Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T19:08:39.616Z Has data issue: false hasContentIssue false

Division 36.F - Open Ocean Deep Sea

from Chapter 36 - Overview of Marine Biological Diversity

Published online by Cambridge University Press:  18 May 2017

United Nations
Affiliation:
Division for Ocean Affairs and the Law of the Sea, Office of Legal Affairs
Get access

Summary

Introduction to the open ocean deep sea

The deep sea comprises the seafloor, water column and biota therein below a specified depth contour. There are differences in views among experts and agencies regarding the appropriate depth to delineate the “deep sea”. This chapter uses a 200 metre depth contour as a starting point, so that the “deep sea” represents 63 per cent of the Earth's surface area and about 98.5 per cent of Earth's habitat volume (96.5 per cent of which is pelagic). However, much of the information presented in this chapter focuses on biodiversity of waters substantially deeper than 200 m. Many of the other regional divisions of Chapter 36 include treatments of shelf and slope biodiversity in continental-shelf and slope areas deeper than 200 m. Moreover Chapters 42 and 45 on cold water corals and vents and seeps, respectively, and 51 on canyons, seamounts and other specialized morphological habitat types address aspects of areas in greater detail. The estimates of global biodiversity of the deep sea in this chapter do include all biodiversity in waters and the seafloor below 200 m. However, in the other sections of this chapter redundancy with the other regional chapters is avoided, so that biodiversity of shelf, slope, reef, vents, and specialized habitats is assessed in the respective regional or thematic chapters.

This truly vast deep-sea realm constitutes the largest source of species and ecosystem diversity on Earth, with great potential for mineral, energy, and living resources (e.g., Koslow, 2007). Despite major technological advances and increased deep-sea exploration in the past few decades (Danovaro et al., 2014), a remarkably small portion of the deep sea has been investigated in detail (Ramirez-Llodra et al., 2010), particularly in terms of time-series research (Glover et al., 2010). For the pelagic areas much less than 0.0001 per cent of the over 1.3 billion km3 of deep water has been studied. The inevitable result is weaker characterization of deep-sea biodiversity compared to the shelf, slope and terrestrial realms. Correspondingly this also means that continued scientific and surveying efforts may potentially change our current understanding of deep-sea biodiversity.

Type
Chapter
Information
The First Global Integrated Marine Assessment
World Ocean Assessment I
, pp. 685 - 704
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, M.V. (1997). Pelagic Biodiversity. In: Ormond, R.F.G., Gage, J.D., and Angel, M.V., editors. Marine biodiversity: patterns and processes. Cambridge University Press, New York.
Appeltans et al., The Magnitude of Global Marine Species Diversity, Current Biology (2012), http://dx.doi.org/10.1016/j.cub.2012.09.036
Armstrong, C.W., Foley, N.S., Tinch, R., van den Hove, S. (2012). Services from the deep: Steps towards valuation of deep sea goods and services. Ecosystem Services 2, 2-13.Google Scholar
Arntz, W.E., Brey, T., and Gallardo, V.A. (1994). Antarctic zoobenthos. Oceanographic Marine Biology 32: 241-304.Google Scholar
Bailey, D.M., Collins, M.A., Gordon, J.D.M., Zuur, A.F., Priede, I.G. (2009). Long-term changes in deep-water fish populations in the northeast Atlantic: a deeper reaching effect of fisheries? Proceedings of the Royal Society B: Biological Sciences. DOI: 10.1098/rspb.2009.0098.
Beliaev, G.M. (1989). Deep-sea ocean trenches and their fauna. Moscow: Nauka. 385 pp.
Benoit-Bird, K.J., and Au, W.W.L. (2006). Extreme diel horizontal migrations by a tropical nearshore resident micronekton community. Marine Ecology Progress Series 319: 1–14.Google Scholar
Billett, D.S.M., Bett, B., Jacobs, C., Rouse, I., Wigham, B. (2006). Mass deposition of jellyfish in the deep Arabian Sea. Limnology and Oceanography 51 (5), 2077-2083.Google Scholar
Billett, D.S.M., Bett, B.J., Reid, W.D.K., Boorman, B., and Priede, I.G. (2010). Long-term change in the abyssal NE Atlantic: The ‘Amperima Event’ revisited. Deep-Sea Research II 57: 1406–1417.Google Scholar
Blankenship, L., Yayanos, A., Cadien, D., and Levin, L. (2006). Vertical zonation patterns of scavenging amphipods from the hadal zone of the Tonga and Kermadec trenches. Deep-Sea Research Part I: Oceanographic Research Papers 53: 48-61.Google Scholar
Blankenship, L.E., and Levin, L.A. (2007). Extreme food webs: foraging strategies and diets of scavenging amphipods from the ocean's deepest 5 km. Limnology and Oceanography 52: 1685-1697.Google Scholar
Bluhm, B.A., Ambrose, W.G., Bergmann, M., Clough, L.M., Gebruk, A.V., Hasemann, C., Iken, K., Klages, M., MacDonald, I.R., Renaud, P.E., Schewe, I., Soltwedel, T., and Wlodarska-Kowalczuk, M. (2011). Diversity of the Arctic deep-sea benthos. Marine Biodiversity 41: 87-107.Google Scholar
Bluhm, B.A., MacDonald, I.R., Debenham, C., Iken, K. (2005). Macro- and megabenthic communities in the high Arctic Canada Basin: initial findings. Polar Biology 28: 218-231.Google Scholar
Bluhm, H. (2001). Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the seafloor. Deep Sea Research Part II: Topical Studies in Oceanography 48(17–18), 3841-3868.Google Scholar
Braby, C.E., Rouse, G.W., Johnson, S.B., Jones, W.J., Vrijenhoek, R.C. (2007). Bathymetric and temporal variation among Osedax boneworms and associated megafauna on whale-falls in Monterey Bay, California. Deep-Sea Research Part I: Oceanographic Research Papers 54 (10), 1773-1791.
Brander, K. (2010). Impacts of climate change on fisheries. Journal of Marine Systems 79: 389–402.Google Scholar
Brandt, A., De Broyer, C., De Mesel, I., Ellingsen, K.E., Gooday, A.J., Hilbig, B., Linse, K., Thomson, M.R.A., Tyler, P.A. (2007). The biodiversity of the deep Southern Ocean benthos. Philosophical Transactions of the Royal Society B-Biological Sciences 362 (1477), 39-66.Google Scholar
Brandt, A., Ebbe, B. (2009). Southern Ocean deep-sea biodiversity-From patterns to processes. Deep-Sea Research Part II: Topical Studies in Oceanography 56 (19-20), 1732-1738.Google Scholar
Buhl-Mortensen, L., Vanreusel, A., Gooday, A.J., Levin, L.A., Priede, I.G., Buhl-Mortensen, P., Gheerardyn, H., King, N.J., Raes, M. (2010). Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Marine Ecology 31, 21-50.Google Scholar
Bullister, J.L., Rhein, M., and Mauritzen, C. (2013). Deepwater Formation. In: Siedler, G., Griffies, S.M., Gould, J., Church, J.A. (eds.) Ocean Circulation and Climate - A 21 Century Perspective. International Geophysics 103: 227-253.Google Scholar
Caron, D.A., Hutchins, D.A. (2012). The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J.Plankton Res., 235-252. doi:10.1093/plankt/fbs091
Church, R.A., Warren, D.J., Irion, J.B. (2009). Analysis of deepwater shipwrecks in the Gulf of Mexico: Artificial reef effect of Six World War II shipwrecks. Oceanography 22 (2), 50-63.Google Scholar
Clark, M. (2001). Are deepwater fisheries sustainable? - the example of orange roughy (Hoplostethus atlanticus) in New Zealand. Fisheries Research 51: 123–135.
Clark, M.R. (2013). Biology associated with Cobalt-rich Ferromanganese crusts. In: Baker, E., Beaudoin, Y. (Eds.), Secretariat of the Pacific Community. Deep Sea Minerals: Cobalt-rich Ferromanganese Crusts, a physical, biological, environmental, and technical review. Vol. 1C, SPC.
Clark, M.R., and Dunn, M.R. (2012). Spatial management of deep-sea seamount fisheries: balancing exploitation and habitat conservation. Environmental Conservation 39 (2): 204-214. Doi:10.1017/S0376892912000021.Google Scholar
Clark, M.R, Vinnichenko, V.I., Gordon, J.D.M., Beck-Bulat, G.Z., Kukharev, N.N., and Kakora, A.F. (2007). Large scale distant water trawl fisheries on seamounts. Chapter 17. In: Pitcher, T.J., Morato, T., Hart, P.J.B., Clark, M.R., Haggan, N., and Santos, R.S., editors. Seamounts: ecology, fisheries, and conservation. Blackwell Fisheries and Aquatic Resources Series 12 Blackwell Publishing, Oxford. 361–399
Clark, M.R., Kelley, C., Baco, A., and Rowden, A. (2011). Fauna of cobalt-rich ferromanganese crust seamounts. International Seabed Authority Technical Study No. 8. p. 83.Google Scholar
Clarke, A. (2003). The polar deep seas. In: Tyler, P.A., ed. Ecosystems of the World. Ecosystems of the Deep Oceans. Vol. 28, Elsevier, Amsterdam, 239–260
CoML, (2010). First Census of Marine Life 2010: Highlights of a Decade of Discovery. In: Ausubel, J.H., Crist, D.T., Waggoner, P.E. (Eds.), Census of Marine Life International Secretariat. Consortium for Ocean Leadership, Washington p.64.
Cook, A.A., Lambshead, P.J.D., Hawkins, L.E., Mitchell, N., Levin, L.A. (2000). Nematode abundance at the oxygen minimum zone in the Arabian Sea. Deep-Sea Research Part II: Topical Studies in Oceanography 47 (1-2), 75-85.Google Scholar
Corliss, B.H., Brown, C.W., Sun, X. and Showers, W.J. (2009). Deep-sea benthic diversity linked to seasonality of pelagic productivity. Deep-Sea Research I 56: 835–841.Google Scholar
Costello, M.J., May, R.M., Stork, N.E. (2013). Can We Name Earth's Species Before They Go Extinct? Science 339(6118), 413-416.Google Scholar
Cronin, T.M. and Raymo, M.E. (1997). Orbital forcing of deep-sea benthic species diversity. Nature 385(6617): 624–627.Google Scholar
Cronin, T.M., DeMartino, D.M., Dwyer, G.S., and Rodriguez-Lazaro, J. (1999). Deep-sea ostracode species diversity: response to late Quaternary climate change. Marine Micropaleontology 37 (3-4): 231–249.Google Scholar
Danovaro, R., Gambi, C. and Della Croce, N. (2002). Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean. Deep-Sea Research, Part I: Oceanographic Research Papers 49: 843–857.Google Scholar
Danovaro, R., Della Croce, N., Dell'Anno, A., Pusceddu, A. (2003). A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers 50 (12), 1411-1420.Google Scholar
Danovaro, R., Snelgrove, P.V.R., Tyler, P. (2014). Challenging the paradigms of deepsea ecology. Trends in Ecology&Evolution 29 (8), 465-475.Google Scholar
Deubel, H. (2000). Structures and nutrition requirements of macrozoobenthic communities in the area of the Lomonosov Ridge in the Arctic Ocean (in German). Reports on Polar Research 370: 1-147.Google Scholar
Dunn, D.C., Ardron, J., Bax, N., Bernal, P., Cleary, J., Cresswell, I., Donnelly, B., Dunstan, P., Gjerde, K., Johnson, D., Kaschner, K., Lascelles, B., Rice, J., von Nordheim, H., Wood, L., Halpin, P.N. (2014). The Convention on Biological Diversity's Ecologically or Biologically Significant Areas: Origins, development, and current status. Marine Policy 49, 137-145.Google Scholar
Edgcomb, V., Orsi, W., Bunge, J., Jeon, S., Christen, R., Leslin, C., Holder, M., Taylor, G.T., Suarez, P., Varela, R., and Epstein, S. (2011). Protistan microbial observatory in the Cariaco Basin, Caribbean., I. Pyrosequencing vs Sanger insights into species richness. The ISME Journal 5(8): 1344-1356.Google Scholar
Etter, R., Mullineaux, L. (2000). Deep-sea communities. In: Bertness, M.D., Gaines, S., Hay, M. (Eds.), Marine Community Ecology. Sinauer Associates, Inc., Sunderland, MA, USA, pp. 367-393.
FAO (2009). International Guidelines for the Management of Deep-sea Fisheries in the High Seas. Rome, Italy: FAO: 73 pp. Available from: http://www.fao.org/docrep/011/i0816t/i0816t00.htm.
Friedlander, A.M., Ballesteros, E., Fay, M., Sala, E. (2014). Marine Communities on Oil Platforms in Gabon, West Africa: High Biodiversity Oases in a Low Biodiversity Environment. PLoS ONE 9(8), e103709.Google Scholar
Fuhrman, J.A., Steele, J.A., Hewson, I., Schwalback, M.S., Brown, M.V., Green, J.L., and Brown, J.H. (2008). A latitudinal diversity gradient in planktonic marine bacteria. Proceedings of the National Academy of Science USA 105(22): 7774–7778.Google Scholar
Fujii, T., Kilgallen, N.M., Rowden, A.A., Jamieson, A.J. (2013). Deep-sea amphipod community structure across abyssal to hadal depths in the Peru-Chile and Kermadec trenches. Marine Ecology Progress Series 492, 125-138.Google Scholar
Fujikura, K., Kojima, S., Tamaki, K., Maki, Y., Hunt, J., and Okutani, T. (1999). The deepest chemosynthesis-based community yet discovered from the hadal Zone, 7326 m deep, in the Japan Trench. Marine Ecology Progress Series 190: 17-26.Google Scholar
Fujiwara, Y., Kawato, M., Yamamoto, T., Yamanaka, T., Sato-Okoshi, W., Noda, C., Tsuchida, S., Komai, T., Cubelio, S.S., Sasaki, T., Jacobsen, K., Kubokawa, K., Fujikura, K., Maruyama, T., Furushima, Y., Okoshi, K., Miyake, H., Miyazaki, M., Nogi, Y., Yatabe, A., Okutani, T. (2007). Three-year investigations into sperm whale-fall ecosystems in Japan. Marine Ecology 28 (1), 219-232.Google Scholar
Fukushima, T. (2007). Amounts of megabenthic organisms in areas of manganese nodules, cobalt-rich crusts and polymetallic sulphides occurrences. Proceedings of the International Seabed Authority's (ISA) Workshop, September 2004: Polymetallic Sulphides and Cobalt-Rich Ferromanganese Crust Deposits: Establishment of Environmental Baselines and an Associated Monitoring Programme During Exploration (ed. by ISA), 356–368 International Seabed Authority, Kingston, Jamaica. Available at: (http://www.isa.org.jm/en/
Gage, J.D., Lambshead, P.J.D., Bishop, J.D.D., Stuart, C.T., Jones, N.S. (2004) Large-scale biodiversity pattern of Cumacea (Peracarida : Crustacea) in the deep Atlantic. Marine Ecology-Progress Series 277, 181-196.Google Scholar
Gallo, N.D., Cameron, J., Hardy, K., Fryer, P., Bartlett, D., and Levin, L.A. Submersible and lander-observed community patterns in the Mariana and New Britain Trenches: Influence of productivity and depth on benthic community structure (in revision, Deep-Sea Research Part I-Oceanographic Research Papers).
Gambi, C., Vanreusal, A., and Danovaro, R. (2003). Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench. Deep Sea Research I Part I: Oceanographic Research Papers 50: 103-117.Google Scholar
George, R.Y., and Higgins, R.P. (1979). Eutrophic Hadal Benthic Community in the Puerto Rico Trench. Ambio Special Report, No. 6, The Deep Sea: Ecology and Exploitation, pp. 51-58.Google Scholar
German, C.R., Ramirez-Llodra, E., Baker, M.C., Tyler, P.A., and the ChEss Scientific Steering Committee (2011). Deep-Water Chemosynthetic Ecosystem Research during the Census of Marine Life Decade and Beyond: A Proposed Deep-Ocean Road Map. PLoS ONE 6(8): e23259. Doi:10.1371/journal.pone.0023259.Google Scholar
Giering, S., Sanders, R., Lampitt, R., Anderson, T., Tamburini, C., Boutrif, M., Zubkov, M., Marsay, C., Henson, S., Saw, K., Cook, K., and Mayor, D. (2014). Reconciliation of the carbon budget in the ocean's twilight zone. Nature 507: 480-483.Google Scholar
Glover, A.G., and Smith, C.R. (2003). The deep-sea floor ecosystem: current status and prospects of anthropogenic change by the year 2025. Environmental Conservation 30: 219–41.Google Scholar
Glover, A.G., Gooday, A.J., Bailey, D.M., Billett, D.S.M., Chevaldonné, P., Colaço, A., Copley, J., Cuvelier, D., Desbruyères, D., Kalogeropoulou, V., Klages, M., Lampadariou, N., Lejeusne, C., Mestre, N.C., Paterson, G.L.J., Perez, T., Ruhl, H., Sarrazin, J., Soltwedel, T., Soto, E.H., Thatje, S., Tselepides, A., Van Gaever, S., and Vanreusel, A. (2010). Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. Advances in Marine Biology 58: 1-95.Google Scholar
Glover, A.G., Källström, B., Smith, C.R., Dahlgren, T.G. (2005). World-wide whale worms? A new species of Osedax from the shallow north Atlantic. Proceedings of the Royal Society B: Biological Sciences 272 (1581), 2587-2592.Google Scholar
Glud, R.N., Wenzhofer, F., Middelboe, M., Oguri, K., Turnewitsch, R., Canfield, D.E., Kitazato, H. (2013). High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nature Geoscience 6 (4), 284-288.Google Scholar
Goffredi, S.K., Orphan, V.J., Rouse, G.W., Jahnke, L., Embaye, T., Turk, K., Lee, R., Vrijenhoek, R.C. (2005). Evolutionary innovation: a bone-eating marine symbiosis. Environmental Microbiology 7 (9), 1369-1378.Google Scholar
Golikov, A.N., and Scarlato, O.A. (1990). History of the development of the Arctic marine ecosystem and their functional peculiarities. In: Kotlyakov, V.M., and Sokolov, V.E., eds., Arctic Research: Advances and prospects, Proceedings of the Conference of Arctic and Nordic countries on coordination of research in the Arctic, Leningrad, December 1988, Moscow, pp. 196-206.
Gooday, A.J., Todo, Y., Uematsu, K., and Kitazato, H. (2008). New organic-walled Foraminifera (Protista) from the ocean's deepest point, the Challenger Deep (western Pacific Ocean). Zoological Journal of the Linnean Society 153: 399–423.Google Scholar
Gooday, A.J., Bett, B.J., Escobar, E., Ingole, B., Levin, L.A., Neira, C., Raman, A.V., Sellanes, J. (2010). Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Marine Ecology 31, 125-147.Google Scholar
Grange, L.J. and Smith, C.R. (2013). Megafaunal Communities in Rapidly Warming Fjords Along the West Antarctic Peninsula: Hotspots of Abundance and Beta Diversity. PLoS ONE, 8(11): e77917. doi:10.1371/journal.pone.0077917Google Scholar
Grassle, J.F. (1989). Species diversity in deep-sea communities. Trends in Ecology and Evolution 4 (1), 12-15.Google Scholar
Grassle, J.F., Maciolek, N.J. (1992). Deep-sea species richness: Regional and local diversity estimates from quantitative bottom samples. American Naturalist 139 (2), 313-341.Google Scholar
Griffiths, H.J. (2010). Antarctic Marine Biodiversity – What Do We Know About the Distribution of Life in the Southern Ocean? PLoS ONE 5(8): e11683.Google Scholar
Haedrich, R.L. (1996). Deep-water fishes: evolution and adaptation in Earth's largest living spaces. Journal of Fish Biology 49(Suppl. A): 40–53.Google Scholar
Hanchet, S., Sainsbury, K., Butterworth, D., Darby, C., Bizikov, V., Rune Godø, O., Ichii, T., Kock, K.-H., López Abellán, L., Vacchi, M. (2015). CCAMLR's precautionary approach to management focusing on Ross Sea toothfish fishery. Antarctic Science FirstView, 1-8.
Harris, P.T., Macmillan-Lawler, M., Rupp, J., and Baker, E.K. (2014). Geomorphology of the oceans. Marine Geology 352: 4–24. Doi:10.1016/j.margeo.2014.01.011.Google Scholar
Hasemann, C., Bergmann, M., Kanzog, C., Lochthofen, N., Sauter, E., Schewe, I., and Soltwedel, T. (2013). Effects of dropstone-induced habitat heterogeneity on Arctic deep-sea benthos with special reference to nematode communities. Marine Biological Research 9(3): 276-292.Google Scholar
Havermans, C., Sonet, G., d'Udekem d'Acoz, C., Nagy, Z.T., Martin, P., Briz, S., Riehl, T., Agrawal, S., and Held, C. (2013). Genetic and Morphological Divergences in the Cosmopolitan Deep-Sea Amphipod Eurythenes gryllus Reveal a Diverse Abyss and a Bipolar Species. PLoS ONE 8(9): e74218. Doi:10.1371/journal.pone.0074218.Google Scholar
Hays, G.C. (2003). A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503: 163–170.Google Scholar
Heezen, B.C. (1969). The world rift system: an introduction to the symposium. Technophysics 8: 269–279.Google Scholar
Hein, J.R., Mizell, K., Koschinsky, A., and Conrad, T.A. (2013). Deep-ocean mineral deposits as a source for critical metals for high- and green technology applications: comparison with land-based resources. Ore Geology Reviews 51: 1-14.Google Scholar
Herring, P. (2002). The biology of the deep ocean. Oxford University Press, Oxford, UK, 314 pp.
Hopkins, T.L., Sutton, T.T., and Lancraft, T.M. (1996). Trophic structure and predation impact of a low latitude midwater fish community. Progress in Oceanography 38: 205-239.Google Scholar
Hoving, H.T., Perez, J.A.A., Bolstad, K.S.R., Braid, H.E., Evans, A.B., Fuchs, D., Judkins, H., Kelly, J.T., Marian, J.E.A.R., Nakajima, R., Piatkowski, U., Reid, A., Vecchione, M., and Xavier, J.C.C. (2014). The Study of Deep-Sea Cephalopods. In: Vidal, E.A.G., editor. Advances in Marine Biology, Vol. 67. Oxford, UK.: 235-359.
Hunt, G., Cronin, T.M., and Roy, K. (2005). Species–energy relationship in the deep sea: a test using the Quaternary fossil record. Ecology Letters 8: 739–747.Google Scholar
Ingels, J., Vanhove, S., De Mesel, I., and Vanreusel, A. (2006). The biodiversity and biogeography of the free-living nematode genera Desmodora and Desmodorella (family Desmodoridae) at both sides of the Scotia Arc. Polar Biology 29 (11): 936-949.Google Scholar
Irigoien, X., Klevjer, T.A., Rostad, A., Martinez, U., Boyra, G., Acuña, J.L., Bode, A., Echevarria, F., Gonzales-Gordillo, J.I., Hernandez-León, S., Agusti., S., Aksnes, D.L., Duarte, C.M., Kaardvedt, S. (2014). Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature Communications 5:3271.Google Scholar
ISA (2013). Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the Area. ISBA/19/LTC/8.
ISA (2000). Decision of the Assembly relating to the regulations on prospecting and exploration for polymetallic nodules in the Area. ISBA/6/A/18.
ISA (2007). Polymetallic Sulphides and Cobalt-Rich Ferromanganese crusts deposits: Establishment of environmental baselines and an associated monitoring programme during exploration. Proceedings of the International Seabed Authority Workshop held in Kingston, Jamaica, 6-10.September 2004, 491 pp.
Itoh, M., Kawamura, K., Kitahashi, T., Kojima, S., Katagiri, H., and Shimanaga, M. (2011). Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuriland Ryukyu trenches, western North Pacific Ocean. Deep-Sea Research I 58: 86–97.Google Scholar
Jahnke, R.A. (2010). Global Synthesis. In: Liu, K.-K., Atkinson, L., Quinones, R., Talaue-McManus, L. (Eds.) Carbon and Nutrient Fluxes in Continental Margins. Springer, pp. 597-615.
Jamieson, A.J. (2011). Ecology of Deep Oceans: Hadal Trenches. In: Encyclopedia of Life Sciences (ELS). John Wiley&Sons, Ltd, Chichester. Doi: 10.1002/9780470015902.a0023606.
Jamieson, A.J., Fujii, T., Mayor, D.J., Solan, M., Priede, I.G. (2009). Hadal trenches: the ecology of the deepest places on Earth. Trends in Ecology and Evolution 25 (3), 190-197.Google Scholar
Jansson, R., and Dynesius, M. (2002). The fate of clades in a world of recurrent climate change: Milankovitch oscillations and evolution. Annual Review of Ecological Systematics 33: 741-777.Google Scholar
Japp, D.W., and Wilkinson, S. (2007). Deep-sea resources and fisheries. Report and documentation of the expert consultation on deep-sea fisheries in the High Seas. FAO Fisheries Report 838: 39–59 Rome, Italy: FAO. Available from: ftp://ftp.fao.org/docrep/fao/010/a1341e/a1341e00.pdf.
Jobstvogt, N., Hanley, N., Hynes, S., Kenter, J., Witte, U. (2014a). Twenty thousand sterling under the sea: Estimating the value of protecting deep-sea biodiversity. Ecological Economics 97, 10-19.Google Scholar
Jobstvogt, N., Townsend, M., Witte, U., Hanley, N. (2014b). How Can We Identify and Communicate the Ecological Value of Deep-Sea Ecosystem Services? PLoS ONE 9 (7), e100646.Google Scholar
Jones, D.O.B., Yool, A., Wei, C.L., Henson, S.A., Ruhl, H.A., Watson, R.A., and Gehlen, M. (2014).Global reductions in seafloor biomass in response to climate change. Global Change Biology 20: 1861–1872. Doi: 10.1111/gcb.12480.Google Scholar
Jumars, P.A., and Hessler, R.H. (1976). Hadal community structure: implications from the Aleutian Trench. Journal of Marine Research 34: 547–560.Google Scholar
Juniper, S.K., and Sibuet, M. (1987). Cold seep benthic communities in Japan subduction zones: spatial organization, trophic strategies and evidence for temporal evolution. Marine Ecology Progress Series 40: 115-126.Google Scholar
Kaartvedt, S., Staby, A., and Aksnes, D. (2012). Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Marine Ecology Progress Series 456: 1–6.Google Scholar
Kaiser, S., Brandao, S.N., Brix, S., Barnes, D.K.A., Bowden, D.A., Ingels, J., Leese, F., Schiaparelli, S., Arango, C.P., Badhe, R., Bax, N., Blazewicz-Paszkowycz, M., Brandt, A., Brenke, N., Catarino, A.I., David, B., De Ridder, C., Dubois, P., Ellingsen, K.E., Glover, A.G., Griffiths, H.J., Gutt, J., Halanych, K.M., Havermans, C., Held, C., Janussen, D., Lorz, A.N., Pearce, D.A., Pierrat, B., Riehl, T., Rose, A., Sands, C.J., Soler-Membrives, A., Schuller, M., Strugnell, J.M., Vanreusel, A., Veit-Kohler, G., Wilson, N.G., Yasuhara, M. (2013). Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding. Marine Biology 160 (9), 2295-2317.Google Scholar
Kitahashi, T., Kawamura, K., Kojima, S., and Shimanaga, M. (2013). Assemblages gradually change from bathyal to hadal depth: A case study on harpacticoid copepods around the Kuril Trench (north-west Pacific Ocean). Deep Sea Research I 74: 39–47.Google Scholar
Kortsch, S., Primicerio, R., Beuchel, F., Renaud, P.E., Rodrigez, J., Lønne, O.J., Gulliksen, B. (2012). Climate-driven regime shifts in Arctic marine benthos. Proc. Natl. Acad. Sci. USA 109(35), 14,052-14,057.
Koslow, J.A. (2009). The role of acoustics in ecosystem-based fishery management. ICES Journal of Marine Science 66: 966–973.Google Scholar
Koslow, J.A. (2007). The biological environment of cobalt-rich ferromanganese crusts deposits, the potential impact of exploration and mining on this environment, and data required to establish environmental baselines. In: Polymetallic Sulphides and Cobalt-Rich Ferromanganese crusts deposits: Establishment of environmental baselines and a monitoring program during exploration. Proceedings of the International Seabed Authority's Workshop held in Kingston, Jamaica, 6-10.September 2004, p: 274-294.
Koslow, J.A., Goericke, R., Lara-Lopez, A., Watson, W. (2011). Impact of declining intermediate- water oxygen on deepwater fishes in the California Current. Marine Ecology Progress Series 436, 207-218.Google Scholar
Kosobokova, K.N., Hirche, H.J., and Hopcroft, R.R. (2011). Patterns of zooplankton diversity through the depths of the Arctic's central basin. Marine Biodiversity 41: 29-50.Google Scholar
Kvassnes, A.J.S., Iversen, E. (2013). Waste sites from mines in Norwegian Fjords. Mineralproduksjon 3, A27-A38.Google Scholar
Kvassnes, A.J.S., Sweetman, A.K., Iversen, E., Skei, J. (2009). Sustainable use and future of submarine tailings placements in the Norwegian extractive Industry. Securing the Future (Mining, metals and the environments in a sustainable society) and 8th ICARD (International Conference on Acid Rock Drainage). http://www.proceedings-stfandicard-2009.com/ Skelleftea, Sweden.
Ladau, J., Sharpton, T.J., Finucane, M.M., Jospin, G., Kembel, S.W., O'Dwyer, J., Koeppel, A.F., Green, J.L. and Pollard, K.S. (2013). Global marine bacterial diversity peaks at high latitudes in winter. The ISME journal 7(9): 1669-1677.Google Scholar
Lambshead, P.J.D., Tietjen, J., Ferrero, T., Jensen, P. (2000). Latitudinal diversity gradients in the deep sea with special reference to North Atlantic nematodes. Marine Ecology-Progress Series 194, 159-167.Google Scholar
Lebrato, M., Jones, D.O.B. (2009). Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnology and Oceanography 54 (4), 1197-1209.Google Scholar
Lebrato, M., Pitt, K., Sweetman, A., Jones, D.B., Cartes, J., Oschlies, A., Condon, R., Molinero, J., Adler, L., Gaillard, C., Lloris, D., Billett, D.M. (2012). Jelly-falls historic and recent observations: a review to drive future research directions. Hydrobiologia 690(1), 227-245.Google Scholar
Lebrato, M., Mendes, P., Steinberg, D.K., Cartes, J.E., Jones, B., Birsa, L.M., Benavides, R., Oschlies, A. (2013a). Jelly biomass sinking speed reveals a fast carbon export mechanism. Limnology and Oceanography 58 (3), 1113-1122.Google Scholar
Lebrato, M., Molinero, J.-C., Cartes, J.E., Lloris, D., Mélin, F., Beni-Casadella, L. (2013b). Sinking Jelly-Carbon Unveils Potential Environmental Variability along a Continental Margin. PLoS ONE 8 (12), e82070.Google Scholar
Levin, L.A. (2003). Oxygen minimum zone benthos: Adaptation and community response to hypoxia. Oceanography and Marine Biology, 41, 1-45.Google Scholar
Levin, L.A., Etter, R.J., Rex, M.A., Gooday, A.J., Smith, C.R., Pineda, J., Stuart, C.T., Hessler, R.R., and Pawson, D. (2001). Environmental influences on regional deep-sea species diversity. Annual Review of Ecological Systematics 32: 51-93.Google Scholar
Levin, L.A., Liu, K.-K., Emeis, K.-C., Breitburg, D.L., Cloern, J., Deutsch, C., Giani, M., Goffart, A., Hofmann, E.E., Lachkar, Z. (2014). Comparative biogeochemistry–ecosystem– human interactions on dynamic continental margins. Journal of Marine Systems.
Levin, L.A., Sibuet, M. (2012). Understanding Continental Margin Biodiversity: A New Imperative. Annual Review of Marine Science 4 (1), 79-112.Google Scholar
Levin, L.A. and Dayton, P.K. (2009). Ecological theory and continental margins: where shallow meets deep. Trends in Ecology and Evolution 24: 606-617.Google Scholar
Marincovich, L.Jr., Brouwers, E.M., Hopkins, D.M., and McKenna, M.C. (1990). Late Mesozoic and Cenozoic paleogeographic and paleoclimatic history of the Arctic Ocean Basin, based upon shallow-water marine faunas and terrestrial vertebrates. In: Gantz, A., Johnson, L., Sweeny, J.F., editors. The Arctic Ocean Region. The Geology of North America, vol.L. Geological Society of America, Boulder, Colorado. pp. 403-426.
Mengerink, K.J., Van Dover, C.L., Ardron, J., Baker, M., Escobar-Briones, E., Gjerde, K., Koslow, J.A., Ramirez-Llodra, E., Lara-Lopez, A., Squires, D., Sutton, T.T., Sweetman, A.K., and Levin, L.A. (2014). A Call for Deep-Ocean Stewardship. Science 344: 696-698.Google Scholar
Miljutin, D.M., Miljutina, M.A., Arbizu, P.M., and Galéron, J. (2011). Deep-sea nematode assemblage has not recovered 26 years after experimental mining of polymetallic nodules (Clarion-Clipperton Fracture Zone, Tropical Eastern Pacific). Deep-Sea Research. 58(8): 885-897.Google Scholar
Mora, C., Rollo, A., Tittensor, D.P. (2013a). Comment on Can We Name Earth's Species Before They Go Extinct?. Science, 341(6143) p. 237. DOI: 10.1126/science. 1237254.Google Scholar
Mora, C., Wei, C.-L., Rollo, A., Amaro, T., Baco, A.R., Billett, D., Bopp, L., Chen, Q., Collier, M., Danovaro, R., Gooday, A.J., Grupe, B.M., Halloran, P.R., Ingels, J., Jones, D.O.B., Levin, L.A., Nakano, H., Norling, K., Ramirez-Llodra, E., Rex, M., Ruhl, H.A., Smith, C.R., Sweetman, A.K., Thurber, A.R., Tjiputra, J.F., Usseglio, P., Watling, L., Wu, T., Yasuhara, M. (2013b). Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. PLoS Biol 11 (10), e1001682.Google Scholar
Morato, T., Hoyle, S.D., Allain, V., and Nicol, S.J. (2010). Seamounts are hotspots of pelagic biodiversity in the open ocean. Proceedings of the National Academy of Science USA 107: 9707–9711.
Morato, T., Varkey, D.A., Dâmaso, C., Machete, M., Santos, M., Prieto, R., Santos, R.S., and Pitcher, T.J. (2008). Evidence of a seamount effect on aggregating visitors. Marine Ecology Progress Series 357: 23-32. Doi:10.3354/meps07269.Google Scholar
Muller-Karger, F.E., Varela, R., Thunell, R., Luerssen, R., Hu, C., Walsh, J.J. (2005). The importance of continental margins in the global carbon cycle. Geophysical research letters 32 (1), L01602.Google Scholar
Narayanaswamy, B.E., Bett, B.J., and Gage, J.D. (2005). Ecology of bathyal polychaete fauna at an Arctic-Atlantic boundary (Faroe-Shetland Channel, North-east Atlantic). Marine Biology Research 1: 20-32.Google Scholar
Narayanaswamy, B.E., Renaud, P., Duineveld, G., Berge, J., Lavaleye, M.S.S., Reiss, H. and Brattegard, T. (2010). Biodiversity trends along the western European Margin. PLoS ONE 5 (12): e14295.Google Scholar
Narayanaswamy, B.E., Coll, M., Danovaro, R., Davidson, K., Ojaveer, H., and Renaud, P.E. (2013). Synthesis of knowledge on marine biodiversity in European Seas: from Census to sustainable management. PLoS ONE 8(3): e58909. Doi:10.1371/ journal.pone.0058909.Google Scholar
Nesis, K.N. (1984). A hypothesis on the origin of western and eastern Arctic distribution of areas of marine bottom animals. Soviet Journal of Marine Biology 9: 235-243.Google Scholar
Ogawa, Y., Fujioka, K., Fujikura, K. and Iwabuchi, Y. (1996). En echelon patterns of Calyptogena colonies in the Japan Trench. Geology 24: 807-810.Google Scholar
Oguri, K., Kawamura, K., Sakaguchi, A., Toyofuku, T., Kasaya, T., Murayama, M., Fujikura, K., Glud, R.N., and Kitazato, H. (2013). Hadal disturbance in the Japan Trench induced by the 2011 Tohoku–Oki Earthquake. Scientific Reports 3: 1915. Doi: 10.1038/srep01915.Google Scholar
Oschmann, W. (1990). Dropstones - rocky mini-islands in high-latitude pelagic soft substrate environments. Senkenbergiana Marit 21: 55-75.Google Scholar
Østerhus, S., and Gammelsrod, T. (1999). The abyss of the Nordic Seas is warming. Journal of Climate 12: 3297–3304.Google Scholar
Pawlowski, J., Christen, R., Lecroq, B., Bachar, D., Shahbazkia, H.R., Amaral-Zettler, L., and Guillou, L. (2011). Eukaryotic richness in the abyss: insights from pyrotag sequencing. PLoS One 6 (4): e18169.Google Scholar
Pawlowski, J., Fahrni, J., Lecroq, B., Longet, D., Cornelius, N., Excoffier, L., Cedhagen, T., and Gooday, A.J. (2007). Bipolar gene flow in deep-sea benthic foraminifera. Molecular Ecology 16(19): 4089-4096.Google Scholar
Pham, C.K., Ramirez-Llodra, E., Alt, C.H.S., Amaro, T., Bergmann, M., Canals, M., Company, J.B., Davies, J., Duineveld, G., Galgani, F., Howell, K.L., Huvenne, V.A.I., Isidro, E., Jones, D.O.B., Lastras, G., Morato, T., Gomes-Pereira, J.N., Purser, A., Stewart, H., Tojeira, I., Tubau, X., Van Rooij, D., Tyler, P.A. (2014). Marine Litter Distribution and Density in European Seas, from the Shelves to Deep Basins. PLoS ONE 9 (4), e95839.Google Scholar
Pierrot-Bults, A., and Angel, M. (2012). Pelagic Biodiversity and Biogeography of the Oceans. Biology International 51: 9-35.Google Scholar
Pimm, S.L., Russell, G.J., Gittleman, J.L., Brooks, T.M. (1995). The future of biodiversity. Science 269(5222), 347-349.Google Scholar
Priede, I.G., Bergstad, O.A., Miller, P.I., Vecchione, M., Gebruk, A., Falkenhaug, T., Billett, D.S.M., Craig, J., Dale, A.C., Shields, M.A., Tilstone, G.H., Sutton, T.T., Gooday, A.J., Inall, M.E., Jones, D.O.B., Martinze-Vicente, V., Menezes, G.M., Niedzielski, T., Sigurosson, P., Rothe, N. Rogacheva, A., Alt, C.H.S., Brand, T., Abell, R., Brierley, A.S., Cousins, N.J., Crockard, D., Hoelzel, A.R., Hoines, A., Letessier, T.B., Read, J.F., Shimmield, T. Cox, M.J., Galbraith, J.K, Gordon, J.D.M., Horton, T., Neat, F., and Lorance, P. (2013). Does Presence of a Mid-Ocean Ridge Enhance Biomass and Biodiversity? PLoS ONE 8(5): e61550. Doi:10.1371/journal.pone.0061550.Google Scholar
Priede, I.G., Osborn, K.J., Gebruk, A.V., Jones, D., Shale, D., Rogacheva, A., and Holland, N.D. (2012). Observations on torquaratorid acorn worms (Hemichordata, Enteropneusta) from the North Atlantic with descriptions of a new genus and three new species. Invertebrate Biology 131: 244-257. Doi:10.1111/j.1744- 7410.2012.00266.x.Google Scholar
Prince, E.D., Goodyear, C.P., (2006). Hypoxia-based habitat compression of tropical pelagic fishes. Fisheries Oceanography 15 (6), 451-464.Google Scholar
Purcell, J.E. (2012). Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annual Review of Marine Science 4, 209-235.Google Scholar
Purcell, J.E., Uye, S.-i., Lo, W.-T. (2007). Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology - Progress Series 350, 153.Google Scholar
Pusceddu, A., Bianchelli, S., Martín, J., Puig, P., Palanques, A., Masqué, P., Danovaro, R. (2014). Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proceedings of the National Academy of Sciences,111 (24) 8861-8866. Doi: 10.1073/pnas.1405454111.Google Scholar
Ramirez-Llodra, E., Brandt, A., Danovaro, R., De Mol, B., Escobar, E., German, C.R., Levin, L.A., Martinez Arbizu, P., Menot, L., Buhl-Mortensen, P., Narayanaswamy, B.E., Smith, C.R., Tittensor, D.P., Tyler, P.A., Vanreusel, A., Vecchione, M. (2010). Deep, diverse and definitely different: unique attributes of the world's largest ecosystem. Biogeosciences 7 (9), 2851-2899.Google Scholar
Ramirez-Llodra, E., Tyler, P.A., Baker, M.C., Bergstad, O.A., Clark, M.R., Escobar, E., Levin, L.A., Menot, L., Rowden, A.A., Smith, C.R., Van Dover, C.L. (2011). Man and the Last Great Wilderness: Human Impact on the Deep Sea. PLoS ONE 6 (8), e22588.Google Scholar
Reed, J.K., Messing, C., Walker, B., Brooke, S., Correa, T., Brouwer, M., and Udouj, T. (2013). Habitat characterization, distribution, and areal extent of deep-sea coral ecosystem habitat off Florida, southeastern United States. Journal of Caribbean Science 47: 13-30.Google Scholar
Reid, E., Sullivan, B., Clark, J. (2010). Mitigation of seabird captures during hauling in CCAMLR longline fisheries. CCAMLR Science 17, 155-162.Google Scholar
Rex, M.A. (1981). Community structure in the deep-sea benthos. Annual Review of Ecology and Systematics 12, 331-353.Google Scholar
Rex, M.A., and Etter, R.H. (2010). Deep-Sea Biodiversity: Pattern and Scale. Harvard University Press, Boston, United States, 354 pp.
Rex, M.A., Stuart, C.T., Coyne, G. (2000). Latitudinal gradients of species richness in the deep-sea benthos of the North Atlantic. Proceedings of the National Academy of Sciences 97 (8), 4082-4085.Google Scholar
Rice, J., Lee, J., Tandstad, M., 2014. Parallel initiatives. Governance of Marine Fisheries and Biodiversity Conservation. John Wiley&Sons, Ltd., pp. 195-208.
Robinson, C., Steinberg, D.K., Anderson, T.R., Arístegui, J., Carlson, C.A., Frost, J.R., Ghiglione, J.F., Hernández-León, S., Jackson, G.A., Koppelmann, R., Quéguiner, B., Ragueneau, O., Rassoulzadegan, F., Robison, B.H., Tamburinim, C., Tanaka, T., Wishner, K.F., and Zhang, J. (2010). Mesopelagic zone ecology and biogeochemistry – a synthesis. Deep-Sea Research Part II 57: 1504-1518.Google Scholar
Robison, B.H. (2004). Deep pelagic biology. Journal of Experimental Marine Biology and Ecology 300: 253-272.Google Scholar
Robison, B.H. (2009). Conservation of deep pelagic biodiversity. Conservation Biology 23(4): 847-858.Google Scholar
Rodhouse, P.G., and Nigmatullin, C.M. (1996). Role as consumers. Philosophical Transactions of the Royal Society of London B 351 (1343), 1003-1022.Google Scholar
Rodriguez-Lazaro, J., Cronin, T.M. (1999). Quaternary glacial and deglacial Ostracoda in the thermocline of the Little Bahama Bank (NW Atlantic): palaeoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 152 (3–4), 339-364.Google Scholar
Rogers, A.D. (2007). Evolution and biodiversity of Antarctic organisms: a molecular perspective. Philosophical Transactions of the Royal Society B: Biological Sciences 362 (1488), 2191-2214.Google Scholar
Roman, J., Estes, J., Morissette, L., Smith, C.R., Costa, D., McCarthy, J., Nation, J.B., Nicol, S., Pershing, A., Smetacek, V. (2014). Whales as ecosystem engineers. Frontiers in Ecology and the Environment, doi:10.1890/130220.
Rosa, R., and Seibel, B.A. (2008). Synergistic effects of climate –related variables suggest future physiological impairment in a top oceanic predator. Proceedings of the National Academy of Science USA 105(52): 20776–20780.
Rouse, G.W., Wilson, N.G., Goffredi, S.K., Johnson, S.B., Smart, T., Widmer, C., Young, C.M., Vrijenhoek, R.C. (2009). Spawning and development in Osedax boneworms (Siboglinidae, Annelida). Marine Biology 156 (3), 395-405.Google Scholar
Rudels, B., Jones, E.P., Anderson, L.G., and Kattner, G. (1994). On the intermediate depth waters of the Arctic Ocean. Geophysical Monogram 85: 33-46.Google Scholar
Ruhl, H.A., and Smith, K.L.Jr. (2004). Shifts in deep-sea community structure linked to climate and food supply. Science 305: 513-515.Google Scholar
Ruhl, H.A., Ellena, J.A., and Smith, K.L.Jr. (2008). Connections between climate, food limitation, and carbon cycling in abyssal sediment communities: a long timeseries perspective. Proceedings of the National Academy of Science USA 105: 17006–17011.
Savin, S.M., Douglas, R.C., and Stehli, F.G. (1975). Tertiary marine paleotemperatures. Geological Society of American Bulletin 86: 1499-1510.Google Scholar
Schlacher, T.A., Baco, A.R., Rowden, A.A., O'Hara, T.D., Clark, M.R., Kelley, C., and Dower, J.F. (2013). Seamount benthos in a cobalt-rich crust region of the central Pacific: conservation challenges for future seabed mining. Diversity and Distribu- tions 1-12.Google Scholar
Sibuet, M., Olu, K. (1998). Biogeography, biodiversity and fluid dependence of deepsea cold-seep communities at active and passive margins. Deep-Sea Research Part II 45 (1-3), 517-567.Google Scholar
Sirenko, B.I. (2001). List of species of free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Explorations of the Fauna of the Seas 51: 1-129.Google Scholar
Sissenwine, M.P., and Mace, P.M. (2007). Can deep water fisheries be managed sustainably? In: Report and documentation of the Expert Consultation on Deep-Sea fisheries in the High Seas. FAO Fisheries Report 838. Rome, Italy: FAO. 61–111
Smale, D.A., Barnes, D.K.A., Fraser, K.P.P., and Peck, L.S. (2008). Benthic community response to iceberg scouring at an intensely disturbed shallow water site at Adelaide Island Antarctica. Marine Ecology Progress Series 355: 85-94.Google Scholar
Smith, C.R. (2006). Bigger is better: The role of whales as detritus in marine ecosystems. In: Whales, Whaling and Ocean Ecosystems, Estes, J.A., DeMaster, D.P., Brownell Jr., R.L., Doak, D.F., and Williams, T.M. (eds.). University of California Press, Berkeley, CA, USA, pp. 286 – 301.
Smith, C.R., De Leo, F.C., Bernardino, A.F., Sweetman, A.K., Arbizu, P.M. (2008). Abyssal food limitation, ecosystem structure and climate change. Trends in Ecology and Evolution 23 (9), 518-528.Google Scholar
Smith, C.R., Grange, L., Honig, D.L., Naudts, L., Huber, B., Guidi, L. and Domack, E. (2012). A large population of king crabs in Palmer Deep on the West Antarctic Peninsula and potential invasive impacts. Proceedings of the Royal Society B, 279: 1017-1026. doi: 10.1098/rspb.2011.1496Google Scholar
Smith, C.R. and Baco, A.R. (2003). The ecology of whale falls at the deep-sea floor. Oceanography and Marine Biology Annual Review, 41: 311-354.Google Scholar
Smith, C.R., Glover, A.G., Treude, T., Higgs, N.D. and Amon, D.J. (2015). Whale-fall ecosystems: recent insights into ecology, paleoecology and evolution. Annual Review of Marine Science, 96. doi: 10.1146/annurev-marine-010213-135144.Google Scholar
Smith, K.L., Ruhl, H.A., Kahru, M., Huffard, C.L., Sherman, A.D. (2013). Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean. Proceedings of the National Academy of Sciences.Doi: 10.1073/ pnas.1315447110.
Smith, K., L., Sherman, A.D., Huffard, C.L., McGill, P.R., Henthorn, R., Von Thun, S., Ruhl, H.A., Kahru, M., Ohman, M.D. (2014). Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific: Day to week resolution. Limnology and Oceanography 59 (3), 745-757.Google Scholar
Snelgrove, P.V.R., Smith, C.R. (2002). A riot of species in an environmental calm: The paradox of the species-rich deep-sea floor. In: Gibson, R.N., Barnes, M., Atkinson, R.J.A. (Eds.), Oceanography and Marine Biology, Vol. 40. Taylor&Francis Ltd, London, pp. 311-342.
Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.M., Herndl, G.J. (2006). Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences USA 103 (32), 12115-12120.
Stein, R., Grobe, H., and Wahsner, M. (1994). Organic carbon, carbonate, and clay mineral distribution in eastern central Arctic surface sediments. Marine Geology 119: 269-285.Google Scholar
Stein, R., MacDonald, R.W., eds (2004). The organic carbon cycle in the Arctic Ocean. Springer, Berlin, 363 pp.
Stramma, L., Prince, E.D., Schmidtko, S., Luo, J., Hoolihan, J.P., Visbeck, M., Wallace, D.W., Brandt, P., Körtzinger, A. (2012). Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nature Climate Change 2 (1), 33-37.Google Scholar
Suess, E., Bohrrnann, G., von Huene, R., Linke, P., Waiimann, K.W., Larnmers, S., and Sahling, H. (1998). Fluid venting in the eastern Aleutian subduction zone. Journal of Geophysical Research 103: 2597-2614.Google Scholar
Sul, W.J., Oliver, T.A., Ducklow, H.W., Amaral-Zettler, L.A, and Sogin, M.L. (2013). Marine bacteria exhibit a bipolar distribution. Proceedings of the National Academy of Science USA. Doi:10.1073/pnas.1212424110.
Sutton, T.T. (2013). Vertical ecology of the pelagic ocean: classical patterns and new perspectives. Journal of Fish Biology 83: 1508-1527.Google Scholar
Svavarsson, J. (1997). Diversity of isopods (Crustacea): new data from the Arctic and Atlantic Oceans. Biodiversity and Conservation 6: 1571-1579.Google Scholar
Sweetman, A.K., Chapman, A. (2011). First observations of jelly-falls at the seafloor in a deep-sea fjord. Deep Sea Research Part I: Oceanographic Research Papers 58 (12), 1206-1211.Google Scholar
Sweetman, A.K, Smith, C.R., Dale, T. and Jones, D.O.B. (2014). Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs. Proceedings of the Royal Society B: 281: 20142210
Taylor, J.R., DeVogelaere, A.P., Burton, E.J., Frey, O., Lundsten, L., Kuhnz, L.A., Whaling, P.J., Lovera, C., Buck, K.R., Barry, J.P., 2014. Deep-sea faunal communities associated with a lost intermodal shipping container in the Monterey Bay National Marine Sanctuary, CA. Marine Pollution Bulletin 83 (1), 92-106.Google Scholar
Thubaut, J., Puillandre, N., Faure, B., Cruaud, C., Samadi, S. (2013). The contrasted evolutionary fates of deep sea chemosynthetic mussels (Bivalvia, Bathymodiolinae). Ecology and Evolution 3:4748–66Google Scholar
Thurber, A.R., Sweetman, A.K., Narayanaswamy, B.E., Jones, D.O.B., Ingels, J., Hansman, R.L., (2014). Ecosystem function and services provided by the deep sea. Biogeosciences 11 (14), 3941-3963.Google Scholar
Tietjen, J.H. (1989). Ecology of deep-sea nematodes from the Puerto Rico Trench area and Hatteras Plain. Deep-Sea Research 36: 1579–1594.Google Scholar
Tunnicliffe, V., Embley, R.W., Holden, J.F., Butterfield, D.A., Massoth, G.J., Juniper, S.K. (1997). Biological colonization of new hydrothermal vents following an eruption on Juan de Fuca Ridge. Deep Sea Research Part I: Oceanographic Research Papers 44 (9), 1627-1644.Google Scholar
Van den Hove, S., Moreau, V. (2007). Deep-Sea Biodiversity and Ecosystems: A scoping report on their socio-economy, management and governance,UNEP-WCMC Biodiversity Series 28. 88 pp.
Vanhove, S., Vermeeren, H., and Vanreusel, A. (2004). Meiofauna towards the South Sandwich Trench (750–6300m), focus on nematodes. Deep-Sea Research II 51: 1665–1687.Google Scholar
Vinogradova, N. (1959). The zoogeographical distribution of the deep-water bottom fauna in the abyssal zone of the ocean. Deep Sea Research (1953) 5 (2), 205-208. Doi: 10.1016/0146-6313(58)90012-1.Google Scholar
Vinogradova, N.G. (1997). Zoogeography of the abyssal and hadal zones. Advanced Marine Biology 32: 326-387.Google Scholar
Watanabe, H., Fujikura, K., Kojima, S., Miyazaki, J.I., and Fujiwara, Y. (2010). Ch. 12 Japan: Vents and seeps in close proximity. In: Kiel, S., editor. The Vent and Seep Biota: Aspects from Microbes to Ecosystems. Springer, Dordrecht, Netherlands, pp. 379-402
Webb, T., Vanden Berghe, E., and O'Dor, R. (2010). Biodiversity's Big Wet Secret: The Global Distribution of Marine Biological Records Reveals Chronic Under-Exploration of the Deep Pelagic Ocean. PLosOne 5(8): e10223.Google Scholar
Wohlers, J., Engel, A., Zöllner, E., Breithaupt, P., Jürgens, K., Hoppe, H.-G., Sommer, U., Riebesell, U. (2009). Changes in biogenic carbon flow in response to sea surface warming. Proceedings of the National Academy of Sciences of the United States of America 106, 7067-7072.Google Scholar
Wolff, T. (1970). The concept of hadal or ultra abyssal fauna. Deep-Sea Research 17: 983-1003.Google Scholar
Wollenburg, J.E., Mackensen, A., and Kuhnt, W. (2007). Benthic foraminiferal biodiversity response to a changing Arctic palaeoclimate in the last 24,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 255: 195–222.Google Scholar
Yamamoto, J., Hirose, M., Ohtani, T., Sugimoto, K., Hirase, K., Shimamoto, N., Shimura, T., Honda, N., Fujimori, Y., and Mukai, T. (2008) Transportation of organic matter to the sea floor by carrion falls of the giant jellyfish Nemopilema nomuraiin the Sea of Japan. Marine Biology 153: 311-317.Google Scholar
Yancey, P.H., Gerringera, M.E., Drazen, J.C., Rowdenc, A.A., and Jamieson, A. (2014). Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proceedings of the National Academy of Sciences of the United States of America 111: 4461–4465.Google Scholar
Yasuhara, M., and Cronin, T.M. (2008). Climatic influences on deep-sea ostracode (Crustacea) diversity for the last three million years. Ecology 89(11): S52–S65.Google Scholar
Yasuhara, M., Cronin, T.M., deMenocal, P.B., Okahashi, H., and Linsley, B.K. (2008). Abrupt climate change and collapse of deep-sea ecosystems. Proceedings of the National Academy of Sciences of the United States of America 105(5): 1556–1560.Google Scholar
Yasuhara, M., Hunt, G., Cronin, T.M., and Okahashi, H. (2009). Temporal latitudinalgradient dynamics and tropical instability of deep-sea species diversity. Proceedings of the National Academy of Sciences of the United States of America 106(51): 21717–21720.Google Scholar
Yasuhara, M., Hunt, G., Cronin, T.M., Hokanishi, N., Kawahata, H., Tsujimoto, A., and Ishitake, M., (2012a). Climatic forcing of Quaternary deep-sea benthic communities in the North Pacific Ocean. Paleobiology 38: 162–179.Google Scholar
Yasuhara, M., Hunt, G., van Dijken, G., Arrigo, K.R., Cronin, T.M., and Wollenburg, J.E. (2012b). Patterns and controlling factors of species diversity in the Arctic Ocean. Journal of Biogeography 39: 2081–2088.Google Scholar
Yasuhara, M., Okahashi, H., Cronin, T.M., Rasmussen, T.L., and Hunt, G. (2014). Deepsea biodiversity response to deglacial and Holocene abrupt climate changes in the North Atlantic Ocean. Global Ecology and Biogeography. Doi:10.1111/ geb.12178.
Yesson, C., Clark, M.R., Taylor, M., and Rogers, A.D. (2011). The global distribution of seamounts based on 30-second bathymetry data. Deep Sea Research I. 58: 442–453. Doi: 10.1016/j.dsr.2011.02.004.Google Scholar
Zeidberg, L.D., and Robison, B.H. (2007). Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proceedings of the National Academy of Sciences of the United States of America 104, 12948–12950.Google Scholar
Zinger, L., Amaral-Zettler, L.A., Fuhrman, J.A., Horner-Devine, M.C., Huse, S.M., Welch, D.B.M, Martiny, J.B.H., Sogin, M., Boetius, A., and Ramette, A. (2011). Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 6(9): e24570.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Open Ocean Deep Sea
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.044
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Open Ocean Deep Sea
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.044
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Open Ocean Deep Sea
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.044
Available formats
×