Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T15:45:42.133Z Has data issue: false hasContentIssue false

Chapter 39 - Hematopoietic Cell Transplants for Chronic Lymphocytic Leukemia: Changing Landscape?

from Section 12 - Hematopoietic Cell Transplants for Lymphomas: Changing Indications

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 372 - 383
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dohner, H, Stilgenbauer, S, Benner, A, Leupolt, E, Krober, A, Bullinger, L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. The New England Journal of Medicine. 2000;343(26):1910–6. PubMed PMID: 11136261.CrossRefGoogle ScholarPubMed
Gribben, JG, Zahrieh, D, Stephans, K, Bartlett-Pandite, L, Alyea, EP, Fisher, DC, et al. Autologous and allogeneic stem cell transplantations for poor-risk chronic lymphocytic leukemia. Blood. 2005;106(13):4389–96. PubMed PMID: 16131571. Pubmed Central PMCID: 1895235.CrossRefGoogle ScholarPubMed
Jantunen, E, Itala, M, Siitonen, T, Juvonen, E, Koivunen, E, Koistinen, P, et al. Autologous stem cell transplantation in patients with chronic lymphocytic leukaemia: the Finnish experience. Bone Marrow Transplantation. 2006;37(12):1093–8. PubMed PMID: 16699533.CrossRefGoogle ScholarPubMed
Pavletic, ZS, Bierman, PJ, Vose, JM, Bishop, MR, Wu, CD, Pierson, JL, et al. High incidence of relapse after autologous stem-cell transplantation for B-cell chronic lymphocytic leukemia or small lymphocytic lymphoma. Annals of Oncology : Official Journal of the European Society for Medical Oncology/ESMO. 1998;9(9):1023–6. PubMed PMID: 9818078.CrossRefGoogle ScholarPubMed
Rabinowe, SN, Soiffer, RJ, Gribben, JG, Daley, H, Freedman, AS, Daley, J, et al. Autologous and allogeneic bone marrow transplantation for poor prognosis patients with B-cell chronic lymphocytic leukemia. Blood. 1993;82(4):1366–76. PubMed PMID: 7688995.CrossRefGoogle ScholarPubMed
Milligan, DW, Fernandes, S, Dasgupta, R, Davies, FE, Matutes, E, Fegan, CD, et al. Results of the MRC pilot study show autografting for younger patients with chronic lymphocytic leukemia is safe and achieves a high percentage of molecular responses. Blood. 2005;105(1):397404. PubMed PMID: 15117764.CrossRefGoogle ScholarPubMed
Dreger, P, Stilgenbauer, S, Benner, A, Ritgen, M, Krober, A, Kneba, M, et al. The prognostic impact of autologous stem cell transplantation in patients with chronic lymphocytic leukemia: a risk-matched analysis based on the VH gene mutational status. Blood. 2004;103(7):2850–8. PubMed PMID: 14670929.CrossRefGoogle ScholarPubMed
Cheson, BD, Bennett, JM, Grever, M, Kay, N, Keating, MJ, O’Brien, S, et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood. 1996;87(12):4990–7. PubMed PMID: 8652811.CrossRefGoogle Scholar
Sutton, L, Chevret, S, Tournilhac, O, Divine, M, Leblond, V, Corront, B, et al. Autologous stem cell transplantation as a first-line treatment strategy for chronic lymphocytic leukemia: a multicenter, randomized, controlled trial from the SFGM-TC and GFLLC. Blood. 2011;117(23):6109–19. PubMed PMID: 21406717.CrossRefGoogle ScholarPubMed
Michallet, M, Dreger, P, Sutton, L, Brand, R, Richards, S, van Os, M, et al. Autologous hematopoietic stem cell transplantation in chronic lymphocytic leukemia: results of European intergroup randomized trial comparing autografting versus observation. Blood. 2011;117(5):1516–21. PubMed PMID: 21106985.CrossRefGoogle ScholarPubMed
de Wreede, LC, Watson, M, van Os, M, Milligan, D, van Gelder, M, Michallet, M, et al. Improved relapse-free survival after autologous stem cell transplantation does not translate into better quality of life in chronic lymphocytic leukemia: lessons from the randomized European Society for Blood and Marrow Transplantation-Intergroup study. American Journal of Hematology. 2014;89(2):174–80. PubMed PMID: 24123244.CrossRefGoogle Scholar
Dreger, P, Dohner, H, McClanahan, F, Busch, R, Ritgen, M, Greinix, H, et al. Early autologous stem cell transplantation for chronic lymphocytic leukemia: long-term follow-up of the German CLL Study Group CLL3 trial. Blood. 2012;119(21):4851–9. PubMed PMID: 22490331.CrossRefGoogle Scholar
Michallet, M, Archimbaud, E, Bandini, G, Rowlings, PA, Deeg, HJ, Gahrton, G, et al. HLA-identical sibling bone marrow transplantation in younger patients with chronic lymphocytic leukemia. European Group for Blood and Marrow Transplantation and the International Bone Marrow Transplant Registry. Annals of Internal Medicine. 1996;124(3):311–5. PubMed PMID: 8554226.CrossRefGoogle Scholar
Pavletic, ZS, Arrowsmith, ER, Bierman, PJ, Goodman, SA, Vose, JM, Tarantolo, SR, et al. Outcome of allogeneic stem cell transplantation for B cell chronic lymphocytic leukemia. Bone Marrow Transplantation. 2000;25(7):717–22. PubMed PMID: 10745256.CrossRefGoogle ScholarPubMed
Doney, KC, Chauncey, T, Appelbaum, FR, Seattle Bone Marrow Transplant T. Allogeneic related donor hematopoietic stem cell transplantation for treatment of chronic lymphocytic leukemia. Bone Marrow Transplantation. 2002;29(10):817–23. PubMed PMID: 12058231.CrossRefGoogle ScholarPubMed
Toze, CL, Galal, A, Barnett, MJ, Shepherd, JD, Conneally, EA, Hogge, DE, et al. Myeloablative allografting for chronic lymphocytic leukemia: evidence for a potent graft-versus-leukemia effect associated with graft-versus-host disease. Bone Marrow Transplantation. 2005;36(9):825–30. PubMed PMID: 16151430.CrossRefGoogle ScholarPubMed
Dreger, P, Brand, R, Hansz, J, Milligan, D, Corradini, P, Finke, J, et al. Treatment-related mortality and graft-versus-leukemia activity after allogeneic stem cell transplantation for chronic lymphocytic leukemia using intensity-reduced conditioning. Leukemia. 2003;17(5):841–8. PubMed PMID: 12750695.CrossRefGoogle ScholarPubMed
Schetelig, J, van Biezen, A, Brand, R, Caballero, D, Martino, R, Itala, M, et al. Allogeneic hematopoietic stem-cell transplantation for chronic lymphocytic leukemia with 17p deletion: a retrospective European Group for Blood and Marrow Transplantation analysis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2008;26(31):5094–100. PubMed PMID: 18711173.CrossRefGoogle Scholar
Dreger, P, Dohner, H, Ritgen, M, Bottcher, S, Busch, R, Dietrich, S, et al. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial. Blood. 2010;116(14):2438–47. PubMed PMID: 20595516.CrossRefGoogle Scholar
Sorror, ML, Storer, BE, Sandmaier, BM, Maris, M, Shizuru, J, Maziarz, R, et al. Five-year follow-up of patients with advanced chronic lymphocytic leukemia treated with allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2008;26(30):4912–20. PubMed PMID: 18794548. Pubmed Central PMCID: 2652085.CrossRefGoogle ScholarPubMed
Brown, JR, Kim, HT, Li, S, Stephans, K, Fisher, DC, Cutler, C, et al. Predictors of improved progression-free survival after nonmyeloablative allogeneic stem cell transplantation for advanced chronic lymphocytic leukemia. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2006;12(10):1056–64. PubMed PMID: 17084369.CrossRefGoogle ScholarPubMed
Brown, JR, Kim, HT, Armand, P, Cutler, C, Fisher, DC, Ho, V, et al. Long-term follow-up of reduced-intensity allogeneic stem cell transplantation for chronic lymphocytic leukemia: prognostic model to predict outcome. Leukemia. 2013;27(2):362–9. PubMed PMID: 22955330. Pubmed Central PMCID: 3519975.CrossRefGoogle ScholarPubMed
Khouri, IF, Wei, W, Korbling, M, Turturro, F, Ahmed, S, Alousi, A, et al. BFR (bendamustine, fludarabine, and rituximab) allogeneic conditioning for chronic lymphocytic leukemia/lymphoma: reduced myelosuppression and GVHD. Blood. 2014;124(14):2306–12. PubMed PMID: 25145344. Pubmed Central PMCID: 4260365.CrossRefGoogle ScholarPubMed
Dreger, P, Brand, R, Milligan, D, Corradini, P, Finke, J, Lambertenghi Deliliers, G, et al. Reduced-intensity conditioning lowers treatment-related mortality of allogeneic stem cell transplantation for chronic lymphocytic leukemia: a population-matched analysis. Leukemia. 2005;19(6):1029–33. PubMed PMID: 15830011.CrossRefGoogle ScholarPubMed
Toze, CL, Dalal, CB, Nevill, TJ, Gillan, TL, Abou Mourad, YR, Barnett, MJ, et al. Allogeneic haematopoietic stem cell transplantation for chronic lymphocytic leukaemia: outcome in a 20-year cohort. British Journal of Haematology. 2012;158(2):174–85. PubMed PMID: 22640008.CrossRefGoogle Scholar
Sobecks, RM, Leis, JF, Gale, RP, Ahn, KW, Zhu, X, Sabloff, M, et al. Outcomes of human leukocyte antigen-matched sibling donor hematopoietic cell transplantation in chronic lymphocytic leukemia: myeloablative versus reduced-intensity conditioning regimens. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(9):1390–8. PubMed PMID: 24880021. Pubmed Central PMCID: 4174349.CrossRefGoogle ScholarPubMed
Caballero, D, Garcia-Marco, JA, Martino, R, Mateos, V, Ribera, JM, Sarra, J, et al. Allogeneic transplant with reduced intensity conditioning regimens may overcome the poor prognosis of B-cell chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy-chain gene and chromosomal abnormalities (11q- and 17p-). Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2005;11(21):7757–63. PubMed PMID: 16278397.CrossRefGoogle ScholarPubMed
Dreger, P, Schnaiter, A, Zenz, T, Bottcher, S, Rossi, M, Paschka, P, et al. TP53, SF3B1, and NOTCH1 mutations and outcome of allotransplantation for chronic lymphocytic leukemia: six-year follow-up of the GCLLSG CLL3X trial. Blood. 2013;121(16):3284–8. PubMed PMID: 23435461.CrossRefGoogle ScholarPubMed
Chavez, JC, Kharfan-Dabaja, MA, Kim, J, Yue, B, Dalia, S, Pinilla-Ibarz, J, et al. Genomic aberrations deletion 11q and deletion 17p independently predict for worse progression-free and overall survival after allogeneic hematopoietic cell transplantation for chronic lymphocytic leukemia. Leukemia Research. 2014;38(10):1165–72. PubMed PMID: 24889511.CrossRefGoogle ScholarPubMed
Moreno, C, Villamor, N, Colomer, D, Esteve, J, Martino, R, Nomdedeu, J, et al. Allogeneic stem-cell transplantation may overcome the adverse prognosis of unmutated VH gene in patients with chronic lymphocytic leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2005;23(15):3433–8. PubMed PMID: 15809449.CrossRefGoogle ScholarPubMed
Khouri, IF, Saliba, RM, Admirand, J, O’Brien, S, Lee, MS, Korbling, M, et al. Graft-versus-leukaemia effect after non-myeloablative haematopoietic transplantation can overcome the unfavourable expression of ZAP-70 in refractory chronic lymphocytic leukaemia. British Journal of Haematology. 2007;137(4):355–63. PubMed PMID: 17456058.CrossRefGoogle ScholarPubMed
Schetelig, J, Thiede, C, Bornhauser, M, Schwerdtfeger, R, Kiehl, M, Beyer, J, et al. Evidence of a graft-versus-leukemia effect in chronic lymphocytic leukemia after reduced-intensity conditioning and allogeneic stem-cell transplantation: the Cooperative German Transplant Study Group. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2003;21(14):2747–53. PubMed PMID: 12860954.CrossRefGoogle ScholarPubMed
Delgado, J, Thomson, K, Russell, N, Ewing, J, Stewart, W, Cook, G, et al. Results of alemtuzumab-based reduced-intensity allogeneic transplantation for chronic lymphocytic leukemia: a British Society of Blood and Marrow Transplantation Study. Blood. 2006;107(4):1724–30. PubMed PMID: 16239425.CrossRefGoogle ScholarPubMed
Khouri, IF, Bassett, R, Poindexter, N, O’Brien, S, Bueso-Ramos, CE, Hsu, Y, et al. Nonmyeloablative allogeneic stem cell transplantation in relapsed/refractory chronic lymphocytic leukemia: long-term follow-up, prognostic factors, and effect of human leukocyte histocompatibility antigen subtype on outcome. Cancer. 2011;117(20):4679–88. PubMed PMID: 21455998.CrossRefGoogle ScholarPubMed
Advani, RH, Buggy, JJ, Sharman, JP, Smith, SM, Boyd, TE, Grant, B, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(1):8894. PubMed PMID: 23045577.CrossRefGoogle ScholarPubMed
Byrd, JC, Brown, JR, O’Brien, S, Barrientos, JC, Kay, NE, Reddy, NM, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. The New England Journal of Medicine. 2014;371(3):213–23. PubMed PMID: 24881631.CrossRefGoogle ScholarPubMed
Byrd, JC, Furman, RR, Coutre, SE, Flinn, IW, Burger, JA, Blum, KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. The New England Journal of Medicine. 2013;369(1):3242. PubMed PMID: 23782158. Pubmed Central PMCID: 3772525.CrossRefGoogle ScholarPubMed
de Rooij, MF, Kuil, A, Geest, CR, Eldering, E, Chang, BY, Buggy, JJ, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119(11):2590–4. PubMed PMID: 22279054.CrossRefGoogle ScholarPubMed
Herman, SE, Gordon, AL, Hertlein, E, Ramanunni, A, Zhang, X, Jaglowski, S, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96. PubMed PMID: 21422473. Pubmed Central PMCID: 3122947.CrossRefGoogle ScholarPubMed
Ponader, S, Chen, SS, Buggy, JJ, Balakrishnan, K, Gandhi, V, Wierda, WG, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119(5):1182–9. PubMed PMID: 22180443.CrossRefGoogle ScholarPubMed
Cuni, S, Perez-Aciego, P, Perez-Chacon, G, Vargas, JA, Sanchez, A, Martin-Saavedra, FM, et al. A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia. 2004;18(8):1391–400. PubMed PMID: 15175625.CrossRefGoogle ScholarPubMed
Hoellenriegel, J, Meadows, SA, Sivina, M, Wierda, WG, Kantarjian, H, Keating, MJ, et al. The phosphoinositide 3’-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood. 2011;118(13):3603–12. PubMed PMID: 21803855.CrossRefGoogle ScholarPubMed
Longo, PG, Laurenti, L, Gobessi, S, Sica, S, Leone, G, Efremov, DG. The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood. 2008;111(2):846–55. PubMed PMID: 17928528.CrossRefGoogle Scholar
Brown, JR, Byrd, JC, Coutre, SE, Benson, DM, Flinn, IW, Wagner-Johnston, ND, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;123(22):3390–7. PubMed PMID: 24615777.CrossRefGoogle ScholarPubMed
Furman, RR, Sharman, JP, Coutre, SE, Cheson, BD, Pagel, JM, Hillmen, P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. The New England Journal of Medicine. 2014;370(11):9971007. PubMed PMID: 24450857.CrossRefGoogle ScholarPubMed
Seymour, JF, Davids, MS, Pagel, JM, et al., editors. ABT-199 (GDC-0199) in Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL) and Small Lymphocytic Lymphoma (SLL): High Complete Response Rate and Durable Disease Control, American Society of Clinical Oncology Annual Meeting, 2014.CrossRefGoogle Scholar
Ma, S, Seymour, JF, Brander, D, et al., editors. ABT-199 (GDC-0199) Combined with Rituximab in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia: Interim Results of a Phase 1b Study. American Society of Clinical Oncology Annual Meeting, 2014.CrossRefGoogle Scholar
Cruz, CR, Micklethwaite, KP, Savoldo, B, Ramos, CA, Lam, S, Ku, S, et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood. 2013;24:122(17):2965–73. PubMed PMID: 24030379. Pubmed Central PMCID: 3811171.Google ScholarPubMed
Kochenderfer, JN, Dudley, ME, Feldman, SA, Wilson, WH, Spaner, DE, Maric, I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20. PubMed PMID: 22160384. Pubmed Central PMCID: 3327450.CrossRefGoogle Scholar
Goede, V, Fischer, K, Busch, R, Engelke, A, Eichhorst, B, Wendtner, CM, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. The New England Journal of Medicine. 2014;370(12):1101–10. PubMed PMID: 24401022.CrossRefGoogle ScholarPubMed
Woyach, JA, Johnson, AJ. Targeted therapies in CLL: mechanisms of resistance and strategies for management. Blood. 2015;126(4):471–7. PubMed PMID: 26065659.CrossRefGoogle ScholarPubMed
Dreger, P, Corradini, P, Kimby, E, Michallet, M, Milligan, D, Schetelig, J, et al. Indications for allogeneic stem cell transplantation in chronic lymphocytic leukemia: the EBMT transplant consensus. Leukemia. 2007;21(1):12–7. PubMed PMID: 17109028.CrossRefGoogle ScholarPubMed
Logan, AC, Zhang, B, Narasimhan, B, Carlton, V, Zheng, J, Moorhead, M, et al. Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia. 2013;27(8):1659–65. PubMed PMID: 23419792. Pubmed Central PMCID: 3740398.CrossRefGoogle ScholarPubMed
Farina, L, Carniti, C, Dodero, A, Vendramin, A, Raganato, A, Spina, F, et al. Qualitative and quantitative polymerase chain reaction monitoring of minimal residual disease in relapsed chronic lymphocytic leukemia: early assessment can predict long-term outcome after reduced intensity allogeneic transplantation. Haematologica. 2009;94(5):654–62. PubMed PMID: 19377072. Pubmed Central PMCID: 2675677.CrossRefGoogle ScholarPubMed
Moreno, C, Villamor, N, Colomer, D, Esteve, J, Gine, E, Muntanola, A, et al. Clinical significance of minimal residual disease, as assessed by different techniques, after stem cell transplantation for chronic lymphocytic leukemia. Blood. 2006;107(11):4563–9. PubMed PMID: 16449533.CrossRefGoogle ScholarPubMed
Burkhardt, UE, Hainz, U, Stevenson, K, Goldstein, NR, Pasek, M, Naito, M, et al. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells. The Journal of Clinical Investigation. 2013;123(9):3756–65. PubMed PMID: 23912587. Pubmed Central PMCID: 3754265.CrossRefGoogle ScholarPubMed
Rajasagi, M, Shukla, SA, Fritsch, EF, Keskin, DB, DeLuca, D, Carmona, E, et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014;124(3):453–62. PubMed PMID: 24891321.CrossRefGoogle ScholarPubMed
Richardson, SE, Khan, I, Rawstron, A, Sudak, J, Edwards, N, Verfuerth, S, et al. Risk-stratified adoptive cellular therapy following allogeneic hematopoietic stem cell transplantation for advanced chronic lymphocytic leukaemia. British Journal of Haematology. 2013;160(5):640–8. PubMed PMID: 23293871.CrossRefGoogle ScholarPubMed
Bashey, A, Medina, B, Corringham, S, Pasek, M, Carrier, E, Vrooman, L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–8. PubMed PMID: 18974373. Pubmed Central PMCID: 2644086.CrossRefGoogle ScholarPubMed
Xerri, L, Chetaille, B, Serriari, N, Attias, C, Guillaume, Y, Arnoulet, C, et al. Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Human Pathology. 2008;39(7):1050–8. PubMed PMID: 18479731.CrossRefGoogle ScholarPubMed
Ansell, SM, Lesokhin, AM, Borrello, I, Halwani, A, Scott, EC, Gutierrez, M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. The New England Journal of Medicine. 2015;372(4):311–9. PubMed PMID: 25482239.CrossRefGoogle ScholarPubMed
Westin, JR, Chu, F, Zhang, M, Fayad, LE, Kwak, LW, Fowler, N, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. The Lancet Oncology. 2014;15(1):6977. PubMed PMID: 24332512. Pubmed Central PMCID: 3922714.CrossRefGoogle ScholarPubMed
Armand, P, Nagler, A, Weller, EA, Devine, SM, Avigan, DE, Chen, YB, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(33):4199–206. PubMed PMID: 24127452.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×