefGoogle ScholarPubMed
Lehéricy, S, Benali, H, Van de Moortele, PF, et al. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci U S A 2005;102(35):1256612571.CrossRefGoogle ScholarPubMed
Lees, AJ. When did Ray Kennedy’s Parkinson’s disease begin? Mov Disord 1992;7(2):110116.CrossRefGoogle ScholarPubMed
Mori, S, Matsui, T, Kuze, B, et al. Cerebellar-induced locomotion: reticulospinal control of spinal rhythm generating mechanism in cats. Ann N Y Acad Sci 1998;860(1):94105.CrossRefGoogle ScholarPubMed
Fearon, C, Doherty, L, Lynch, T. How do I examine rigidity and spasticity? Mov Disord Clin Pract 2015;2(2):204.CrossRefGoogle ScholarPubMed
Abdo, WF, Borm, GF, Munneke, M, et al. Ten steps to identify atypical parkinsonism. J Neurol Neurosurg Psychiatry 2006;77(12):13671369.CrossRefGoogle ScholarPubMed
de Hoon, EW, Allum, JH, Carpenter, MG, et al. Quantitative assessment of the stops walking while talking test in the elderly. Arch Phys Med Rehabil 2003;84(6):838842.CrossRefGoogle ScholarPubMed
Rochester, L, Yarnall, AJ, Baker, MR, et al. Cholinergic dysfunction contributes to gait disturbance in early Parkinson’s disease. Brain 2012;135(9):27792788.CrossRefGoogle ScholarPubMed
Rajan, R, Saini, A, Verma, B, et al. Anticholinergics may carry significant cognitive and gait burden in Parkinson’s disease. Mov Disord Clin Pract 2020;7(7):803809.CrossRefGoogle ScholarPubMed
Henderson, EJ, Lord, SR, Brodie, MA, et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2016;15(3):249258.CrossRefGoogle ScholarPubMed
Giladi, N, McDermott, MP, Fahn, S, et al. Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology 2001;56(12):17121721.CrossRefGoogle ScholarPubMed
Fasano, A, Laganiere, SE, Lam, S, Fox, MD. Lesions causing freezing of gait localize to a cerebellar functional network. Ann Neurol 2017;81(1):129141.CrossRefGoogle ScholarPubMed
Nonnekes, J, Snijders, AH, Nutt, JG, et al. Freezing of gait: a practical approach to management. Lancet Neurol 2015;14(7):768778.CrossRefGoogle Scholar
Nonnekes, J, Růžička, E, Nieuwboer, A, et al. Compensation strategies for gait impairments in Parkinson disease: a review. JAMA Neurol 2019;76(6):718725.CrossRefGoogle ScholarPubMed
Moreau, C, Delval, A, Defebvre, L, et al. Methylphenidate for gait hypokinesia and freezing in patients with Parkinson’s disease undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-controlled trial. Lancet Neurol 2012;11(7):589596.CrossRefGoogle ScholarPubMed
Nonnekes, J, Bereau, M, Bloem, BR. Freezing of gait and its levodopa paradox. JAMA Neurol 2020;77(3):287288.CrossRefGoogle Scholar
Elble, RJ. Gait and dementia: moving beyond the notion of gait apraxia. J Neural Transm (Vienna) 2007;114(10):1253.CrossRefGoogle ScholarPubMed
Nutt, JG. Higher-level gait disorders: an open frontier. Mov Disord 2013;28(11):15601565.CrossRefGoogle ScholarPubMed
Giladi, N, Huber-Mahlin, V, Herman, T, Hausdorff, JM. Freezing of gait in older adults with high level gait disorders: association with impaired executive function. J Neural Transm (Vienna) 2007;114(10):13491353.CrossRefGoogle ScholarPubMed
Graff-Radford, NR, Jones, DT. Normal pressure hydrocephalus. Continuum (Minneap Minn) 2019;25(1):165186.Google ScholarPubMed
Wang, Z, Zhang, Y, Hu, F, Ding, J, Wang, X. Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus. CNS Neurosci Ther 2020;26(12):12301240.CrossRefGoogle ScholarPubMed
Ringstad, G, Emblem, KE, Eide, PK. Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus. J Neurosurg 2016;124(6):18501857.CrossRefGoogle ScholarPubMed
Townley, RA, Botha, H, Graff-Radford, J, et al. 18F-FDG PET-CT pattern in idiopathic normal pressure hydrocephalus. NeuroImage Clin 2018;18:897902.CrossRefGoogle ScholarPubMed
Lenfeldt, N, Larsson, A, Nyberg, L, et al. Idiopathic normal pressure hydrocephalus: increased supplementary motor activity accounts for improvement after CSF drainage. Brain 2008;131(11):29042912.CrossRefGoogle ScholarPubMed
Nakajima, M, Yamada, S, Miyajima, M, et al. Guidelines for management of idiopathic normal pressure hydrocephalus (third edition): endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir (Tokyo) 2021;61(2):6397.CrossRefGoogle ScholarPubMed
Relkin, N, Marmarou, A, Klinge, P, Bergsneider, M, Black, PMcL. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005;57(Suppl 3):S24.CrossRefGoogle ScholarPubMed
Tan, C, Wang, X, Wang, Y, et al. The pathogenesis based on the glymphatic system, diagnosis, and treatment of idiopathic normal pressure hydrocephalus. Clin Interv Aging 2021;16:139153.CrossRefGoogle ScholarPubMed
Bae, YJ, Choi, BS, Kim, JM, et al. Altered glymphatic system in idiopathic normal pressure hydrocephalus. Parkinsonism Relat Disord 2021;82:5660.CrossRefGoogle ScholarPubMed
Saper, CB. Restoration: potential for compensatory changes in numbers of neurons in adult human brain. Ann Neurol 2013;74(6):762764.CrossRefGoogle ScholarPubMed
Espay, AJ, Da Prat, GA, Dwivedi, AK, et al. Deconstructing normal pressure hydrocephalus: ventriculomegaly as early sign of neurodegeneration. Ann Neurol 2017;82(4):503513.CrossRefGoogle Scholar
Müller-Schmitz, K, Krasavina-Loka, N, Yardimci, T, et al. Normal pressure hydrocephalus associated with Alzheimer’s disease. Ann Neurol 2020;88(4):703711.CrossRefGoogle ScholarPubMed
Baik, JS, Lang, AE. Gait abnormalities in psychogenic movement disorders. Mov Disord 2007;22(3):395399.CrossRefGoogle ScholarPubMed
Balint, B, Winsen, LML van, Bhatia, KP, Bloem, BR. Psychogenic movement disorders: gait is a give-away! Mov Disord Clin Pract 2014;1(2):110111.CrossRefGoogle ScholarPubMed
Aybek, S, Perez, DL. Diagnosis and management of functional neurological disorder. BMJ 2022;376:o64.CrossRefGoogle ScholarPubMed

References

Bhatia, KP. Paroxysmal dyskinesias. Mov Disord 2011;26(6):11571165.CrossRefGoogle ScholarPubMed
Kertesz, A. Paroxysmal kinesigenic choreoathetosis. An entity within the paroxysmal choreoathetosis syndrome. Description of 10 cases, including 1 autopsied. Neurology 1967;17(7):680690.CrossRefGoogle ScholarPubMed
Richards, RN, Barnett, HJ. Paroxysmal dystonic choreoathetosis. A family study and review of the literature. Neurology 1968;18(5):461469.CrossRefGoogle ScholarPubMed
Lance, JW. Familial paroxysmal dystonic choreoathetosis and its differentiation from related syndromes. Ann Neurol 1977;2(4):285293.CrossRefGoogle ScholarPubMed
Goodenough, DJ, Fariello, RG, Annis, BL, Chun, RW. Familial and acquired paroxysmal dyskinesias. A proposed classification with delineation of clinical features. Arch Neurol 1978;35(12):827831.CrossRefGoogle ScholarPubMed
Fahn, S. The paroxysmal dyskinesias. In: Marsden, CD, Fahn, S, eds. Movement Disorders 3. Oxford: Butterworth-Heinemann; 1994: 310345.Google Scholar
Demirkiran, M, Jankovic, J. Paroxysmal dyskinesias: clinical features and classification. Ann Neurol 1995;38(4):571579.CrossRefGoogle ScholarPubMed
Méneret, A, Gaudebout, C, Riant, F, et al. PRRT2 mutations and paroxysmal disorders. Eur J Neurol 2013;20(6):872878.CrossRefGoogle ScholarPubMed
Chen, WJ, Lin, Y, Xiong, ZQ, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 2011;43(12):12521255.CrossRefGoogle ScholarPubMed
Rainier, S, Thomas, D, Tokarz, D, et al. Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol 2004;61(7):10251029.CrossRefGoogle ScholarPubMed
Suls, A, Dedeken, P, Goffin, K, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 2008;131(Pt 7):18311844.CrossRefGoogle ScholarPubMed
Liao, JY, Salles, PA, Shuaib, UA, Fernandez, HH. Genetic updates on paroxysmal dyskinesias. J Neural Transm (Vienna) 2021;128(4):447471.CrossRefGoogle ScholarPubMed
van Rootselaar, AF, Schade van Westrum, S, Velis, DN, Tijssen, MA. The paroxysmal dyskinesias. Pract Neurol 2009;9(2):102109.CrossRefGoogle ScholarPubMed
Bruno, MK, Hallett, M, Gwinn-Hardy, K, et al. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology 2004;63(12):22802287.CrossRefGoogle ScholarPubMed
de Gusmão, CM, Garcia, L, Mikati, MA, Su, S, Silveira-Moriyama, L. Paroxysmal genetic movement disorders and epilepsy. Front Neurol 2021;12:648031.CrossRefGoogle ScholarPubMed
Wang, JL, Cao, L, Li, XH, Hu, ZM, Li, JD, Zhang, JG, et al. Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 2011;134(Pt 12):34933501.CrossRefGoogle Scholar
Erro, R, Sheerin, UM, Bhatia, KP. Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Mov Disord 2014;29(9):11081116.CrossRefGoogle ScholarPubMed
Ebrahimi-Fakhari, D, Saffari, A, Westenberger, A, Klein, C. The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain 2015;138(Pt 12):34763495.CrossRefGoogle ScholarPubMed
Heron, SE, Grinton, BE, Kivity, S, et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 2012;90(1):152160.CrossRefGoogle ScholarPubMed
Ono, S, Yoshiura, K, Kinoshita, A, et al. Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J Hum Genet 2012;57(5):338341.CrossRefGoogle ScholarPubMed
Watanabe, K, Yamamoto, N, Negoro, T, et al. Benign complex partial epilepsies in infancy. Pediatr Neurol 1987;3(4):208211.CrossRefGoogle ScholarPubMed
Dale, RC, Gardiner, A, Antony, J, Houlden, H. Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Dev Med Child Neurol 2012;54(10):958960.CrossRefGoogle ScholarPubMed
Gardiner, AR, Bhatia, KP, Stamelou, M, et al. PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology 2012;79(21):21152121.CrossRefGoogle ScholarPubMed
Liu, XR, Huang, D, Wang, J, et al. Paroxysmal hypnogenic dyskinesia is associated with mutations in the PRRT2 gene. Neurol Genet 2016;2(2):e66.CrossRefGoogle ScholarPubMed
Landolfi, A, Barone, P, Erro, R. The spectrum of PRRT2-associated disorders: update on clinical features and pathophysiology. Front Neurol 2021;12:629747.CrossRefGoogle ScholarPubMed
Tian, WT, Huang, XJ, Mao, X, et al. Proline-rich transmembrane protein 2-negative paroxysmal kinesigenic dyskinesia: clinical and genetic analyses of 163 patients. Mov Disord 2018;33(3):459467.CrossRefGoogle ScholarPubMed
Gardella, E, Becker, F, Møller, RS, et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol 2016;79(3):428436.CrossRefGoogle ScholarPubMed
Balint, B, Erro, R, Salpietro, V, Houlden, H, Bhatia, KP. PKD or not PKD: that is the question. Ann Neurol 2016;80(1):167168.CrossRefGoogle ScholarPubMed
European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Wilson’s disease. J Hepatol 2012;56(3):6710–685.Google Scholar
Kim, HJ, Yoon, JH. A case of Wilson’s disease presenting with paroxysmal dystonia. Neurol Sci 2017;38(10):18811882.CrossRefGoogle ScholarPubMed
Harvey, S, King, MD, Gorman, KM. Paroxysmal movement disorders. Front Neurol 2021;12:659064.CrossRefGoogle ScholarPubMed
Bruno, MK, Lee, HY, Auburger, GW, et al. Genotype–phenotype correlation of paroxysmal nonkinesigenic dyskinesia. Neurology 2007;68(21):17821789.CrossRefGoogle ScholarPubMed
Erro, R, Bhatia, KP. Unravelling of the paroxysmal dyskinesias. J Neurol Neurosurg Psychiatry 2019;90(2):227234.CrossRefGoogle ScholarPubMed
Pandey, S, Tomar, LR, Mahadevan, L. Progressive nonparoxysmal chorea and dystonia due to myofibrillogenesis regulator-1 gene mutation. Parkinsonism Relat Disord 2019;60:186187.CrossRefGoogle ScholarPubMed
Sun, N, Nasello, C, Deng, L, et al. The PNKD gene is associated with Tourette disorder or Tic disorder in a multiplex family. Mol Psychiatry 2018;23(6):14871495.CrossRefGoogle ScholarPubMed
Lee, HY, Nakayama, J, Xu, Y, et al. Dopamine dysregulation in a mouse model of paroxysmal nonkinesigenic dyskinesia. J Clin Invest 2012;122(2):507518.CrossRefGoogle Scholar
Ghezzi, D, Viscomi, C, Ferlini, A, et al. Paroxysmal non-kinesigenic dyskinesia is caused by mutations of the MR-1 mitochondrial targeting sequence. Hum Mol Genet 2009;18(6):10581064.CrossRefGoogle ScholarPubMed
Du, W, Bautista, JF, Yang, H, et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 2005;37(7):733738.CrossRefGoogle Scholar
Zhang, ZB, Tian, MQ, Gao, K, Jiang, YW, Wu, Y. De novo KCNMA1 mutations in children with early-onset paroxysmal dyskinesia and developmental delay. Mov Disord 2015;30(9):12901292.CrossRefGoogle ScholarPubMed
Balint, B, Stephen, CD, Udani, V, et al. Paroxysmal asymmetric dystonic arm posturing – a less recognized but characteristic manifestation of ATP1A3-related disease. Mov Disord Clin Pract 2019;6(4):312315.CrossRefGoogle ScholarPubMed
Marzin, P, Mignot, C, Dorison, N, et al. Early-onset encephalopathy with paroxysmal movement disorders and epileptic seizures without hemiplegic attacks: about three children with novel ATP1A3 mutations. Brain Dev 2018;40(9):768774.CrossRefGoogle ScholarPubMed
Uchitel, J, Helseth, A, Prange, L, et al. The epileptology of alternating hemiplegia of childhood. Neurology 2019;93(13):e1248e1259.CrossRefGoogle ScholarPubMed
Sethi, KD, Bhatia, KP, eds. Paroxysmal Movement Disorders. Cham: Springer International Publishing; 2021.CrossRefGoogle Scholar
De Vivo, DC, Trifiletti, RR, Jacobson, RI, et al. Defective glucose transport across the blood–brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 1991;325(10):703709.CrossRefGoogle ScholarPubMed
De Giorgis, V, Teutonico, F, Cereda, C, et al. Sporadic and familial glut1ds Italian patients: a wide clinical variability. Seizure 2015;24:2832.CrossRefGoogle ScholarPubMed
Gardiner, AR, Jaffer, F, Dale, RC, et al. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain 2015;138(Pt 12):35673580.CrossRefGoogle ScholarPubMed
Mencacci, NE, Isaias, IU, Reich, MM, et al. Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers. Brain 2014;137(Pt 9):24802492.CrossRefGoogle ScholarPubMed
Dale, RC, Melchers, A, Fung, VS, et al. Familial paroxysmal exercise-induced dystonia: atypical presentation of autosomal dominant GTP-cyclohydrolase 1 deficiency. Dev Med Child Neurol 2010;52(6):583586.CrossRefGoogle ScholarPubMed
Erro, R, Stamelou, M, Ganos, C, et al. The clinical syndrome of paroxysmal exercise-induced dystonia: diagnostic outcomes and an algorithm. Mov Disord Clin Pract 2014;1(1):5761.CrossRefGoogle ScholarPubMed
Olgiati, S, Skorvanek, M, Quadri, M, et al. Paroxysmal exercise-induced dystonia within the phenotypic spectrum of ECHS1 deficiency. Mov Disord 2016;31(7):10411048.CrossRefGoogle ScholarPubMed
Lüthy, K, Mei, D, Fischer, B, et al. TBC1D24-TLDc-related epilepsy exercise-induced dystonia: rescue by antioxidants in a disease model. Brain 2019;142(8):23192335.CrossRefGoogle Scholar
Steel, D, Heim, J, Kruer, MC, et al. Biallelic mutations of TBC1D24 in exercise-induced paroxysmal dystonia. Mov Disord 2020;35(2):372373.CrossRefGoogle ScholarPubMed
VanDyke, DH, Griggs, RC, Murphy, MJ, Goldstein, MN. Hereditary myokymia and periodic ataxia. J Neurol Sci 1975;25(1):109118.CrossRefGoogle ScholarPubMed
Browne, DL, Gancher, ST, Nutt, JG, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 1994;8(2):136140.CrossRefGoogle ScholarPubMed
Ganos, C, Aguirregomozcorta, M, Batla, A, et al. Psychogenic paroxysmal movement disorders – clinical features and diagnostic clues. Parkinsonism Relat Disord 2014;20(1):4146.CrossRefGoogle ScholarPubMed
Plant, GT, Williams, AC, Earl, CJ, Marsden, CD. Familial paroxysmal dystonia induced by exercise. J Neurol Neurosurg Psychiatry 1984;47(3):275279.CrossRefGoogle ScholarPubMed

References

Chokroverty, S, Allen, RP, Walters, AS, Montagna, P. Sleep and Movement Disorders. Oxford: Oxford University Press; 2013.CrossRefGoogle Scholar
De Cock Cochen, VC, Vidaihlet, M, Leu, S, et al. Restoration of normal motor control in Parkinson’s disease during REM sleep. Brain 2007;130:450456.CrossRefGoogle Scholar
Allen, RP, Picchietti, DL, Garcia-Borreguero, D, et al. Restless legs syndrome/Willis–Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria – history, rationale, description, and significance. Sleep Med 2014;15(8):860873.CrossRefGoogle Scholar
Kallweit, U, Siccoli, M, Poryazova, R, Werth, E, Bassetti, CL. Excessive daytime sleepiness in idiopathic restless legs syndrome: Characteristics and evolution under dopaminergic treatment. Eur Neurol 2009;62(3):176179.CrossRefGoogle ScholarPubMed
Bassetti, C, Mauerhofer, D, Mathis, J, Gugger, M, Hess, CW. Restless legs syndrome: a clinical study of 55 patients. Eur Neurol 2001;45:6774.CrossRefGoogle ScholarPubMed
Allen, RP, Picchietti, D, Hening, WA, et al. Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology. A report from the restless legs syndrome diagnosis and epidemiology workshop of the National Institute of Health. Sleep Med 2003;4(2):101119.CrossRefGoogle Scholar
Montplaisir, J, Boucher, S, Poirier, G, et al. Clinical, polysomnographic and genetic characteristics of restless legs syndrome: a study of 133 patients diagnosed with standard criteria. Mov Disord 1997;12:6165.CrossRefGoogle ScholarPubMed
Haba-Rubio, J, Marti-Soler, H, Marques-Vidal, P, et al. Prevalence and determinants of periodic limb movements in the general population. Ann Neurol 2016;79(3):464474.CrossRefGoogle ScholarPubMed
Rugh, JD, Harlan, J. Nocturnal bruxism and temporomandibular disorders. Adv Neurol 1988;49:329341.Google ScholarPubMed
Khoury, S, Carra, MC, Huynh, N, Montplaisir, J, Lavigne, GJ. Sleep bruxism – tooth grinding prevalence, characteristics and familial aggregation: a large cross-sectional survey and polysomnographic validation. Sleep 2016;39(11):20492056.CrossRefGoogle ScholarPubMed
Manfredini, D, Winocur, E, Guarda-Nardini, L, Paesani, D, Lobbezoo, F. Epidemiology of bruxism in adults: a systematic review of the literature. J Orofac Pain 2013;27(2):99110.CrossRefGoogle ScholarPubMed
American Academy of Sleep Medicine, International Classification of Sleep Disorders, American Academy of Sleep Medicine, 3rd ed. Darien, IL: AASM; 2014.Google Scholar
Allen, RE, Kirby, KA. Nocturnal leg cramps. Am Fam Physician 2012;86(4):350355.Google ScholarPubMed
Vetrugno, R, Provini, E, Meletti, S, et al. Propriospinal myoclonus at the sleep–wake transition: a new-type of parasomnia. Sleep 2001;24(7):835843.Google ScholarPubMed
Antelmi, E, Provini, F. Propriospinal myoclonus: the spectrum of clinical and neurophysiological phenotypes. Sleep Med Rev 2015;22:5463.CrossRefGoogle ScholarPubMed
De Roeck, J, van Hoof, E, Cluydts, R. Sleep-related expiratory groaning: a case report. Sleep 1983;12:237.Google Scholar
Hao, Z, Xu, L, Zhang, J, et al. Anatomical characteristics of catathrenia (nocturnal groaning) in upper airway and orofacial structures. Sleep Breath 2016;20(1):103111.CrossRefGoogle ScholarPubMed
Guilleminault, C, Hagen, CC, Khaja, AM. Catathrenia is not expiratory snoring. Sleep 2008;31(6):774775.CrossRefGoogle ScholarPubMed
Guilleminault, C, Hagen, CC, Khaja, AM. Catathrenia: parasomnia or uncommon feature of sleep disordered breathing? Sleep 2008;31(1):132139.CrossRefGoogle ScholarPubMed
Tinuper, P, Provini, F, Bisulli, F, al. e. Movement disorders in sleep: guidelines differentiating epielptic from non-epileptic motro phenomena arising from sleep. Sleep Med Rev 2007;11:255267.CrossRefGoogle Scholar
Broughton, R, Tolentino, MA, Krelina, M. Excessive fragmentary myoclonus in NREM sleep: a report of 38 cases. Electroencephalogr Clin Neurophysiol 1985;61:123133.CrossRefGoogle ScholarPubMed
Sobreira-Neto, MA, Pena-Pereira, MA, Sobreira, ES, et al. Excessive fragmentary myoclonus in patients with Parkinson’s disease: prevalence and clinico-polysomnographic profile. Sleep Breath 2015;19(3):9971002.CrossRefGoogle ScholarPubMed
Raccagni, C, Loscher, WN, Stefani, A, et al. Peripheral nerve function in patients with excessive fragmentary myoclonus during sleep. Sleep Med 2016;22:6164.CrossRefGoogle ScholarPubMed
Oswald, I. Sudden bodily jerks on falling asleep. Brain 1959;82:92103.CrossRefGoogle ScholarPubMed
Frenette, E, Guilleminault, C. Nonepileptic paroxysmal sleep disorders. Handb Clin Neurol 2013;112:857860.CrossRefGoogle ScholarPubMed
Walters, AS. Clinical identification of the simple sleep-related movement disorders. Chest 2007;131(4):12601266.CrossRefGoogle ScholarPubMed
Chiaro, G, Calandra-Buonaura, G, Sambati, L, et al. Hypnic jerks are an underestimated sleep motor phenomenon in patients with parkinsonism. A video-polysomnographic and neurophysiological study. Sleep Med 2016;26:3744.CrossRefGoogle ScholarPubMed
Schenck, CH, Bundlie, SR, Patterson, AL, Mahowald, MW. Rapid eye movement sleep behavior disorder. JAMA 1987;257:17861789.CrossRefGoogle ScholarPubMed
Bassetti, CL, Bargiotas, P. REM sleep behavior disorder. Front Neurol Neurosci 2018;41:104116.CrossRefGoogle ScholarPubMed
Di Fabio, N, Poryazova, R, Oberholazer, M, Baumann, CR, Bassetti, CL. Sleepwalking, REM sleep behaviour disorder and overlap parasomnia in patients with Parkinson’s disease. Eur Neurol 2013;70(5–6):297303.CrossRefGoogle ScholarPubMed
Mahowald, MW, Schenck, CH. Status dissociatus – a perspective on states of being. Sleep 1991;14:6979.CrossRefGoogle ScholarPubMed
Provini, F, Vetrugno, R, Pastorelli, F, et al. Status dissociatus after surgery for tegmental ponto-mesencephalic cavernoma: a state-dependent disorder of motor control during sleep. Mov Disord 2004;19(6):719723.CrossRefGoogle ScholarPubMed
Iranzo, A, Molinuevo, JL, Santamaria, J, et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol 2006;5(7):572577.CrossRefGoogle Scholar
Postuma, RB, Gagnon, JF, Vendette, M, et al. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology 2009;72(15):12961300.CrossRefGoogle ScholarPubMed
Knudsen, S, Gammeltoft, S, Jennum, PJ. Rapid eye movement sleep behaviour disorder in patients with narcolepsy is associated with hypocretin-1 deficiency. Brain 2010;133(Pt 2):568579.CrossRefGoogle ScholarPubMed
Antelmi, E, Pizza, F, Vandi, S, et al. The spectrum of REM sleep-related episodes in children with type 1 narcolepsy. Brain 2017;140(6):16691679.CrossRefGoogle ScholarPubMed
Schenck, CH, Montplaisir, JY, Frauscher, B, et al. Rapid eye movement sleep behavior disorder: devising controlled active treatment studies for symptomatic and neuroprotective therapy – a consensus statement from the International Rapid Eye Movement Sleep Behavior Disorder Study Group. Sleep Med 2013;14(8):795806.CrossRefGoogle ScholarPubMed
Zadra, A, Desautels, A, Petit, D, Montplaisir, J. Somnambulism: clinical aspects and pathophysiological hypotheses. Lancet Neurol 2013;12:285294.CrossRefGoogle ScholarPubMed
Bassetti, CL. Sleepwalking (somnambulism). In: Laures, S, Tononi, G, eds. The Neurology of Consciousness: Cognitive Neuroscience and Neuropathology. New York: Academic Press; 2009.Google Scholar
Schenck, CH, Mahowald, MW. A polysomnographically documented case of adult somnambulism with long-distance automobile driving and frequent nocturnal violence: parasomnia with continuing danger as a noninsane automatism. Sleep 1995;18(9):765772.CrossRefGoogle ScholarPubMed
Kavey, NB, Whyte, J, Resor, SR, Gidro-Frank, S. Somnambulism in adults. Neurology 1990;40:749752.CrossRefGoogle ScholarPubMed
Bargiotas, P, Arnet, I, Frei, M, et al. Demographic, clinical and polysomnographic characteristics of childhood- and adult-onset sleepwalking in adults. Eur Neurol 2017;78(5–6):307311.CrossRefGoogle ScholarPubMed
Siclari, F, Khatami, R, Urbaniok, F, et al. Violence in sleep. Brain 2010;133:34943509.CrossRefGoogle ScholarPubMed
Andersen, ML, Poyares, D, Alves, RSC, Skomro, R, Tufik, S. Sexsomnia: abnormal sexual behavior during sleep. Brain Res Rev 2007;56:271282.CrossRefGoogle ScholarPubMed
Perogamvros, L, Aberg, K, Gex-Fabry, M, et al. Increased reward-related behaviors during sleep and wakefulness in sleepwalking and idiopathic nightmares. PLoS one. 2015;10(8):e0134504.CrossRefGoogle ScholarPubMed
Pedley, TA, Guilleminault, C. Episodic nocturnal wanderings responsive to anticonvulsant drug therapy. Ann Neurol 1977;2:3035.CrossRefGoogle ScholarPubMed
Oberholzer, M, Poryazova, R, Bassetti, CL. Sleepwalking in Parkinson’s disease: a questionnaire-based survey. J Neurol 2011;258:12611267.CrossRefGoogle ScholarPubMed
Schenck, CH, Milner, DM, Hurwitz, TD, et al. Dissociative disorders presenting as somnambulism: polysomnographic, video and clinical documentation. Dissociation 1989;2:194204.Google Scholar
Hublin, C, Kaprio, J. Genetic aspects and genetic epidemiology of parasomnias. Sleep Med Rev 2003;7(5):413421.CrossRefGoogle ScholarPubMed
Kales, A, Soldatos, CR, Caldwell, AB, et al. Somnambulism. Clinical characteristics and personality patterns. Arch Gen Psychiatry 1980;37(12):14061410.CrossRefGoogle ScholarPubMed
Hublin, C, Kaprio, J, Partinen, M, Heikkilä, K, Koskenvuo, M. Prevalence and genetics of sleepwalking: a population-based twin study. Neurology 1997;48(1):177181.CrossRefGoogle ScholarPubMed
Ohayon, MM, Mahowald, MW, Dauvilliers, Y, Krystal, AD, Leger, D. Prevalence and comorbidity of nocturnal wandering in the U.S. adult general population. Neurology 2012;78(20):15831589.CrossRefGoogle ScholarPubMed
Carrillo-Solano, M, Leu-Semenescu, S, Golmard, JL, Groos, E, Arnulf, I. Sleepiness in sleepwalking and sleep terrors: a higher sleep pressure? Sleep Med 2016;26:5459.CrossRefGoogle ScholarPubMed
Kales, JD, Kales, A, Soldatos, CR, et al. Night terrors. Clinical characteristics and personality patterns. Arch GenPsychiatry 1980;37(12):14131417.CrossRefGoogle ScholarPubMed
Ohayon, MM, Zulley, J, Guilleminault, C, Smirne, S. Prevalence and pathologic associations of sleep paralysis in the general population. Neurology 1999;52(6):11941200.CrossRefGoogle ScholarPubMed
Laberge, L, Carrier, J, Lesperance, P, et al. Sleep and circadian phase characteristics of adolescent and young adult males in a naturalistic summertime condition. Chronobiol Int 2000;17(4):489501.CrossRefGoogle Scholar
Passouant, P, Billiard, M. The evolution of narcolepsy with age. In: Guilleminault, C, Dement, WC, Passouant, P, eds. Narcolepsy. New York: Spectrum; 1976: 179200.Google ScholarPubMed
Dahlitz, M, Parkes, JD. Sleep paralysis. Lancet 1993;341:406407.CrossRefGoogle ScholarPubMed
Denis, D, Poerio, GL. Terror and bliss? Commonalities and distinctions between sleep paralysis, lucid dreaming, and their associations with waking life experiences. J Sleep Res 2017;26(1):3847.CrossRefGoogle ScholarPubMed
Liskova, M, Janeckova, D, Kluzova Kracmarova, L, Mlada, K, Buskova, J. The occurrence and predictive factors of sleep paralysis in university students. Neuropsychiatric Dis Treat 2016;12:29572962.CrossRefGoogle ScholarPubMed
Sharpless, BA, Grom, JL. Isolated sleep paralysis: fear, prevention, and disruption. Behav Sleep Med 2016;14(2):134139.CrossRefGoogle ScholarPubMed
Sharpless, BA, Barber, JP. Lifetime prevalence rates of sleep paralysis: a systematic review. Sleep Med Rev 2011;15(5):311315.CrossRefGoogle ScholarPubMed
Dodet, P, Chavez, M, Leu-Semenescu, S, Golmard, JL, Arnulf, I. Lucid dreaming in narcolepsy. Sleep 2015;38(3):487497.CrossRefGoogle ScholarPubMed
Inoue, Y. Sleep-related eating disorder and its associated conditions. Psychiatry Clin Neurosci 2015;69(6):309320.CrossRefGoogle ScholarPubMed
Winkelman, JW, Herzog, DB, Fava, M. The prevalence of sleep-related eating disorder in psychiatric and non-psychiatric populations. Psychol Med 1999;29(6):14611466.CrossRefGoogle ScholarPubMed
Vetrugno, R, Manconi, M, Ferini-Strambi, L, et al. Nocturnal eating: sleep-related eating disorder or night eating syndrome? A videopolysomnographic study. Sleep 2006;29(7):949954.CrossRefGoogle ScholarPubMed
Auger, RR. Sleep-related eating disorders. Psychiatry 2006;3:6470.Google ScholarPubMed
Marconi, S, Scarlatti, F, Rizzo, G, et al. Is nocturnal eating in restless legs syndrome linked to a specific psychopathological profile? A pilot study. J Neural Transm (Vienna) 2015;122(11):15631571.CrossRefGoogle ScholarPubMed
Vinai, P, Ferri, R, Anelli, M, et al. New data on psychological traits and sleep profiles of patients affected by nocturnal eating. Sleep Med 2015;16(6):746753.CrossRefGoogle ScholarPubMed
Panayiotopoulos, CP, Michale, M, Sanders, S, et al. Benign childhood focal epilepsies: assessment of established and newly recognized syndromes. Brain 2008;131:22642286.CrossRefGoogle ScholarPubMed
Bernasconi, A, Andermann, F, Cendes, F, et al. Nocturnal temporal lobe epilepsy. Neurology 1998;50:17721777.CrossRefGoogle ScholarPubMed
Plazzi, G, Provini, E, Tinuper, P, et al. Nocturnal frontal lobe epilepsy: clinical, video-polsyomnographic, and genetic data in 100 cases. Neurology 1998;50:A67.Google Scholar
Provini, F, Plazzi, G, Tinuper, P, et al. Nocturnal frontal lobe epilepsy. A clinical and polygraphic overview of 100 consecutive patients. Brain 1999;122:10171022.CrossRefGoogle Scholar
Pani, SM, Fraschini, M, Figorilli, M, et al. Sleep-related hypermotor epilepsy and non-rapid eye movement parasomnias: differences in the periodic and aperiodic component of the electroencephalographic power spectra. J Sleep Res 2021;30(5):e13339.CrossRefGoogle ScholarPubMed
Vignatelli, L, Bisulli, F, Giovannini, G, et al. Prevalence of sleep-related hypermotor epilepsy – formerly named nocturnal frontal lobe epilepsy – in the adult population of the Emilia-Romagna region, Italy. Sleep 2017;40(2):zsw041.Google ScholarPubMed
Scheffer, IE, Bhatia, KP, Lopes-Cendes, I, et al. Autosomal dominant nocturnal frontal lobe epilepsy misdiagnosed as sleep disorder. Lancet 1995;343:515517.CrossRefGoogle Scholar
Tinuper, P, Provini, E, Bisulli, F, Lugaresi, E. Hyperkinetic manifestations in nocturnal frontal lobe epilesy. Semeiological features and physiopathological hypothesis. Neurol Sci 2005;26:210214.CrossRefGoogle Scholar
Siclari, F, Nobili, L, Lo Russo, G, et al. Stimulus-induced, sleep-bound, focal seizures: a case report. Sleep 2011;34(12):17271730.CrossRefGoogle ScholarPubMed
Thacker, K, Devinsky, O, Perrine, K, Alper, K, Luciano, D. Nonepileptic seizures during apparent sleep. Ann Neurol 1993;33:414418.CrossRefGoogle ScholarPubMed
Trenkwalder, C, Allen, R, Hogl, B, Paulus, W, Winkelmann, J. Restless legs syndrome associated with major diseases: a systematic review and new concept. Neurology 2016;86(14):13361343.CrossRefGoogle Scholar
Winkelmann, J, Schormair, B, Xiong, L, et al. Genetics of restless legs syndrome. Sleep Med 2017;31:1822.CrossRefGoogle ScholarPubMed
Xiong, L, Montplaisir, J, Desautels, A, et al Family study of restless legs syndrome in Quebec, Canada: clinical characterization of 671 familial cases. Arch Neurol 2010;67(5):617622.CrossRefGoogle ScholarPubMed
Lemke, JR, Lal, D, Reinthaler, EM, et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nature Genet 2013;45(9):10671072.CrossRefGoogle ScholarPubMed
Dauvilliers, Y, Postuma, RB, Ferini-Strambi, L, et al. Family history of idiopathic REM behavior disorder: a multicenter case-control study. Neurology 2013;80(24):22332235.CrossRefGoogle ScholarPubMed
Gan-Or, Z, Mirelman, A, Postuma, RB, et al. GBA mutations are associated with rapid eye movement sleep behavior disorder. Ann Clin Transl Neurol 2015;2(9):941945.CrossRefGoogle ScholarPubMed
Gan-Or, Z, Girard, SL, Noreau, A, et al. Parkinson’s disease genetic loci in rapid eye movement sleep behavior disorder. J Mol Neurosci 2015;56(3):617622.CrossRefGoogle ScholarPubMed
Toffoli, M, Dreussi, E, Cecchin, E, et al. SNCA 3′UTR genetic variants in patients with Parkinson’s disease and REM sleep behavior disorder. Neurol Sci 2017;38(7):12331240.CrossRefGoogle ScholarPubMed
Gan-Or, Z, Montplaisir, JY, Ross, JP, et al. The dementia-associated APOE epsilon4 allele is not associated with rapid eye movement sleep behavior disorder. Neurobiol Aging 2017;49:218e213218e215.CrossRefGoogle Scholar
Winkelman, JW, Blackwell, T, Stone, K, et al. Genetic associations of periodic limb movements of sleep in the elderly for the MrOS sleep study. Sleep Med 2015;16(11):13601365.CrossRefGoogle ScholarPubMed
Stefansson, H, Rye, DB, Hicks, A, et al. A genetic risk factor for periodic limb movements in sleep. N Engl J Med 2007;357(7):639647.CrossRefGoogle ScholarPubMed
Denis, D, French, CC, Rowe, R, et al. A twin and molecular genetics study of sleep paralysis and associated factors. J Sleep Res 2015;24(4):438446.CrossRefGoogle ScholarPubMed
Bargiotas, P, Schuepbach, MW, Bassetti, CL. Sleep–wake disturbances in the premotor and early stage of Parkinson’s disease. Curr Opin Neurol 2016;29(6):763772.CrossRefGoogle ScholarPubMed
Iranzo, A, Molinuevo, JL, Santamaria, J, et al. Rapid-eye movement sleep behaviour disorder as an eraly marker for a neurodegenertaive disorder: a descriptive study. Lancet Neurol 2006;5:572577.CrossRefGoogle Scholar
Chahine, LM, Xie, SX, Simuni, T, et al. Longitudinal changes in cognition in early Parkinson’s disease patients with REM sleep behavior disorder. Parkinsonism Relat Disord 2016;27:102106.CrossRefGoogle ScholarPubMed
Mollenhauer, B, Zimmermann, J, Sixel-Doring, F, et al. Monitoring of 30 marker candidates in early Parkinson disease as progression markers. Neurology 2016;87(2):168177.CrossRefGoogle ScholarPubMed
Sixel-Doring, F, Zimmermann, J, Wegener, A, Mollenhauer, B, Trenkwalder, C. The evolution of REM sleep behavior disorder in early Parkinson disease. Sleep 2016;39(9):17371742.CrossRefGoogle ScholarPubMed
Iranzo, A, Tllosa, E, Gelpi, E, et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: an observational cohort study. Lancet Neurol 2013;12:443453.CrossRefGoogle ScholarPubMed
Mahlknecht, P, Seppi, K, Frauscher, B, et al. Probable RBD and association with neurodegenerative disease markers: a population-based study. Mov Disord 2015;30(10):14171421.CrossRefGoogle ScholarPubMed
Bargiotas, P, Ntafouli, M, Lachenmayer, ML, et al. Apathy in Parkinson’s disease with REM sleep behavior disorder. J Neurol Sci 2019;399:194198.CrossRefGoogle ScholarPubMed
Bargiotas, P, Debove, I, Bargiotas, I, et al. Effects of bilateral stimulation of the subthalamic nucleus in Parkinson’s disease with and without REM sleep behaviour disorder. J Neurol Neurosurg Psychiatry 2019;90(12):13101316.Google ScholarPubMed
Poryazova, R, Oberholzer, M, Baumann, CR, Bassetti, C. REM sleep behavior disorder in Parkinson’s disease: a questionnaire-based survey. J Clin Sleep Med 2013;9(1):5559.CrossRefGoogle ScholarPubMed
Nobili, L, Francione, S, Mai, R, et al. Surgical treatment of drug-resistant nocturnal fronta lobe epilepsy. Brain 2007;130:561573.CrossRefGoogle Scholar
Mathis, J, Hess, CW, Bassetti, C. Isolated mediotegmental lesion causing narcolepsy and rapid eye movement sleep behaviour disorder: a case evidencing a common pathway in narcolepsy and rapid eye movement sleep behaviour disorder. J Neurol Neurosurg Psychiatry 2007;78(4):427429.CrossRefGoogle ScholarPubMed
Iranzo, A, Graus, F, Clover, L, et al. Rapid eye movement sleep behavior disorder and potassium channel antibody-associated limbic encephalitis. Ann Neurol 2006;59(1):178181.CrossRefGoogle ScholarPubMed
Mackie, S, Winkelman, JW. Restless legs syndrome and psychiatric disorders. Sleep Med Clin 2015;10(3):351357, xv.CrossRefGoogle ScholarPubMed
Snitselaar, MA, Smits, MG, Spijker, J. Prevalence of restless legs syndrome in adult ADHD and its subtypes. Behav Sleep Med 2016;14(5):480488.CrossRefGoogle ScholarPubMed
Kato, T, Lavigne, GL. Sleep bruxism: a sleep-related movement disorder Sleep Med Clin 2010;5:953.CrossRefGoogle Scholar
Ohayon, MM, Zulley, J, Guilleminault, C, Smirne, S. Prevalence and pathologic associations of sleep paralysis in the general population. Neurology 1999;52(6):11941200.CrossRefGoogle ScholarPubMed
Labelle, MA, Desautels, A, Montplaisir, J, Zadra, A. Psychopathologic correlates of adult sleepwalking. Sleep Med 2013;14(12):13481355.CrossRefGoogle ScholarPubMed
Ghanizadeh, A. ADHD, bruxism and psychiatric disorders: does bruxism increase the chance of a comorbid psychiatric disorder in children with ADHD and their parents? Sleep Breath 2008;12(4):375380.CrossRefGoogle ScholarPubMed
Mellman, TA, Aigbogun, N, Graves, RE, Lawson, WB, Alim, TN. Sleep paralysis and trauma, psychiatric symptoms and disorders in an adult African American population attending primary medical care. Depress Anxiety 2008;25(5):435440.CrossRefGoogle Scholar
Denis, D, French, CC, Gregory, AM. A systematic review of variables associated with sleep paralysis. Sleep Med Rev 2018;38:141157.CrossRefGoogle ScholarPubMed
Abele, M, Burk, K, Laccone, F, Dichgans, J, Klockgether, T. Restless legs syndrome in spinocerebellar ataxia types 1, 2, and 3. J Neurol 2001;248(4):311314.CrossRefGoogle ScholarPubMed
Collado-Seidel, V, Kohnen, R, Samtleben, W, et al. Clinical and biochemical findings in uremic patients with and without restless legs syndrome. Am J Kidney Dis 1998;31(2):324328.CrossRefGoogle ScholarPubMed
Allen, RP, Earley, CJ. The role of iron in restless legs syndrome. Mov Disord 2007;22(Suppl 18):S440448.CrossRefGoogle ScholarPubMed
Ondo, WG, Vuong, KD, Jankovic, J. Exploring the relationship between Parkinson disease and restless legs syndrome. Arch Neurol 2002;59(3):421424.CrossRefGoogle ScholarPubMed
Hübner, A, Krafft, A, Gadient, S, et al. Characteristics and determinants of restless legs syndrome in pregnancy: a prospective study. Neurology 2013;80:738742.CrossRefGoogle ScholarPubMed
Li, X, Allen, RP, Earley, CJ, et al. Brain iron deficiency in idiopathic restless legs syndrome measured by quantitative magnetic susceptibility at 7 tesla. Sleep Med 2016;22:7582.CrossRefGoogle ScholarPubMed
Heim, B, Djamshidian, A, Heidbreder, A, et al. Augmentation and impulsive behaviors in restless legs syndrome: coexistence or association? Neurology 2016;87(1):3640.CrossRefGoogle ScholarPubMed
Gaig, C, Iranzo, A, Pujol, M, Perez, H, Santamaria, J. Periodic limb movements during sleep mimicking REM sleep behavior disorder: a new form of periodic limb movement disorder. Sleep 2017;40(3).CrossRefGoogle ScholarPubMed
Nukazawa, S, Yoshimi, H, Sato, S. Autonomic nervous activities associated with bruxism events during sleep. Cranio 2018;36(2):106112.CrossRefGoogle ScholarPubMed
Ella, B, Ghorayeb, I, Burbaud, P, Guehl, D. Bruxism in movement disorders: a comprehensive review. J Prosthodont 2017;26(7):599605.CrossRefGoogle ScholarPubMed
Teoh, L, Moses, G. Drug-induced bruxism. Aust Prescr 2019;42(4):121.CrossRefGoogle ScholarPubMed
Falisi, G, Rastelli, C, Panti, F, Maglione, H, Quezada Arcega, R. Psychotropic drugs and bruxism. Expert Opin Drug Safety 2014;13(10):13191326.CrossRefGoogle ScholarPubMed
Uca, AU, Uguz, F, Kozak, HH, et al. Antidepressant-induced sleep bruxism: prevalence, incidence, and related factors. Clin Neuropharmacol 2015;38(6):227230.CrossRefGoogle ScholarPubMed
Pressmann, MR. Factors that predispose, prime and precipitate NREM parasomnias in adults: clinical and forensic implications. Sleep Med Rev 2007;11:530.CrossRefGoogle Scholar
Delacour, C, Chambe, J, Lefebvre, F, et al. Association between physical activity and nocturnal leg cramps in patients over 60 years old: a case-control study. Sci Rep 2020;10(1):2638.CrossRefGoogle ScholarPubMed
Boeve, BF. Pathophysiology of REM sleep behavior disorder and relevance to neurodegenerative disease. Brain 2007;130:27702788.CrossRefGoogle ScholarPubMed
Bassetti, C, Vella, S, Donati, F, Wielepp, P, Weder, B. SPECT during sleepwalking. Lancet 2000;356:484485.CrossRefGoogle ScholarPubMed
Rizzo, G, Li, X, Galantucci, S, Filippi, M, Cho, YW. Brain imaging and networks in restless legs syndrome. Sleep Med 2017;31:3948.CrossRefGoogle ScholarPubMed
Lopez, R, Shen, Y, Chenini, S, et al. Diagnostic criteria for disorders of arousal: a video-polysomnographic assessment. Ann Neurol 2018;83(2):341351.CrossRefGoogle ScholarPubMed
Jalal, B, Ramachandran, VS. Sleep paralysis, “the ghostly bedroom intruder” and out-of-body experiences: the role of mirror neurons. Front Hum Neurosci 2017;11:92.CrossRefGoogle ScholarPubMed
Katz, PS. Neurons, networks, and moto behavior. Neuron 1996;16(2):245253.CrossRefGoogle Scholar
Tassinari, CA, Rubboli, G, Gardella, E, et al. Central pattern generators for a common semiology in fronto-limbic seizures and in parasomnias. A neurothologic approach. Neurol Sci 2005;26:225232.CrossRefGoogle ScholarPubMed
Mahowald, MK, Schenck, CH. Dissociated states of wakefulness and sleep. Neurology 1992;42(Suppl 6):4452.Google ScholarPubMed
Schindler, K, Gast, H, Bassetti, C, et al. Hyperperfusion of anterior cingulate gyrus in a case of paroxysmal nocturnal dystonia. Neurology 2001;57:917920.CrossRefGoogle Scholar
Terzaghi, M, Sartori, I, Tassi, L, et al. Evidence of dissociated arousal states during NREM parasomnia from an intracerebral neurophysiological study. Sleep 2009;32:409412.CrossRefGoogle ScholarPubMed
Calandra-Buonaura, G, Alessandria, M, Liguori, R, Lugaresi, E, Provini, F. Hypnic jerks: neurophysiological characterization of a new motor pattern. Sleep Med 2014;15(6):725727.CrossRefGoogle ScholarPubMed
Tinuper, P, Bisulli, F, Provini, F. The parasomnias: mechanisms and treatment. Epilepsia 2012;53(Suppl 7):1219.CrossRefGoogle ScholarPubMed
The International Restless Legs Syndrome Study Group. Validation of the International Restless Legs Syndrome Study Group rating scale for restless legs syndrome. Sleep Med 2003;4(2):121132.CrossRefGoogle Scholar
Manni, R, Terzaghi, M, Repetto, A. The FLEP scale in diagnosis nocturnal frontal lobe from epilepsy, NREM and REM parasomnias: data from tertiary sleep and epilepsy unit. Epilepsia 2008;49(9):15811585.CrossRefGoogle ScholarPubMed
Garcia-Borreguero, D, Ferini-Strambi, L, Kohnen, R, et al. European guidelines on management of restless legs syndrome: report of a joint task force by the European Federation of Neurological Societies, the European Neurological Society and the European Sleep Research Society. Eur J Neurol 2012;19(11):13851396.CrossRefGoogle ScholarPubMed
Winkelman, JW, Armstrong, MJ, Allen, RP, et al. Practice guideline summary: treatment of restless legs syndrome in adults: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2016;87(24):25852593.CrossRefGoogle Scholar
Allen, RP, Picchietti, DL, Auerbach, M, et al. Evidence-based and consensus clinical practice guidelines for the iron treatment of restless legs syndrome/Willis–Ekbom disease in adults and children: an IRLSSG task force report. Sleep Med 2018;41:2744.CrossRefGoogle ScholarPubMed
Garcia-Borreguero, D, Silber, MH, Winkelman, JW, et al. Guidelines for the first-line treatment of restless legs syndrome/Willis–Ekbom disease, prevention and treatment of dopaminergic augmentation: a combined task force of the IRLSSG, EURLSSG, and the RLS-foundation. Sleep Med 2016;21:111.CrossRefGoogle ScholarPubMed
Bassetti, CLA. Sleep-related movement disorders. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press, 2014; 663676.Google Scholar

References

Schatzberg, AF,and DeBattista, DC. Schatzberg’s Manual of Clinical Psychopharmacology. Philadelphia: American Psychiatric; 2019.Google Scholar
Report of the Committee on Ways and Means Majority U.S. House of Representatives: Under-Enforced and Over-Prescribed: The Anti-Psychotic Drug Epidemic Ravaging America’s Nursing Home. [Online publication] 2020; available from: https://waysandmeans.house.gov/sites/democrats.waysandmeans.house.gov/files/documents/WMD%20Nursing%20Home%20Report_Final.pdf.Google Scholar
Ayd, FJ. A survey of drug-induced extrapyramidal reactions. JAMA 1961;175(12):10541060.CrossRefGoogle ScholarPubMed
Caroff, SN. The neuroleptic malignant syndrome. J Clin Psychiatry 1980;41(3):7983.Google ScholarPubMed
Friedman, JH. Neuroleptic Malignant Syndrome. 2020; available from: www.medlink.com/articles/neuroleptic-malignant-syndrome.Google Scholar
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th edition. Philadelphia: American Psychiatric Association, 2013; 21.Google Scholar
Sewell, D, Jeste, D. Distinguishing neuroleptic malignant syndrome (NMS) from NMS-like acute medical illnesses: a study of 34 cases. J Neuropsychiatry Clin Neurosci 1992;4(3):265269.Google ScholarPubMed
Prasad, S, Pal, PK. When time is of the essence: managing care in emergency situations in Parkinson’s disease. Parkinsonism Relat Disord 2019;59:4956.CrossRefGoogle ScholarPubMed
Caroff, SN, Watson, CB, Rosenberg, H. Drug-induced hyperthermic syndromes in psychiatry. Clin Psychopharmacol Neurosci 2021;19(1):111.CrossRefGoogle ScholarPubMed
Cossu, G, Colosimo, C. Hyperkinetic movement disorder emergencies. Curr Neurol Neurosci Rep 2017;17(1):6.CrossRefGoogle ScholarPubMed
Mazurek, MF, Rosebush, PI. Circadian pattern of acute, neuroleptic-induced dystonic reactions. Am J Psychiatry 1996;153(5):708710.Google ScholarPubMed
Cheney, G, Martins, S. Postencephalitic paroxysmal oculogyric crises: report of cases. Cal West Med 1930;33(4):724728.Google ScholarPubMed
Keepers, GA, Clappison, VJ, Casey, DE. Initial anticholinergic prophylaxis for neuroleptic-induced extrapyramidal syndromes. Arch Gen Psychiatry 1983;40(10):11131117.CrossRefGoogle ScholarPubMed
Haskovec, L. Akathisie. Arch Bohemes Med Clin 1902;17:704708.Google Scholar
Kendler, KS. A medical student’s experience with akathisia. Am J Psychiatry 1976;133(4):454455.CrossRefGoogle Scholar
Van Putten, T. The many faces of akathisia. Compr Psychiatry 1975;16(1):4347.CrossRefGoogle ScholarPubMed
Wijemanne, S, Jankovic, J, Evans, RW. Movement disorders from the use of metoclopramide and other antiemetics in the treatment of migraine. Headache 2016;56(1):153161.CrossRefGoogle ScholarPubMed
Martí‐Massó, JF, Poza, JJ. Cinnarizine‐induced parkinsonism: ten years later. Mov Disord 1998;13(3):453456.CrossRefGoogle ScholarPubMed
Friedman, JH, Skeete, R, Fernandez, HH. Letters to the editor: Unrecognized parkinsonism in acute care medical patients receiving neurological consultations. J Gerontol Ser A Biol Sci Med Sci 2003;58(1):M94M95.CrossRefGoogle Scholar
Dima, D, Modabbernia, A, Papachristou, E, et al. Subcortical volumes across the lifespan: data from 18,605 healthy individuals aged 3–90 years. Hum Brain Mapp 2022;43(1):452469.CrossRefGoogle ScholarPubMed
Isaacson, JR, Brillman, S, Chhabria, N, Isaacson, SH. Impact of DaTscan imaging on clinical decision making in clinically uncertain Parkinson’s disease. J Parkinsons Dis 2021;11(2):885889.CrossRefGoogle ScholarPubMed
Friedman, JH. Tardive syndromes. Continuum 2019;25(4):10811098.Google ScholarPubMed
D’Abreu, A, Friedman, JH. Tardive dyskinesia‐like syndrome due to drugs that do not block dopamine receptors: rare or non‐existent: literature review. Tremor Other Hyperkinet Mov (N Y) 2018;8:570.CrossRefGoogle ScholarPubMed
Friedman, JH. Historical perspective on movement disorders. J Clin Psychiatry 2004;65(Suppl 9):38.Google ScholarPubMed
Factor, SA, Burkhard, PR, Caroff, S, et al. Recent developments in drug-induced movement disorders: a mixed picture. Lancet Neurol 2019;18(9):880890.CrossRefGoogle ScholarPubMed
Zutshi, D, Cloud, LJ, Factor, SA. Tardive syndromes are rarely reversible after discontinuing dopamine receptor blocking agents: experience from a university-based movement disorder clinic. Tremor Other Hyperkinet Mov (N Y) 2014;4:266.CrossRefGoogle ScholarPubMed
Bhidayasiri, R, Jitkritsadakul, O, Friedman, JH, Fahn, S. Updating the recommendations for treatment of tardive syndromes: a systematic review of new evidence and practical treatment algorithm. J Neurol Sci 2018;389:6775.CrossRefGoogle ScholarPubMed
Factor, SA. Management of tardive syndrome: medications and surgical treatments. Neurotherapeutics 2020;17(4):16941712.CrossRefGoogle ScholarPubMed
Oates, JA, Sjoerdsma, A. Neurologic effects of tryptophan in patients receiving a monoamine oxidase inhibitor. Neurology 1960;10(12):10761078.CrossRefGoogle ScholarPubMed
Dunkley, E, Isbister, GK, Sibbritt, D, Dawson, AH, Whyte, IM. The Hunter Serotonin Toxicity Criteria: simple and accurate diagnostic decision rules for serotonin toxicity. QJM 2003;96(9):635642.CrossRefGoogle ScholarPubMed
Simon, LV, Keenaghan, M. Serotonin syndrome. StatPearls [Internet]; 2021.Google Scholar
Mörkl, S, Seltenreich, D, Letmeier, M, et al. Extrapyramidal reactions following treatment with antidepressants: results of the AMSP multinational drug surveillance programme. World J Biol Psychiatry 2020;21(4):308316.CrossRefGoogle ScholarPubMed
Hardy, SE. Methylphenidate for the treatment of depressive symptoms, including fatigue and apathy, in medically ill older adults and terminally ill adults. Am J Geriatr Pharmacother 2009;7(1):3459.CrossRefGoogle ScholarPubMed
Morgan, JC, Kurek, JA, Davis, JL, Sethi, KD. Insights into pathophysiology from medication-induced tremor. Tremor Other Hyperkinet Mov (N Y) 2017;7:442.CrossRefGoogle ScholarPubMed
Brust, JCM. Neurological Aspects of Substance Abuse. Philadelphia: Butterworth-Heinemann; 2004.Google Scholar
Naranjo, CA, Busto, U, Sellers, EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Therap 1981;30(2):239245.CrossRefGoogle ScholarPubMed
Jamora, D, Lim, SH, Pan, A, Tan, L, Tan, EK. Valproate‐induced Parkinsonism in epilepsy patients. Mov Disord 2007;22(1):130133.CrossRefGoogle ScholarPubMed
Louis, ED. Tremor. Continuum 2019;25(4):959975.Google ScholarPubMed
Hess, CW, Pullman, SL. Tremor: clinical phenomenology and assessment techniques. Tremor Other Hyperkinet Mov (N Y) 2012;2:tre-02-65-365-1.Google ScholarPubMed
Sirven, JI, Fife, TD, Wingerchuk, DM, Drazkowski, JF. Second-generation antiepileptic drugs’ impact on balance: a meta-analysis. Mayo Clin Proc 2007;82(1):4047.CrossRefGoogle ScholarPubMed
Ben‐Menachem, E, Biton, V, Abou-Khalil, B, Doty, P, Rudd, GD. Efficacy and safety of oral lacosamide as adjunctive therapy in adults with partial‐onset seizures. Epilepsia 2007;48(7):13081317.CrossRefGoogle ScholarPubMed
Perez-Lloret, S, Rey, MV, Bondon-Guitton, E, et al. Drugs associated with restless legs syndrome: a case/noncase study in the French Pharmacovigilance Database. J Clin Psychopharmacol 2012;32(6):824827.CrossRefGoogle ScholarPubMed
Lee, K, Baron, K, Soca, R, Attarian, H. The prevalence and characteristics of REM sleep without atonia (RSWA) in patients taking antidepressants. J Clin Sleep Med 2016;12(3):351355.CrossRefGoogle ScholarPubMed
Arnaldi, D, Famà, F, De Carli, F, et al. The role of the serotonergic system in REM sleep behavior disorder. Sleep 2015;38(9):15051509.CrossRefGoogle ScholarPubMed
McGrane, IR, Leung, JG, St Louis, EK, Boeve, BF. Melatonin therapy for REM sleep behavior disorder: a critical review of evidence. Sleep Med 2015;16(1):1926.CrossRefGoogle ScholarPubMed
de Letter, A-ACJ, Wolters, ECh. Movement disorders in psychiatry. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 561576.Google Scholar

References

Tan, U. The psychomotor theory of human mind. Int J Neurosci 2007;117(8):11091148.CrossRefGoogle ScholarPubMed
Ring, HA, Serra-Mestres, J. Neuropsychiatry of the basal ganglia. J Neurol Neurosurg Psychiatry 2002;72(1):1221.CrossRefGoogle ScholarPubMed
Joel, D, Weiner, I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 2000;96(3):451474.CrossRefGoogle Scholar
Lennox, BR, Lennox, GG. Mind and movement: the neuropsychiatry of movement disorders. J Neurol Neurosurg Psychiatry 2002;72(Suppl 1:I28I31.Google ScholarPubMed
Hirjak, D, Thomann, PA, Kubera, KM, et al. Motor dysfunction within the schizophrenia-spectrum: a dimensional step towards an underappreciated domain. Schizophr Res 2015;169(1–3):217233.CrossRefGoogle ScholarPubMed
Walther, S, Mittal, VA. Motor system pathology in psychosis. Curr Psychiatry Rep 2017;19(12):97.CrossRefGoogle ScholarPubMed
Ayehu, M, Shibre, T, Milkias, B, Fekadu, A. Movement disorders in neuroleptic-naïve patients with schizophrenia spectrum disorders. BMC Psychiatry 2014;14:280.CrossRefGoogle ScholarPubMed
Khot, V, Wyatt, RJ. Not all that moves is tardive dyskinesia. Am J Psychiatry 1991;148(5):661666.Google ScholarPubMed
Fenton, WS. Prevalence of spontaneous dyskinesia in schizophrenia. J Clin Psychiatry 2000;61(Suppl 4):1014.Google ScholarPubMed
Fenton, WS, Wyatt, RJ, McGlashan, TH. Risk factors for spontaneous dyskinesia in schizophrenia. Arch Gen Psychiatry 1994;51(8):643650.CrossRefGoogle ScholarPubMed
Morrens, M, Hulstijn, W, Lewi, PJ, De Hert, M, Sabbe, BG. Stereotypy in schizophrenia. Schizophr Res 2006;84(2–3):397404.CrossRefGoogle ScholarPubMed
Osborne, KJ, Walther, S, Shankman, SA, Mittal, VA. Psychomotor slowing in schizophrenia: implications for endophenotype and biomarker development. Biomark Neuropsychiatry 2020;2:100016.CrossRefGoogle ScholarPubMed
Cancro, R, Sutton, S, Kerr, J, Sugerman, AA. Reaction time and prognosis in acute schizophrenia. J Nerv Ment Dis 1971;153(5):351359.CrossRefGoogle ScholarPubMed
Walther, S, Strik, W. Motor symptoms and schizophrenia. Neuropsychobiology 2012;66(2):7792.CrossRefGoogle ScholarPubMed
Mittal, VA, Daley, M, Shiode, MF, et al. Striatal volumes and dyskinetic movements in youth at high-risk for psychosis. Schizophr Res 2010;123(1):6870.CrossRefGoogle ScholarPubMed
Mittal, VA, Hasenkamp, W, Sanfilipo, M, et al. Relation of neurological soft signs to psychiatric symptoms in schizophrenia. Schizophr Res 2007;94(1–3):3744.CrossRefGoogle ScholarPubMed
Heinz, A, Knable, MB, Coppola, R, et al. Psychomotor slowing, negative symptoms and dopamine receptor availability – an IBZM SPECT study in neuroleptic-treated and drug-free schizophrenic patients. Schizophr Res 1998;31(1):1926. Erratum in: Schizophr Res 1998;34(1–2):121.CrossRefGoogle ScholarPubMed
Walther, S, Strik, W. Catatonia. CNS Spectr 2016;21(4):341348.CrossRefGoogle ScholarPubMed
Mormando, C, Francis, A. Catatonia revived: a unique syndrome updated. Int Rev Psychiatry 2020;32(5–6):403411.CrossRefGoogle ScholarPubMed
Fink, M. Rediscovering catatonia: the biography of a treatable syndrome. Acta Psychiatr Scand Suppl 2013;441:147.CrossRefGoogle Scholar
Fink, M, Taylor, MA. The catatonia syndrome: forgotten but not gone. Arch Gen Psychiatry 2009;66(11):11731177.CrossRefGoogle Scholar
Burrow, JP, Spurling, BC, Marwaha, R. Catatonia. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2021.Google Scholar
Wijemanne, S, Jankovic, J. Movement disorders in catatonia. J Neurol Neurosurg Psychiatry 2015;86(8):825832.CrossRefGoogle ScholarPubMed
Mann, SC, Caroff, SN, Campbell, EC, et al. Malignant catatonia. In: Frucht, SI, Fahn, S, eds. Current Clinical Neurology: Movement Disorder Emergencies: Diagnosis and Treatment. Totowa, NJ: Humana Press; 2005: 53.CrossRefGoogle Scholar
Northoff, G. What catatonia can tell us about “top-down modulation”: a neuropsychiatric hypothesis. Behav Brain Sci 2002;25(5):555577; discussion 578–604.CrossRefGoogle ScholarPubMed
Haroche, A, Rogers, J, Plaze, M, et al. Brain imaging in catatonia: systematic review and directions for future research. Psychol Med 2020;50(10):15851597.CrossRefGoogle ScholarPubMed
Sienaert, P, van Harten, P, Rhebergen, D. The psychopharmacology of catatonia, neuroleptic malignant syndrome, akathisia, tardive dyskinesia, and dystonia. Handb Clin Neurol 2019;165:415428.CrossRefGoogle ScholarPubMed
Bush, G, Fink, M, Petrides, G, Dowling, F, Francis, A. Catatonia. I. Rating scale and standardized examination. Acta Psychiatr Scand 1996;93(2):129136.CrossRefGoogle ScholarPubMed
Cottencin, O, Warembourg, F, de Chouly de Lenclave, MB, et al. Catatonia and consultation–liaison psychiatry study of 12 cases. Prog Neuropsychopharmacol Biol Psychiatry 2007;31(6):11701176.CrossRefGoogle ScholarPubMed
Carroll, BT, Goforth, HW, Thomas, C, et al. Review of adjunctive glutamate antagonist therapy in the treatment of catatonic syndromes. J Neuropsychiatry Clin Neurosci 2007;19(4):406412.CrossRefGoogle ScholarPubMed
Roy, K, Warnick, SJ, Balon, R. Catatonia delirium: 3 cases treated with memantine. Psychosomatics 2016;57(6):645650.CrossRefGoogle ScholarPubMed
Edwards, MJ, Lang, AE, Bhatia, KP. Stereotypies: a critical appraisal and suggestion of a clinically useful definition. Mov Disord 2012;27(2):179185.CrossRefGoogle ScholarPubMed
Shukla, T, Pandey, S. Stereotypies in adults: a systematic review. Neurol Neurochir Pol 2020;54(4):294304.CrossRefGoogle ScholarPubMed
Katherine, M. Stereotypic movement disorders. Semin Pediatr Neurol 2018;25:1924.CrossRefGoogle ScholarPubMed
Lanzarini, E, Pruccoli, J, Grimandi, I, et al. Phonic and motor stereotypies in autism spectrum disorder: video analysis and neurological characterization. Brain Sci 2021;11(4):431.CrossRefGoogle ScholarPubMed
Muthugovindan, D, Singer, H. Motor stereotypy disorders. Curr Opin Neurol 2009;22(2):131136.CrossRefGoogle ScholarPubMed
Tan, A, Salgado, M, Fahn, S. The characterization and outcome of stereotypical movements in nonautistic children. Mov Disord 1997;12(1):4752.CrossRefGoogle ScholarPubMed
Akshoomoff, N, Farid, N, Courchesne, E, Haas, R. Abnormalities on the neurological examination and EEG in young children with pervasive developmental disorders. J Autism Dev Disord 2007;37(5):887893.CrossRefGoogle Scholar
Melo, C, Ruano, L, Jorge, J, et al. Prevalence and determinants of motor stereotypies in autism spectrum disorder: a systematic review and meta-analysis. Autism 2020;24(3):569590.CrossRefGoogle ScholarPubMed
Budimirovic, DB, Haas-Givler, B, Blitz, R, et al. Consensus of the Fragile X Clinical and Research Consortium on Clinical Practices: Autism Spectrum Disorder in Fragile X Syndrome. National Fragile X Foundation Website: McLean, VA, USA, 2014; pp. 1–15.Google Scholar
Freeman, RD, Soltanifar, A, Baer, S. Stereotypic movement disorder: easily missed. Dev Med Cild Neurol 2010;52(8):733738.CrossRefGoogle ScholarPubMed
Singer, HS. Motor stereotypies. Semin Pediatr Neurol 2009;16(2):7781.CrossRefGoogle ScholarPubMed
Harris, KM, Mahone, EM, Singer, HS. Nonautistic motor stereotypies: clinical features and longitudinal follow-up. Pediatr Neurol 2008;38(4):267272.CrossRefGoogle ScholarPubMed
Parker, G. Melancholia. Am J Psychiatry 2005;162(6):1066.CrossRefGoogle ScholarPubMed
Sobin, C, Sackeim, HA. Psychomotor symptoms of depression. Am J Psychiatry 1997;154(1):417.Google ScholarPubMed
Buyukdura, JS, McClintock, SM, Croarkin, PE. Psychomotor retardation in depression: biological underpinnings, measurement, and treatment. Prog Neuropsychopharmacol Biol Psychiatry 2011;35(2):395409.CrossRefGoogle ScholarPubMed
Janzing, JGE, Birkenhäger, TK, van den Broek, WW, et al. Psychomotor retardation and the prognosis of antidepressant treatment in patients with unipolar psychotic depression. J Psychiatr Res 2020;130:321326.CrossRefGoogle ScholarPubMed
Mayberg, HS, Lewis, PJ, Regenold, W, Wagner, HN Jr. Paralimbic hypoperfusion in unipolar depression. J Nucl Med 1994;35(6):929934.Google ScholarPubMed
Narita, H, Odawara, T, Iseki, E, Kosaka, K, Hirayasu, Y. Psychomotor retardation correlates with frontal hypoperfusion and the Modified Stroop Test in patients under 60-years-old with major depression. Psychiatry Clin Neurosci 2004;58(4):389395.CrossRefGoogle ScholarPubMed
Dantchev, N, Widlöcher, DJ. The measurement of retardation in depression. J Clin Psychiatry 1998;59(Suppl 14):1925.Google ScholarPubMed
Widlöcher, DJ. Psychomotor retardation: clinical, theoretical, and psychometric aspects. Psychiatr Clin North Am 1983;6(1):2740.CrossRefGoogle ScholarPubMed
Fayyad, J, De Graaf, R, Kessler, R, et al. Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. Br J Psychiatry 2007;190:402409.CrossRefGoogle ScholarPubMed
Pitcher, TM, Piek, JP, Hay, DA. Fine and gross motor ability in males with ADHD. Dev Med Child Neurol 2003;45(8):525535.CrossRefGoogle ScholarPubMed
Watemberg, N, Waiserberg, N, Zuk, L, Lerman-Sagie, T. Developmental coordination disorder in children with attention-deficit-hyperactivity disorder and physical therapy intervention. Dev Med Child Neurol 2007;49(12):920925.CrossRefGoogle ScholarPubMed
Dahan, A, Ryder, CH, Reiner, M. Components of motor deficiencies in ADHD and possible interventions. Neuroscience 2018;378:3453.CrossRefGoogle ScholarPubMed
Posner, J, Polanczyk, GV, Sonuga-Barke, E. Attention-deficit hyperactivity disorder. Lancet 2020;395(10222):450462.CrossRefGoogle ScholarPubMed
Keute, M, Krauel, K, Heinze, HJ, Stenner, MP. Intact automatic motor inhibition in attention deficit hyperactivity disorder. Cortex 2018;109:215225.CrossRefGoogle ScholarPubMed
Weyandt, L, Swentosky, A, Gudmundsdottir, BG. Neuroimaging and ADHD: fMRI, PET, DTI findings, and methodological limitations. Dev Neuropsychol 2013;38(4):211225.CrossRefGoogle ScholarPubMed
del Campo, N, Fryer, TD, Hong, YT, et al. A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: implications for ADHD and its treatment. Brain 2013;136(Pt 11):32523270.CrossRefGoogle ScholarPubMed
Brem, S, Grünblatt, E, Drechsler, R, Riederer, P, Walitza, S. The neurobiological link between OCD and ADHD. Atten Defic Hyperact Disord 2014;6(3):175202.CrossRefGoogle ScholarPubMed
National Institute for Health and Care Excellence. Attention Deficit Hyperactivity Disorder: Diagnosis and Management. London: NICE; 2019.Google Scholar
Kessler, RC, Green, JG, Adler, LA, et al. Structure and diagnosis of adult attention-deficit/hyperactivity disorder: analysis of expanded symptom criteria from the Adult ADHD Clinical Diagnostic Scale. Arch Gen Psychiatry 2010;67(11):11681178.CrossRefGoogle ScholarPubMed
Gjervan, B, Torgersen, T, Nordahl, HM, Rasmussen, K. Functional impairment and occupational outcome in adults with ADHD. J Atten Disord 2012;16(7):544552.CrossRefGoogle ScholarPubMed
Küpper, T, Haavik, J, Drexler, H, et al. The negative impact of attention-deficit/hyperactivity disorder on occupational health in adults and adolescents. Int Arch Occup Environ Health 2012;85(8):837847.CrossRefGoogle ScholarPubMed
Barkley, RA, Fischer, M. Predicting impairment in major life activities and occupational functioning in hyperactive children as adults: self-reported executive function (EF) deficits versus EF tests. Dev Neuropsychol 2011;36(2):137161.CrossRefGoogle ScholarPubMed
Drubach, DA. Obsessive-compulsive disorder. Continuum (Minneap Minn) 2015;21(3):783788.Google ScholarPubMed
Rapinesi, C, Kotzalidis, GD, Ferracuti, S, et al. Brain stimulation in obsessive-compulsive disorder (OCD): a systematic review. Curr Neuropharmacol 2019;17(8):787807.CrossRefGoogle ScholarPubMed
Alonso, P, López-Solà, C, Real, E, Segalàs, C, Menchón, JM. Animal models of obsessive-compulsive disorder: utility and limitations. Neuropsychiatr Dis Treat 2015;11:19391955.CrossRefGoogle Scholar
Silva, B, Canas-Simião, H, Cavanna, AE. Neuropsychiatric aspects of impulse control disorders. Psychiatr Clin North Am 2020;43(2):249262.CrossRefGoogle ScholarPubMed
Bhattacharjee, S. Impulse control disorders in Parkinson’s disease: review of pathophysiology, epidemiology, clinical features, management, and future challenges. Neurol India 2018;66(4):967975.CrossRefGoogle ScholarPubMed
Weintraub, D, Claassen, DO. Impulse control and related disorders in Parkinson’s disease. Int Rev Neurobiol 2017;133:679717.CrossRefGoogle ScholarPubMed
Wolters, ECh, van der Werf, YD, van den Heuvel, OA. Parkinson’s disease-related disorders in the impulsive–compulsive spectrum. J Neurol 2008;255(Suppl 5):4856.CrossRefGoogle ScholarPubMed
Porteret, R, Bouchez, J, Baylé, FJ, Varescon, I. L’impulsivité dans le TDAH: prévalence des troubles du contrôle des impulsions et autres comorbidités, chez 81 adultes présentant un trouble déficit de l’attention/hyperactivité (TDA/H) [ADH/D and impulsiveness: prevalence of impulse control disorders and other comorbidities, in 81 adults with attention deficit/hyperactivity disorder (ADH/D)]. Encephale 2016;42(2):130137. [In French.]CrossRefGoogle Scholar
de Letter, A-ACJ, Wolters, ECh. Movement disorders in psychiatry. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 561576.Google Scholar

References

Pick, S, Anderson, DG, Asadi-Pooya, AA, et al. Outcome measurement in functional neurological disorder: a systematic review and recommendations. J Neurol Neurosurg Psychiatry 2020;91(6):638649.CrossRefGoogle Scholar
Lehn, A, Gelauff, J, Hoeritzauer, I, et al. Functional neurological disorders: mechanisms and treatment. J Neurol 2016;263(3):611620.CrossRefGoogle ScholarPubMed
Hallett, M. Functional (psychogenic) movement disorders – clinical presentations. Parkinsonism Relat Disord 2016;22(Suppl 1):S149152.CrossRefGoogle ScholarPubMed
Bogousslavsky, J. The mysteries of hysteria: a historical perspective. Int Rev Psychiatry 2020;32(5–6):437450.CrossRefGoogle ScholarPubMed
Rosebush, PI, Mazurek, MF. Treatment of conversion disorder in the 21st century: have we moved beyond the couch? Curr Treat Options Neurol 2011;13(3):255266.CrossRefGoogle ScholarPubMed
Demartini, B, Nisticò, V, Edwards, MJ, Gambini, O, Priori, A. The pathophysiology of functional movement disorders. Neurosci Biobehav Rev 2021;120:387400.CrossRefGoogle ScholarPubMed
Thibaut, F. The mind–body Cartesian dualism and psychiatry. Dialogues Clin Neurosci 2018;20(1):3.CrossRefGoogle ScholarPubMed
Voon, V, Gallea, C, Hattori, N, et al. The involuntary nature of conversion disorder. Neurology 2010;74(3):223228.CrossRefGoogle ScholarPubMed
Blakemore, SJ, Frith, C. Self-awareness and action. Curr Opin Neurobiol 2003;13(2):219224.CrossRefGoogle ScholarPubMed
Perez, DL, Edwards, MJ, Nielsen, G, et al. Decade of progress in motor functional neurological disorder: continuing the momentum. J Neurol Neurosurg Psychiatry 2021:jnnp-2020-323953. Online ahead of print.Google Scholar
Edwards, MJ, Adams, RA, Brown, H, Pareés, I, Friston, KJ. A Bayesian account of ‘hysteria’. Brain 2012;135(Pt 11):34953512.CrossRefGoogle ScholarPubMed
Lehn, A, Gelauff, J, Hoeritzauer, I, et al. Functional neurological disorders: mechanisms and treatment. J Neurol 2016;263(3):611620.CrossRefGoogle ScholarPubMed
Pick, S, Goldstein, LH, Perez, DL, Nicholson, TR. Emotional processing in functional neurological disorder: a review, biopsychosocial model and research agenda. J Neurol Neurosurg Psychiatry 2019;90(6):704711.CrossRefGoogle ScholarPubMed
Conejero, I, Thouvenot, E, Abbar, M, et al. Neuroanatomy of conversion disorder: towards a network approach. Rev Neurosci 2018;29(4):355368.CrossRefGoogle ScholarPubMed
Voon, V, Cavanna, AE, Coburn, K, et al. Functional neuroanatomy and neurophysiology of functional neurological disorders (conversion disorder). J Neuropsychiatry Clin Neurosci 2016;28(3):168190.CrossRefGoogle ScholarPubMed
Raichle, ME. The brain’s default mode network. Annu Rev Neurosci 2015;38:433447.CrossRefGoogle ScholarPubMed
Maurer, CW, LaFaver, K, Limachia, GS, et al. Gray matter differences in patients with functional movement disorders. Neurology 2018;91(20):e1870e1879.CrossRefGoogle ScholarPubMed
Conejero, I, Thouvenot, E, Abbar, M, et al. Neuroanatomy of conversion disorder: towards a network approach. Rev Neurosci 2018;29(4):355368.CrossRefGoogle ScholarPubMed
Voon, V, Brezing, C, Gallea, C, et al. Emotional stimuli and motor conversion disorder. Brain 2010;133(Pt 5):15261536.CrossRefGoogle ScholarPubMed
Burgmer, M, Konrad, C, Jansen, A, et al. Abnormal brain activation during movement observation in patients with conversion paralysis. Neuroimage 2006;29(4):13361343.CrossRefGoogle ScholarPubMed
Mätzold, S, Geritz, J, Zeuner, KE, et al. Functional movement disorders in neurogeriatric inpatients: underdiagnosed, often comorbid to neurodegenerative disorders and treatable. Z Gerontol Geriatr 2019;52(4):324329.CrossRefGoogle ScholarPubMed
Stone, J, Carson, A, Duncan, R, et al. Symptoms ‘unexplained by organic disease’ in 1144 new neurology out-patients: how often does the diagnosis change at follow-up? Brain 2009;132(Pt 10):28782888.CrossRefGoogle ScholarPubMed
Carson, A, Lehn, A. Epidemiology. Handb Clin Neurol 2016;139:4760.CrossRefGoogle ScholarPubMed
Baizabal-Carvallo, JF, Hallett, M, Jankovic, J. Pathogenesis and pathophysiology of functional (psychogenic) movement disorders. Neurobiol Dis 2019;127:3244.CrossRefGoogle ScholarPubMed
Harris, SR. Psychogenic movement disorders in children and adolescents: an update. Eur J Pediatr 2019;178(4):581585.CrossRefGoogle ScholarPubMed
McCormack, R, Moriarty, J, Mellers, JD, et al. Specialist inpatient treatment for severe motor conversion disorder: a retrospective comparative study. J Neurol Neurosurg Psychiatry 2014;85(8):895900.CrossRefGoogle ScholarPubMed
Park, JE. Clinical characteristics of functional movement disorders: a clinic-based study. Tremor Other Hyperkinet Mov (N Y) 2018 2;8:504.CrossRefGoogle Scholar
Batla, A, Stamelou, M, Edwards, MJ, et al. Functional movement disorders are not uncommon in the elderly. Mov Disord 2013;28(4):540543.CrossRefGoogle Scholar
Evans, RW, Evans, RE. A survey of neurologists on the likeability of headaches and other neurological disorders. Headache 2010;50(7):11261129.CrossRefGoogle ScholarPubMed
Pareés, I, Kojovic, M, Pires, C, et al. Physical precipitating factors in functional movement disorders. J Neurol Sci 2014;338(1–2):174177.CrossRefGoogle ScholarPubMed
O’Connell, N, Nicholson, TR, Wessely, S, David, AS. Characteristics of patients with motor functional neurological disorder in a large UK mental health service: a case–control study. Psychol Med 2020;50(3):446455.CrossRefGoogle Scholar
Gelauff, JM, Rosmalen, JGM, Gardien, J, Stone, J, Tijssen, MA. Shared demographics and comorbidities in different functional motor disorders. Parkinsonism Relat Disord 2020;70:16.CrossRefGoogle ScholarPubMed
Defazio, G, Pastore, A, Pellicciari, R, et al. Personality disorders and somatization in functional and organic movement disorders. Psychiatry Res 2017;257:227229.CrossRefGoogle ScholarPubMed
Věchetová, G, Slovák, M, Kemlink, D, et al. The impact of non-motor symptoms on the health-related quality of life in patients with functional movement disorders. J Psychosom Res 2018;115:3237.CrossRefGoogle ScholarPubMed
van der Hoeven, RM, Broersma, M, Pijnenborg, GH, et al. Functional (psychogenic) movement disorders associated with normal scores in psychological questionnaires: a case control study. J Psychosom Res 2015;79(3):190194.CrossRefGoogle ScholarPubMed
Demartini, B, Petrochilos, P, Ricciardi, L, et al. The role of alexithymia in the development of functional motor symptoms (conversion disorder). J Neurol Neurosurg Psychiatry 2014;85(10):11321137.CrossRefGoogle ScholarPubMed
Fahn, S, Williams, DT. Psychogenic dystonia. Adv Neurol 1988;50:431455.Google ScholarPubMed
Gupta, A, Lang, AE. Psychogenic movement disorders. Curr Opin Neurol 2009;22(4):430436.CrossRefGoogle ScholarPubMed
Stone, J, Carson, A, Sharpe, M. Functional symptoms and signs in neurology: assessment and diagnosis. J Neurol Neurosurg Psychiatry 2005;76(Suppl 1):i212.CrossRefGoogle ScholarPubMed
Saranza, G, Vargas-Mendez, D, Lang, AE, Chen, R. Suggestibility as a valuable criterion for laboratory-supported definite functional movement disorders. Clin Neurophysiol Pract 2021;6:103108.CrossRefGoogle ScholarPubMed
Thenganatt, MA, Jankovic, J. Psychogenic (functional) movement disorders. Continuum (Minneap Minn) 2019;25(4):11211140.Google ScholarPubMed
Espay, AJ, Aybek, S, Carson, A, et al. Current concepts in diagnosis and treatment of functional neurological disorders. JAMA Neurol 2018;75(9):11321141.CrossRefGoogle ScholarPubMed
Barbey, A, Aybek, S. Functional movement disorders. Curr Opin Neurol 2017;30(4):427434.CrossRefGoogle ScholarPubMed
Stone, J, Carson, A, Hallett, M. Explanation as treatment for functional neurologic disorders. Handb Clin Neurol 2016;139:543553.CrossRefGoogle ScholarPubMed
Kamble, NL, Pal, PK. Electrophysiological evaluation of psychogenic movement disorders. Parkinsonism Relat Disord 2016;22(Suppl 1):S153158.CrossRefGoogle ScholarPubMed
Schwingenschuh, P, Saifee, TA, Katschnig-Winter, P, et al. Validation of “laboratory-supported” criteria for functional (psychogenic) tremor. Mov Disord 2016;31(4):555562.CrossRefGoogle ScholarPubMed
Schwingenschuh, P, Katschnig, P, Seiler, S, et al. Moving toward “laboratory-supported” criteria for psychogenic tremor. Mov Disord 2011;26(14):25092515.CrossRefGoogle ScholarPubMed
Llaneza Ramos, VF, Considine, E, Karp, BI, et al. Ultrasound as diagnostic tool for diaphragmatic myoclonus. Mov Disord Clin Pract 2016;3(3):282284.CrossRefGoogle ScholarPubMed
Thomsen, BLC, Teodoro, T, Edwards, MJ. Biomarkers in functional movement disorders: a systematic review. J Neurol Neurosurg Psychiatry 2020;91(12):12611269.CrossRefGoogle ScholarPubMed
Kim, YJ, Pakiam, AS, Lang, AE. Historical and clinical features of psychogenic tremor: a review of 70 cases. Can J Neurol Sci 1999;26(3):190195.CrossRefGoogle ScholarPubMed
Brown, P, Thompson, PD. Electrophysiological aids to the diagnosis of psychogenic jerks, spasms, and tremor. Mov Disord 2001;16(4):595599.CrossRefGoogle Scholar
Deuschl, G, Köster, B, Lücking, CH, Scheidt, C. Diagnostic and pathophysiological aspects of psychogenic tremors. Mov Disord 1998;13(2):294302.CrossRefGoogle ScholarPubMed
Lang, AE, Voon, V. Psychogenic movement disorders: past developments, current status, and future directions. Mov Disord 2011;26(6):11751186.CrossRefGoogle ScholarPubMed
Tarsy, D, Dengenhardt, A, Zadikoff, C. Psychogenic facial spasm (the smirk) presenting as hemifacial spasm. In: Hallett, M, Fahn, S,Jankovic, J, et al., eds. Psycho-genic Movement Disorders. Philadelphia: Lippincott Williams &Williams; 2006: 341343.Google Scholar
Fasano, A, Valadas, A, Bhatia, KP, et al. Psychogenic facial movement disorders: clinical features and associated conditions. Mov Disord 2012;27(12):15441551.CrossRefGoogle ScholarPubMed
Stone, J, Carson, A, Sharpe, M. Functional symptoms and signs in neurology: assessment and diagnosis. J Neurol Neurosurg Psychiatry 2005;76(Suppl 1):i212.CrossRefGoogle ScholarPubMed
Barnett, C, Armes, J, Smith, C. Speech, language and swallowing impairments in functional neurological disorder: a scoping review. Int J Lang Commun Disord 2019;54(3):309320.CrossRefGoogle ScholarPubMed
Baizabal-Carvallo, JF, Jankovic, J. Speech and voice disorders in patients with psychogenic movement disorders. J Neurol 2015;262(11):24202424.CrossRefGoogle ScholarPubMed
van der Salm, SM, Erro, R, Cordivari, C, et al. Propriospinal myoclonus: clinical reappraisal and review of literature. Neurology 2014;83(20):18621870.CrossRefGoogle ScholarPubMed
Baizabal-Carvallo, JF, Jankovic, J. Functional (psychogenic) stereotypies. J Neurol 2017;264(7):14821487.CrossRefGoogle ScholarPubMed
Laub, HN, Dwivedi, AK, Revilla, FJ, et al. Diagnostic performance of the “Huffing and Puffing” sign in psychogenic (functional) movement disorders. Mov Disord Clin Pract 2015;2(1):2932.CrossRefGoogle ScholarPubMed
LaFaver, K. Treatment of functional movement disorders. Neurol Clin 2020;38(2):469480.CrossRefGoogle ScholarPubMed
Espay, AJ, Ries, S, Maloney, T, et al. Clinical and neural responses to cognitive behavioral therapy for functional tremor. Neurology 2019;93(19):e1787e1798.CrossRefGoogle ScholarPubMed
Dallocchio, C, Tinazzi, M, Bombieri, F, Arnó, N, Erro, R. Cognitive behavioural therapy and adjunctive physical activity for functional movement disorders (conversion disorder): a pilot, single-blinded, randomized study. Psychother Psychosom 2016;85(6):381383.CrossRefGoogle ScholarPubMed
Espay, AJ, Ries, S, Maloney, T, et al. Clinical and neural responses to cognitive behavioral therapy for functional tremor. Neurology 2019;93(19):e1787e1798.CrossRefGoogle ScholarPubMed
Nielsen, G, Stone, J, Edwards, MJ. Physiotherapy for functional (psychogenic) motor symptoms: a systematic review. J Psychosom Res 2013;75(2):93102.CrossRefGoogle ScholarPubMed
Nielsen, G, Stone, J, Buszewicz, M, et al. Physio4FMD: protocol for a multicentrerandomised controlled trial of specialistphysiotherapy for functional motor disorder. BMC Neurol 2019;19:242.CrossRefGoogle Scholar
Nielsen, G, Stone, J, Matthews, A, et al. Physiotherapy for functional motor disorders: a consensus recommendation. J Neurol Neurosurg Psychiatry 2015;86(10):11131119.CrossRefGoogle ScholarPubMed
Nicholson, C, Edwards, MJ, Carson, AJ, et al. Occupational therapy consensus recommendations for functional neurological disorder. J Neurol Neurosurg Psychiatry 2020;91(10):10371045.CrossRefGoogle ScholarPubMed
Duffy, JR. Functional speech disorders: clinical manifestations, diagnosis, and management. Handb Clin Neurol 2016;139:379388.CrossRefGoogle ScholarPubMed
Barnett, C, Armes, J, Smith, C. Speech, language and swallowing impairments in functional neurological disorder: a scoping review. Int J Lang Commun Disord 2019;54(3):309320.CrossRefGoogle ScholarPubMed
Thomas, M, Vuong, KD, Jankovic, J. Long-term prognosis of patients with psychogenic movement disorders. Parkinsonism Relat Disord 2006;12(6):382387.CrossRefGoogle ScholarPubMed
Gelauff, J, Stone, J, Edwards, M, Carson, A. The prognosis of functional (psychogenic) motor symptoms: a systematic review. J Neurol Neurosurg Psychiatry 2014;85(2):220226.CrossRefGoogle ScholarPubMed
Feinstein, A, Stergiopoulos, V, Fine, J, Lang, AE. Psychiatric outcome in patients with a psychogenic movement disorder: a prospective study. Neuropsychiatry Neuropsychol Behav Neurol 2001;14(3):169176.Google ScholarPubMed
Thomas, M, Vuong, KD, Jankovic, J. Long-term prognosis of patients with psychogenic movement disorders. Parkinsonism Relat Disord 2006;12(6):382387.CrossRefGoogle ScholarPubMed
Pothalil, D, Vingerhoets, FJG. Tremor treatment. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 501511.Google Scholar
Parees, I, Edwards, MJ. Psychogenic (functional) movement disorders. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 677689.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×