Metrics, Constraints, and System Interactions
from Part 1 - Overview and Key Issues
Published online by Cambridge University Press: 05 June 2013
Introduction
A serious need for future energy resources worldwide is apparent, driven by high-population countries such as India and China that are rapidly developing infrastructure for energy, as well as growth or repowering in developed countries. Gas turbines play a preeminent role in the stationary power generation marketplace and should remain a critical part of the market mix for the foreseeable future, despite competition from reciprocating engines and newer technologies such as fuel cells. Alternative technologies compete with gas turbines in certain size classes, but at power generation levels above 5 MW, gas turbines offer the most attractive option because of their relatively low capital, operating, and maintenance costs. Hence, these engines are increasingly relied upon for clean power production from a variety of fuels. The configurations for these systems involve high efficiencies as well. As a result, the market will continue to demand gas turbines.
Chapter 1 discusses the drivers and consideration for aero gas turbines. While much of that discussion applies to gas turbines in general, the use of gas turbines for ground-based applications gives rise to additional and/or different metrics, constraints, and much wider possible overall system interactions relative to the combustion system. These turbines vary in size from 10 s of kW to hundreds of MW. The applications vary from power generation to mechanical work (e.g., Soares, 2008). In power generation, the gas turbine shaft is coupled to a generator either directly or via a gearbox (“direct drive”). For mechanical work, the gas turbine provides power to a mechanical device such as a compressor or pump (“mechanical drive”). In power generation, the gas turbine may often be combined with other equipment to form “combined cycle” systems (e.g., combining a gas turbine generator with infrastructure to collect exhaust heat to produce steam to drive a steam turbine).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.