Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T09:02:56.264Z Has data issue: false hasContentIssue false

Chapter 17 - Infectious Conditions and the Immune System in Elders

Published online by Cambridge University Press:  11 July 2020

Kim A. Collins
Affiliation:
LifePoint Inc, South Carolina
Roger W. Byard
Affiliation:
University of Adelaide
Get access

Summary

The association of aging with an increased susceptibility to and mortality from infection has been observed since ancient times [1]. There are a large number of organ-specific physiological changes associated with aging that increase infection risk, including urogenital changes, weakened cough reflex, endocrinological changes, thinning skin, impaired circulatory function, and sarcopenia, as well as general issues such as malnutrition and increased malignancies

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yoshikawa, T. T. Perspective: aging and infectious diseases: past, present, and future. Journal of Infectious Diseases. 1997;176(4):1053–7.CrossRefGoogle ScholarPubMed
El Chakhtoura, N. G., Bonomo, R. A., Jump, R. L. P.. Influence of aging and environment on presentation of infection in older adults. Infectious Disease Clinics of North America. 2017;31(4):593608.Google Scholar
Donahue, J. G., Choo, P. W., Manson, J. E., Platt, R.. The incidence of herpes zoster. Archives of Internal Medicine. 1995;155(15):1605–9.Google Scholar
Bavishi, C., Dupont, H. L.. Systematic review: the use of proton pump inhibitors and increased susceptibility to enteric infection. Alimentary Pharmacology & Therapeutics. 2011;34(11–12):1269–81.Google Scholar
Klein, N. C., Go, C. H., Cunha, B. A.. Infections associated with steroid use. Infectious Disease Clinics of North America. 2001;15(2):423–32, viii.Google Scholar
Furuno, J. P., Shurland, S. M., Zhan, M., et al. Comparison of the methicillin-resistant Staphylococcus aureus acquisition among rehabilitation and nursing home residents. Infection Control and Hospital Epidemiology. 2011;32(3):244–9.CrossRefGoogle ScholarPubMed
Flannery, E. L., Wang, L., Zollner, S., et al. Wounds, functional disability, and indwelling devices are associated with cocolonization by methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci in southeast Michigan. Clinical Infectious Diseases. 2011;53(12):1215–22.Google Scholar
Rodriguez, C., Korsak, N., Taminiau, B., et al. Clostridium difficile infection in elderly nursing home residents. Anaerobe. 2014;30:184–7.Google Scholar
Lindsay, L., Wolter, J., De Coster, I., Van Damme, P., Verstraeten, T.. A decade of norovirus disease risk among older adults in upper-middle and high income countries: a systematic review. BMC Infectious Diseases. 2015;15:425.CrossRefGoogle ScholarPubMed
Rainwater-Lovett, K., Chun, K., Lessler, J.. Influenza outbreak control practices and the effectiveness of interventions in long-term care facilities: a systematic review. Influenza and Other Respiratory Viruses. 2014;8(1):7482.CrossRefGoogle ScholarPubMed
Mitchell, S. L., Shaffer, M. L., Loeb, M. B., et al. Infection management and multidrug-resistant organisms in nursing home residents with advanced dementia. JAMA Internal Medicine. 2014;174(10):1660–7.Google Scholar
Geiger, H., Rudolph, K. L.. Aging in the lympho-hematopoietic stem cell compartment. Trends in Immunology. 2009;30(7):360–5.CrossRefGoogle ScholarPubMed
Ventura, M. T., Casciaro, M., Gangemi, S., Buquicchio, R.. Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clinical and Molecular Allergy. 2017;15:21.CrossRefGoogle ScholarPubMed
Stiasny, K., Aberle, J. H., Keller, M., Grubeck-Loebenstein, B., Heinz, F. X.. Age affects quantity but not quality of antibody responses after vaccination with an inactivated flavivirus vaccine against tick-borne encephalitis. PLoS One. 2012;7(3):e34145.Google Scholar
Shaw, A. C., Joshi, S., Greenwood, H., Panda, A., Lord, J. M.. Aging of the innate immune system. Current Opinion in Immunology. 2010;22(4):507–13.CrossRefGoogle ScholarPubMed
Fuentes, E., Fuentes, M., Alarcon, M., Palomo, I.. Immune system dysfunction in the elderly. Anais da Academia Brasileira de Ciencias. 2017;89(1):285–99.CrossRefGoogle ScholarPubMed
Linehan, E., Fitzgerald, D. C.. Ageing and the immune system: focus on macrophages. European Journal of Microbiology & Immunology. 2015;5(1):1424.CrossRefGoogle ScholarPubMed
Gupta, S. Role of dendritic cells in innate and adaptive immune response in human aging. Experimental Gerontology. 2014;54:4752.Google Scholar
Ponnappan, S., Ponnappan, U.. Aging and immune function: molecular mechanisms to interventions. Antioxidants & Redox Signaling. 2011;14(8):1551–85.Google ScholarPubMed
Shaw, A. C., Panda, A., Joshi, S. R., et al. Dysregulation of human Toll-like receptor function in aging. Ageing Research Reviews. 2011;10(3):346–53.Google Scholar
Fried, L. P., Tangen, C. M., Walston, J., et al. Frailty in older adults: evidence for a phenotype. Journals of Gerontology Series A, Biological Sciences and Medical Sciences. 2001;56(3):M146–56.CrossRefGoogle ScholarPubMed
Clegg, A., Young, J., Iliffe, S., Rikkert, M. O., Rockwood, K.. Frailty in elderly people. Lancet. 2013;381(9868):752–62.Google Scholar
Hubbard, R. E., O’Mahony, M. S., Savva, G. M., Calver, B. L., Woodhouse, K. W.. Inflammation and frailty measures in older people. Journal of Cellular and Molecular Medicine. 2009;13(9b):3103–9.CrossRefGoogle ScholarPubMed
Qu, T., Yang, H., Walston, J. D., Fedarko, N. S., Leng, S. X.. Upregulated monocytic expression of CXC chemokine ligand 10 (CXCL-10) and its relationship with serum interleukin-6 levels in the syndrome of frailty. Cytokine. 2009;46(3):319–24.CrossRefGoogle ScholarPubMed
Qu, T., Walston, J. D., Yang, H., et al. Upregulated ex vivo expression of stress-responsive inflammatory pathway genes by LPS-challenged CD14(+) monocytes in frail older adults. Mechanisms of Ageing and Development. 2009;130(3):161–6.Google Scholar
Semba, R. D., Margolick, J. B., Leng, S., et al. T cell subsets and mortality in older community-dwelling women. Experimental Gerontology. 2005;40(1–2):81–7.Google Scholar
van den Biggelaar, A. H., Huizinga, T. W., de Craen, A. J., et al. Impaired innate immunity predicts frailty in old age. The Leiden 85-plus study. Experimental Gerontology. 2004;39(9):1407–14.Google Scholar
Girard, T. D., Opal, S. M., Ely, E. W.. Insights into severe sepsis in older patients: from epidemiology to evidence-based management. Clinical Infectious Diseases. 2005;40(5):719–27.CrossRefGoogle ScholarPubMed
Krabbe, K. S., Bruunsgaard, H., Qvist, J., et al. Hypotension during endotoxemia in aged humans. European Journal of Anaesthesiology. 2001;18(9):572–5.CrossRefGoogle ScholarPubMed
Thomasini, R. L., Pereira, D. S., Pereira, F. S. M., et al. Aged-associated cytomegalovirus and Epstein-Barr virus reactivation and cytomegalovirus relationship with the frailty syndrome in older women. PLoS One. 2017;12(7):e0180841.Google Scholar
Norman, D. C. Fever in the elderly. Clinical Infectious Diseases. 2000;31(1):148–51.CrossRefGoogle ScholarPubMed
Pfitzenmeyer, P., Decrey, H., Auckenthaler, R., Michel, J. P.. Predicting bacteremia in older patients. Journal of the American Geriatrics Society. 1995;43(3):230–5.CrossRefGoogle ScholarPubMed
Waalen, J., Buxbaum, J. N.. Is older colder or colder older? The association of age with body temperature in 18,630 individuals. Journals of Gerontology: Series A. 2011;66A(5):487–92.Google Scholar
Flournoy, D. J., Bernard, M. A.. Problems in diagnosing infections in the elderly. Journal of the National Medical Association. 1993;85(11):835–40.Google ScholarPubMed
Gleckman, R., Hibert, D.. Afebrile bacteremia. A phenomenon in geriatric patients. JAMA. 1982;248(12):1478–81.CrossRefGoogle ScholarPubMed
Hepper, H. J., Sieber, C., Walger, P., Bahrmann, P., Singler, K.. Infections in the elderly. Critical Care Clinics. 2013;29(3):757–74.Google Scholar
Martin, G. S., Mannino, D. M., Moss, M.. The effect of age on the development and outcome of adult sepsis. Critical Care Medicine. 2006;34(1):1521.CrossRefGoogle ScholarPubMed
ATAGI. The Australian Immunisation Handbook, 10th edn (2017 update). Canberra: Australian Government Department of Health; 2017.Google Scholar
Lefebvre, J. S., Haynes, L.. Vaccine strategies to enhance immune responses in the aged. Current Opinion in Immunology. 2013;25(4):523–8.CrossRefGoogle ScholarPubMed
Wendelboe, A. M., Grafe, C., McCumber, M., Anderson, M. P.. Inducing herd immunity against seasonal influenza in long-term care facilities through employee vaccination coverage: a transmission dynamics model. Computational and Mathematical Methods in Medicine. 2015;2015:178247.Google Scholar
Stuart, R. L., Marshall, C., Orr, E., et al. Survey of infection control and antimicrobial stewardship practices in Australian residential aged-care facilities. Internal Medicine Journal. 2015;45(5):576–80.Google Scholar
Sogaard, M., Schonheyder, H. C., Riis, A., Sorensen, H. T., Norgaard, M.. Short-term mortality in relation to age and comorbidity in older adults with community-acquired bacteremia: a population-based cohort study. Journal of the American Geriatrics Society. 2008;56(9):1593–600.Google Scholar
Khayr, W. F., Carmichael, M. J., Dubanowich, C. S., Latif, R. H.. Epidemiology of bacteremia in the geriatric population. American Journal of Therapeutics. 2003;10(2):127–31.CrossRefGoogle ScholarPubMed
Whitelaw, D. A., Rayner, B. L., Willcox, P. A.. Community-acquired bacteremia in the elderly: a prospective study of 121 cases. Journal of the American Geriatrics Society. 1992;40(10):9961000.Google Scholar
Caterino, J. M. Evaluation and management of geriatric infections in the emergency department. Emergency Medicine Clinics of North America. 2008;26(2):319–43, viii.CrossRefGoogle ScholarPubMed
Chassagne, P., Perol, M. B., Doucet, J., et al. Is presentation of bacteremia in the elderly the same as in younger patients? American Journal of Medicine. 1996;100(1):6570.Google Scholar
Fontanarosa, P. B., Kaeberlein, F. J., Gerson, L. W., Thomson, R. B.. Difficulty in predicting bacteremia in elderly emergency patients. Annals of Emergency Medicine. 1992;21(7):842–8.Google Scholar
Bin Abdulhak, A. A., Baddour, L. M., Erwin, P. J., et al. Global and regional burden of infective endocarditis, 1990–2010: a systematic review of the literature. Global Heart. 2014;9(1):131–43.Google Scholar
Slipczuk, L., Codolosa, J. N., Davila, C. D., et al. Infective endocarditis epidemiology over five decades: a systematic review. PLoS One. 2013;8(12):e82665.CrossRefGoogle ScholarPubMed
Crossley, K. B., Peterson, P. K.. Infections in the elderly. In Bennett, J. E., Dolin, R., Blaser, M. J., eds. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th edn, Vol 2. Philadelphia: Elsevier Saunders; 2015. pp. 3459–65.e3.Google Scholar
Tleyjeh, I. M., Steckelberg, J. M., Murad, H. S., et al. Temporal trends in infective endocarditis: a population-based study in Olmsted County, Minnesota. JAMA. 2005;293(24):3022–8.CrossRefGoogle ScholarPubMed
Terpening, M. S., Buggy, B. P., Kauffman, C. A.. Infective endocarditis: clinical features in young and elderly patients. American Journal of Medicine. 1987;83(4):626–34.Google Scholar
Di Salvo, G., Thuny, F., Rosenberg, V., et al. Endocarditis in the elderly: clinical, echocardiographic, and prognostic features. European Heart Journal. 2003;24(17):1576–83.CrossRefGoogle ScholarPubMed
Barrau, K., Boulamery, A., Imbert, G., et al. Causative organisms of infective endocarditis according to host status. Clinical Microbiology and Infection. 2004;10(4):302–8.Google Scholar
Foxman, B., Brown, P.. Epidemiology of urinary tract infections: transmission and risk factors, incidence, and costs. Infectious Disease Clinics of North America. 2003;17(2):227–41.CrossRefGoogle ScholarPubMed
Nicolle, L. E. Urinary tract infections in the older adult. Clinics in Geriatric Medicine. 2016;32(3):523–38.Google Scholar
D’Agata, E., Loeb, M. B., Mitchell, S. L.. Challenges assessing nursing home residents with advanced dementia for suspected urinary tract infections. Journal of the American Geriatrics Society. 2013;61(1):62–6.Google Scholar
De Vecchi, E., Sitia, S., Romano, C. L., Ricci, C., Mattina, R., Drago, L.. Aetiology and antibiotic resistance patterns of urinary tract infections in the elderly: a 6-month study. Journal of Medical Microbiology. 2013;62(Pt 6):859–63.CrossRefGoogle Scholar
Hooton, T. M., Bradley, S. F., Cardenas, D. D., et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clinical Infectious Diseases. 2010;50(5):625–63.Google Scholar
Lee, E. A., Malatt, C.. Making the hospital safer for older adult patients: a focus on the indwelling urinary catheter. Permanente Journal. 2011;15(1):4952.CrossRefGoogle ScholarPubMed
Miller, R. S., Norris, P. R., Jenkins, J. M., et al. Systems initiatives reduce healthcare-associated infections: a study of 22,928 device days in a single trauma unit. Journal of Trauma. 2010;68(1):2331.Google Scholar
Woodford, H. J., Graham, C., Meda, M., Miciuleviciene, J.. Bacteremic urinary tract infection in hospitalized older patients: are any currently available diagnostic criteria sensitive enough? Journal of the American Geriatrics Society. 2011;59(3):567–8.Google Scholar
Tal, S., Guller, V., Levi, S., et al. Profile and prognosis of febrile elderly patients with bacteremic urinary tract infection. Journal of Infection. 2005;50(4):296305.CrossRefGoogle ScholarPubMed
Boyd, L. B., Atmar, R. L., Randall, G. L., et al. Increased fluoroquinolone resistance with time in Escherichia coli from >17,000 patients at a large county hospital as a function of culture site, age, sex, and location. BMC Infectious Diseases. 2008;8:4.Google Scholar
Colodner, R., Kometiani, I., Chazan, B., Raz, R.. Risk factors for community-acquired urinary tract infection due to quinolone-resistant E. coli. Infection. 2008;36(1):41–5.CrossRefGoogle ScholarPubMed
Tinelli, M., Cataldo, M. A., Mantengoli, E., et al. Epidemiology and genetic characteristics of extended-spectrum beta-lactamase-producing Gram-negative bacteria causing urinary tract infections in long-term care facilities. Journal of Antimicrobial Chemotherapy. 2012;67(12):2982–7.CrossRefGoogle ScholarPubMed
Gopal Rao, G., Patel, M.. Urinary tract infection in hospitalized elderly patients in the United Kingdom: the importance of making an accurate diagnosis in the post broad-spectrum antibiotic era. Journal of Antimicrobial Chemotherapy. 2009;63(1):56.Google Scholar
Marrie, T. J. Epidemiology of community-acquired pneumonia in the elderly. Seminars in Respiratory Infections. 1990;5(4):260–8.Google Scholar
Marrie, T. J. Pneumonia in the long-term-care facility. Infection Control and Hospital Epidemiology. 2002;23(3):159–64.Google Scholar
Conte, H. A., Chen, Y. T., Mehal, W., Scinto, J. D., Quagliarello, V. J.. A prognostic rule for elderly patients admitted with community-acquired pneumonia. American Journal of Medicine. 1999;106(1):20–8.Google Scholar
Rozzini, R., Trabucchi, M.. Pneumonia and mortality beyond hospital discharge in elderly patients. Chest. 2011;139(2):473–4.CrossRefGoogle ScholarPubMed
Kikuchi, R., Watabe, N., Konno, T., et al. High incidence of silent aspiration in elderly patients with community-acquired pneumonia. American Journal of Respiratory and Critical Care Medicine. 1994;150(1):251–3.Google Scholar
Janssens, J. P., Krause, K. H.. Pneumonia in the very old. Lancet Infectious Diseases. 2004;4(2):112–24.Google Scholar
Kupronis, B. A., Richards, C. L., Whitney, C. G.. Invasive pneumococcal disease in older adults residing in long-term care facilities and in the community. Journal of the American Geriatrics Society. 2003;51(11):1520–5.Google Scholar
Falsey, A. R., Walsh, E. E.. Viral pneumonia in older adults. Clinical Infectious Diseases 2006;42(4):518–24.Google Scholar
Charles, P. G., Whitby, M., Fuller, A. J., et al. The etiology of community-acquired pneumonia in Australia: why penicillin plus doxycycline or a macrolide is the most appropriate therapy. Clinical Infectious Diseases. 2008;46(10):1513–21.Google Scholar
Johnstone, J., Majumdar, S. R., Fox, J. D., Marrie, T. J.. Viral infection in adults hospitalized with community-acquired pneumonia: prevalence, pathogens, and presentation. Chest. 2008;134(6):1141–8.CrossRefGoogle ScholarPubMed
Te Wierik, M. J., Nguyen, D. T., Beersma, M. F., Thijsen, S. F., Heemstra, K. A.. An outbreak of severe respiratory tract infection caused by human metapneumovirus in a residential care facility for elderly in Utrecht, the Netherlands, January to March 2010. European Communicable Disease Bulletin. 2012;17(13):pii: 20132.Google Scholar
Troy, C. J., Peeling, R. W., Ellis, A. G., et al. Chlamydia pneumoniae as a new source of infectious outbreaks in nursing homes. JAMA. 1997;277(15):1214–8.Google Scholar
Saviteer, S. M., Samsa, G. P., Rutala, W. A.. Nosocomial infections in the elderly. Increased risk per hospital day. American Journal of Medicine. 1988;84(4):661–6.Google Scholar
Marrie, T. J., Haldane, E. V., Faulkner, R. S., Durant, H., Kwan, C.. Community-acquired pneumonia requiring hospitalization. Is it different in the elderly? Journal of the American Geriatrics Society. 1985;33(10):671–80.CrossRefGoogle ScholarPubMed
Finkelstein, M. S., Petkun, W. M., Freedman, M. L., Antopol, S. C.. Pneumococcal bacteremia in adults: age-dependent differences in presentation and in outcome. Journal of the American Geriatrics Society. 1983;31(1):1927.Google Scholar
Harper, C., Newton, P.. Clinical aspects of pneumonia in the elderly veteran. Journal of the American Geriatrics Society. 1989;37(9):867–72.Google Scholar
Johnson, J. C., Jayadevappa, R., Baccash, P. D., Taylor, L.. Non-specific presentation of pneumonia in hospitalized older people: age effect or dementia? Journal of the American Geriatrics Society. 2000;48(10):1316–20.Google Scholar
van Duin, D. Diagnostic challenges and opportunities in older adults with infectious diseases. Clinical Infectious Diseases. 2012;54(7):973–8.CrossRefGoogle ScholarPubMed
Laube, S., Farrell, A. M.. Bacterial skin infections in the elderly: diagnosis and treatment. Drugs & Aging. 2002;19(5):331–42.Google Scholar
Nanduri, S. A., Metcalf, B. J., Arwady, M. A., et al. Prolonged and large outbreak of invasive group A Streptococcus disease within a nursing home: repeated intrafacility transmission of a single strain. Clinical Microbiology and Infection. 2019;25(2):248.e1–248.e7.Google Scholar
High, K. P., Jordan, H. T., Richards, J. C. L., et al. Group A streptococcal disease in long-term care facilities: descriptive epidemiology and potential control measures. Clinical Infectious Diseases. 2007;45(6):742–52.Google Scholar
Kothari, N. J., Morin, C. A., Glennen, A., et al. Invasive group B streptococcal disease in the elderly, Minnesota, USA, 2003–2007. Emerging Infectious Diseases. 2009;15(8):1279–81.Google Scholar
Anderson, D. J., Kaye, K. S.. Skin and soft tissue infections in older adults. Clinics in Geriatric Medicine. 2007;23(3):595613, vii.Google Scholar
Reddy, M., Gill, S. S., Rochon, P. A.. Preventing pressure ulcers: a systematic review. JAMA. 2006;296(8):974–84.Google Scholar
Bansal, C., Scott, R., Stewart, D., Cockerell, C. J.. Decubitus ulcers: a review of the literature. International Journal of Dermatology. 2005;44(10):805–10.CrossRefGoogle ScholarPubMed
Livesley, N. J., Chow, A. W.. Infected pressure ulcers in elderly individuals. Clinical Infectious Diseases. 2002;35(11):1390–6.Google Scholar
Margolis, D. J., Bilker, W., Knauss, J., Baumgarten, M., Strom, B. L.. The incidence and prevalence of pressure ulcers among elderly patients in general medical practice. Annals of Epidemiology. 2002;12(5):321–5.Google Scholar
Pettersson, E., Vernby, A., Molstad, S., Lundborg, C. S.. Infections and antibiotic prescribing in Swedish nursing homes: a cross-sectional study. Scandinavian Journal of Infectious Diseases. 2008;40(5):393–8.Google Scholar
Jaul, E. Assessment and management of pressure ulcers in the elderly: current strategies. Drugs & Aging. 2010;27(4):311–25.Google Scholar
White-Chu, E. F., Flock, P., Struck, B., Aronson, L.. Pressure ulcers in long-term care. Clinics in Geriatric Medicine. 2011;27(2):241–58.Google Scholar
Engemann, J. J., Carmeli, Y., Cosgrove, S. E., et al. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clinical Infectious Diseases. 2003;36(5):592–8.Google Scholar
Mangram, A. J., Horan, T. C., Pearson, M. L., Silver, L. C., Jarvis, W. R.. Guideline for prevention of surgical site infection, 1999. Hospital Infection Control Practices Advisory Committee. Infection Control and Hospital Epidemiology. 1999;20(4):250–78; quiz 79–80.Google Scholar
McGarry, S. A., Engemann, J. J., Schmader, K., Sexton, D. J., Kaye, K. S.. Surgical-site infection due to Staphylococcus aureus among elderly patients: mortality, duration of hospitalization, and cost. Infection Control and Hospital Epidemiology. 2004;25(6):461–7.Google Scholar
Gorse, G. J., Thrupp, L. D., Nudleman, K. L., et al. Bacterial meningitis in the elderly. Archives of Internal Medicine. 1984;144(8):1603–7.Google Scholar
Tunkel, A. R., van de Beek, D., Scheld, W. M.. Acute meningitis. In Bennett, J. E., Dolin, R., Blaser, M. J., eds. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th edn, Vol 1. Philadelphia: Elsevier Saunders; 2015. pp. 1097–137.e10.Google Scholar
Brouwer, M. C. M. D., Thwaites, G. E. M. D., Tunkel, A. R. P., van de Beek, D. P.. Dilemmas in the diagnosis of acute community-acquired bacterial meningitis. Lancet. 2012;380(9854):1684–92.Google Scholar
Bennett, J. E. Chronic meningitis. In Bennett, J. E., Dolin, R., Blaser, M. J., eds. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th edn, Vol 1. Philadelphia: Elsevier Saunders; 2015. pp. 1138–43.Google Scholar
Leber, A. L., Everhart, K., Balada-Llasat, J. M., et al. Multicenter evaluation of BioFire FilmArray Meningitis/Encephalitis Panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid specimens. Journal of Clinical Microbiology. 2016;54(9):2251–61.Google Scholar
Tan, K., Patel, S., Gandhi, N.,et al. Burden of neuroinfectious diseases on the neurology service in a tertiary care center. Neurology. 2008;71(15):1160–6.CrossRefGoogle ScholarPubMed
Glaser, C. A., Honarmand, S., Anderson, L. J., et al. Beyond viruses: clinical profiles and etiologies associated with encephalitis. Clinical Infectious Diseases. 2006;43(12):1565–77.Google Scholar
Petersen, L. R., Marfin, A. A.. West Nile virus: a primer for the clinician. Annals of Internal Medicine. 2002;137(3):173–9.Google Scholar
Cardemil, C. V., Parashar, U. D., Hall, A. J.. Norovirus infection in older adults: epidemiology, risk factors, and opportunities for prevention and control. Infectious Disease Clinics of North America. 2017;31(4):839–70.Google Scholar
Teunis, P. F., Moe, C. L., Liu, P., et al. Norwalk virus: how infectious is it? Journal of Medical Virology. 2008;80(8):1468–76.Google Scholar
Trivedi, T. K., DeSalvo, T., Lee, L., et al. Hospitalizations and mortality associated with norovirus outbreaks in nursing homes, 2009–2010. JAMA. 2012;308(16):1668–75.Google Scholar
Lessa, F. C., Mu, Y., Bamberg, W. M., et al. Burden of Clostridium difficile infection in the United States. New England Journal of Medicine. 2015;372(9):825–34.Google Scholar
Bartlett, J. G., Gerding, D. N.. Clinical recognition and diagnosis of Clostridium difficile infection. Clinical Infectious Diseases. 2008;46(Suppl 1):S12–8.Google Scholar
van den Berg, R. J., Bruijnesteijn van Coppenraet, L. S., Gerritsen, H. J., et al. Prospective multicenter evaluation of a new immunoassay and real-time PCR for rapid diagnosis of Clostridium difficile-associated diarrhea in hospitalized patients. Journal of Clinical Microbiology. 2005;43(10):5338–40.Google Scholar
Gerding, D. N., Young, V. B.. Clostridium difficile infection. In Bennett, J. E., Dolin, R., Blaser, M. J., eds. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th edn, Vol 2. Philadelphia: Elsevier Saunders; 2015. pp. 2744–56.e3.Google Scholar
Podnos, Y. D., Jimenez, J. C., Wilson, S. E.. Intra-abdominal sepsis in elderly persons. Clinical Infectious Diseases. 2002;35(1):62–8.Google Scholar
Cooper, G. S., Shlaes, D. M., Salata, R. A.. Intraabdominal infection: differences in presentation and outcome between younger patients and the elderly. Clinical Infectious Diseases. 1994;19(1):146–8.Google Scholar
Sartelli, M., Catena, F., Ansaloni, L., et al. Complicated intra-abdominal infections in Europe: a comprehensive review of the CIAO study. World Journal of Emergency Surgery. 2012;7(1):36.CrossRefGoogle ScholarPubMed
Berlin, A., Johanning, J. M.. Intraabdominal infections in older adults. Clinics in Geriatric Medicine. 2016;32(3):493507.Google Scholar
Lau, W. Y., Fan, S. T., Yiu, T. F., Chu, K. W., Lee, J. M.. Acute appendicitis in the elderly. Surgery, Gynecology & Obstetrics. 1985;161(2):157–60.Google Scholar
Watters, J. M., Blakslee, J. M., March, R. J., Redmond, M. L.. The influence of age on the severity of peritonitis. Canadian Journal of Surgery. 1996;39(2):142–6.Google Scholar
Soreide, K., Desserud, K. F.. Emergency surgery in the elderly: the balance between function, frailty, fatality and futility. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2015;23:10.Google Scholar
Golfieri, R., Cappelli, A.. Computed tomography-guided percutaneous abscess drainage in coloproctology: review of the literature. Techniques in Coloproctology. 2007;11(3):197208.Google Scholar
Salminen, P., Paajanen, H., Rautio, T., et al. Antibiotic therapy vs appendectomy for treatment of uncomplicated acute appendicitis: The APPAC Randomized Clinical Trial. JAMA. 2015;313(23):2340–8.Google Scholar
Haltmeier, T., Benjamin, E., Inaba, K., Lam, L., Demetriades, D.. Early versus delayed same-admission laparoscopic cholecystectomy for acute cholecystitis in elderly patients with comorbidities. Journal of Trauma and Acute Care Surgery. 2015;78(4):801–7.Google Scholar
Sawyer, R. G., Claridge, J. A., Nathens, A. B., et al. Trial of short-course antimicrobial therapy for intraabdominal infection. New England Journal of Medicine. 2015;372(21):19962005.Google Scholar
UNAIDS. HIV and aging: A special supplement to the UNAIDS report on the global AIDS epidemic 2013. 2013. www.unaids.org/sites/default/files/media_asset/20131101_JC2563_hiv-and-aging_en_0.pdf.Google Scholar
Centers for Disease Control and Prevention. HIV Surveillance Report, 2015; vol. 27. November 2016. www.cdc.gov/hiv/library/reports/hiv-surveillance.html (accessed October 31, 2019).Google Scholar
Hall, H. I., Song, R., Szwarcwald, C. L., Green, T.. Brief report: time from infection with the human immunodeficiency virus to diagnosis, United States. Journal of Acquired Immune Deficiency Syndromes. 2015;69(2):248–51.Google Scholar
Sabin, C. A., Smith, C. J., d’Arminio Monforte, A., et al. Response to combination antiretroviral therapy: variation by age. AIDS (London, England). 2008;22(12):1463–73.Google Scholar
Freiberg, M. S., Chang, C. C., Kuller, L. H., et al. HIV infection and the risk of acute myocardial infarction. JAMA Internal Medicine. 2013;173(8):614–22.Google Scholar
Scott, J., Goetz, M. B.. Human immunodeficiency virus/acquired immunodeficiency syndrome in older adults. Clinics in Geriatric Medicine. 2016;32(3):571–83.Google Scholar
Mocroft, A., Lundgren, J. D., Ross, M., et al. Development and validation of a risk score for chronic kidney disease in HIV infection using prospective cohort data from the D:A:D study. PLoS Medicine. 2015;12(3):e1001809.Google Scholar
Yarchoan, R., Uldrick, T. S.. HIV-associated cancers and related diseases. New England Journal of Medicine. 2018;378(11):1029–41.Google Scholar
Robbins, H. A., Pfeiffer, R. M., Shiels, M. S., et al. Excess cancers among HIV-infected people in the United States. Journal of the National Cancer Institute. 2015;107(4):pii: dju503.Google Scholar
Greene, M., Covinsky, K. E., Valcour, V., et al. Geriatric syndromes in older HIV-infected adults. Journal of Acquired Immune Deficiency Syndromes. 2015;69(2):161–67.Google Scholar
World Health Organization (WHO). Global Hepatitis Report 2017. Geneva: WHO; 2017.Google Scholar
Carrion, A. F., Martin, P.. Viral hepatitis in the elderly. American Journal of Gastroenterology. 2012;107(5):691–7.Google Scholar
Chen, J. D., Yang, H. I., Iloeje, U. H., et al. Carriers of inactive hepatitis B virus are still at risk for hepatocellular carcinoma and liver-related death. Gastroenterology. 2010;138(5):1747–54.Google Scholar
Chen, C. J., Yang, H. I., Su, J., et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA. 2006;295(1):6573.Google Scholar
Yeo, W., Johnson, P. J.. Diagnosis, prevention and management of hepatitis B virus reactivation during anticancer therapy. Hepatology (Baltimore, MD). 2006;43(2):209–20.Google Scholar
Yuen, M.-F., Chen, D.-S., Dusheiko, G. M., et al. Hepatitis B virus infection. Nature Reviews Disease Primers. 2018;4:18035.Google Scholar
Saab, S., Rheem, J., Sundaram, V.. Hepatitis C infection in the elderly. Digestive Diseases and Sciences. 2015;60(11):3170–80.Google Scholar
Thabut, D., Le Calvez, S., Thibault, V., et al. Hepatitis C in 6,865 patients 65 yr or older: a severe and neglected curable disease? American Journal of Gastroenterology. 2006;101(6):1260–7.Google Scholar
Minola, E., Prati, D., Suter, F., et al. Age at infection affects the long-term outcome of transfusion-associated chronic hepatitis C. Blood. 2002;99(12):4588–91.Google Scholar
Tal, S., Guller, V., Gurevich, A.. Fever of unknown origin in older adults. Clinics in Geriatric Medicine. 2007;23(3):649–68, viii.Google Scholar
Cunha, B. A. Fever of unknown origin: clinical overview of classic and current concepts. Infectious Disease Clinics of North America. 2007;21(4):867915, vii.Google Scholar
Knockaert, D. C., Vanneste, L. J., Bobbaers, H. J.. Fever of unknown origin in elderly patients. Journal of the American Geriatrics Society. 1993;41(11):1187–92.Google Scholar
Roth, A. R., Basello, G. M.. Approach to the adult patient with fever of unknown origin. American Family Physician. 2003;68(11):2223–8.Google Scholar
Epperly, T. D., Moore, K. E., Harrover, J. D.. Polymyalgia rheumatica and temporal arthritis. American Family Physician. 2000;62(4):789–96, 801.Google Scholar
Cunha, B. A., Berbari, N.. Subacute thyroiditis (de Quervain’s) due to influenza A: presenting as fever of unknown origin (FUO). Heart & Lung. 2013;42(1):77–8.Google Scholar
Sorrell, T. C., Mitchell, D. H., Iredell, J. R., Chen, S. C.-A.. Nocardia species. In Bennett, J. E. Dolin, R., Blaser, M. J., eds. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th edn, Vol 2. Philadelphia: Elsevier Saunders; 2015. pp. 2853–63.e3.Google Scholar
Lorber, B. Listeria monocytogenes. In Bennett, J. E. Dolin, R., Blaser, M. J., eds. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th edn, Vol 2. Philadelphia: Elsevier Saunders; 2015. pp. 2383–90.e2.Google Scholar
Mylonakis, E., Hohmann, E. L., Calderwood, S. B.. Central nervous system infection with Listeria monocytogenes: 33 years’ experience at a general hospital and review of 776 episodes from the literature. Medicine. 1998;77(5):313–36.Google Scholar
Lorber, B. Listeriosis. Clinical Infectious Diseases. 1997;24(1):19;quiz 10–1.Google Scholar
Lim, S., Chung, D. R., Kim, Y. S., et al. Predictive risk factors for Listeria monocytogenes meningitis compared to pneumococcal meningitis: a multicenter case-control study. Infection. 2017;45(1):6774.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×