Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-10-04T03:39:32.587Z Has data issue: false hasContentIssue false

13 - Water and Thermoregulation: Ectotherms

Published online by Cambridge University Press:  02 October 2024

Peter Blanken
Affiliation:
University of Colorado Boulder
Get access

Summary

Water shapes the planet and all life upon it. Breaking down traditional disciplinary barriers, this accessible, holistic introduction to the role and importance of water in Earth’s physical and biological environments assumes no prior knowledge. It provides the reader with a clear and coherent explanation of the unique properties of water and how these allow it to affect landscapes and underpin all life on Earth. Contemporary issues surrounding water quality – such as the rise of microplastics and climate change – are highlighted, ensuring readers understand current debates. Giving all of the necessary background and up-to-date references, and including numerous examples and illustrations to explain concepts, worked mathematical calculations, and extensive end-of-chapter questions, this is the ideal introductory textbook for students seeking to understand the inextricable links between water and the environment.

Type
Chapter
Information
Essentials of Water
Water in the Earth's Physical and Biological Environments
, pp. 231 - 253
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou-Shaara, H. F., Owayss, A. A., Ibrahim, Y. Y. and Basuny, N. K. (2017) ‘A review of impacts of temperature and relative humidity on various activities of honey bees’, Insectes Sociaux, 64, pp. 455463. doi: 10.1007/s00040-017-0573-8.CrossRefGoogle Scholar
Beament, J. W. L. (1961) ‘The waterproofing mechanism of Arthropods: II. The permeability of the cuticle of some aquatic insects’, Journal of Experimental Biology, 38, pp. 277290. doi: 10.1242/jeb.38.2.277.CrossRefGoogle Scholar
Belasen, A., Brock, K., Li, B. et al. (2017) ‘Fine with heat, problems with water: microclimate alters water loss in a thermally adapted insular lizard’, Oikos, 126, pp. 447457. doi: 10.1111/oik.03712.CrossRefGoogle Scholar
de Brito Arduino, M., Mucci, L. F., Nunes Serpa, L. L. and de Moura Rodrigues, M. (2015) ‘Effect of salinity on the behavior of Aedes aegypti populations from the coast and plateau of southeastern Brazil’, Journal of Vector Borne Diseases, 52, pp. 7987.Google ScholarPubMed
Cloudsley-Thompson, J. (2001) ‘Thermal and water relations of desert beetles’, Naturwissenschaften, 88, pp. 447460. doi: 10.1007/s001140100256.CrossRefGoogle ScholarPubMed
Cooper, P. D., Schaffer, W. M. and Buchmann, S. L. (1985) ‘Temperature regulation of honey bees (Apis mellifera) foraging in the Sonoran Desert’, Journal of Experimental Biology, 114, pp. 115. doi: 10.1242/jeb.114.1.1.CrossRefGoogle Scholar
Cushman, S. A. (2006) ‘Effects of habitat loss and fragmentation on amphibians: A review and prospectus’, Biological Conservation, 128, pp. 231240. doi: 10.1016/j.biocon.2005.09.031.CrossRefGoogle Scholar
Daszak, P., Cunningham, A. A. and Hyatt, A. D. (2003) ‘Infectious disease and amphibian population declines’, Diversity and Distributions, 9, pp. 141150. doi: 10.1046/j.1472-4642.2003.00016.x.CrossRefGoogle Scholar
Davidson, N. C. (2014) ‘How much wetland has the world lost? Long-term and recent trends in global wetland area’, Marine and Freshwater Research, 65, pp. 934941. doi: 10.1071/MF14173.CrossRefGoogle Scholar
Derka, T., Zamora-Muñoz, C. and de Figueroa, J. M. T. (2019) ‘Aquatic insects’, in Rull, V. et al. (eds.) Biodiversity of Pantepui: The Pristine ‘Lost World’ of the Neotropical Guiana Highlands. Academic, pp. 167192. doi: 10.1016/B978-0-12-815591-2.00008-2.CrossRefGoogle Scholar
Dmi’el, R., Perry, G. and Lazell, J. (1997) ‘Evaporative water loss in nine insular populations of the lizard Anolis cristatellus group in the British Virgin Islands’, Biotropica, 29, pp. 111116. doi: 10.1111/j.1744-7429.1997.tb00012.x.Google Scholar
Edney, E. B. (1971) ‘The body temperature of tenebrionid beetles in the Namib Desert of southern Africa’, Journal of Experimental Biology, 55, pp. 253272. doi: 10.1242/jeb.55.1.253.CrossRefGoogle Scholar
Edwards, H. A. (1982) ‘Aedes aegypti: Energetics of osmoregulation’, Journal of Experimental Biology, 101, pp. 135141. doi: 10.1242/jeb.101.1.135.CrossRefGoogle Scholar
Evans, M. J., Scheele, B. C., Westgate, M. J. et al. (2020) ‘Beyond the pond: Terrestrial habitat use by frogs in a changing climate’, Biological Conservation, 249, p. 108712. doi: 10.1016/j.biocon.2020.108712.CrossRefGoogle Scholar
Galbreath, R. A. (1975) ‘Water balance across the cuticle of a soil insect’, Journal of Experimental Biology, 62: 115120. doi: 10.1242/jeb.62.1.115.CrossRefGoogle Scholar
González, K., Warkentin, K. M. and Güell, B. A. (2021) ‘Dehydration-induced mortality and premature hatching in gliding treefrogs with even small reductions in humidity’, Ichthyology and Herpetology, 109, pp. 2130. doi: 10.1643/h2020085.CrossRefGoogle Scholar
Hallmann, C. A., Sorg, M., Jongejans, E. et al. (2017) ‘More than 75 percent decline over 27 years in total flying insect biomass in protected areas’, PLoS ONE, 12, e0185809. doi: 10.1371/journal.pone.0185809.CrossRefGoogle ScholarPubMed
Hamilton, W. J. and Seely, M. K. (1976) ‘Fog basking by the Namib Desert beetle, Onymacris unguicularis’, Nature, 262, pp. 284285.CrossRefGoogle Scholar
Hershey, A. E. and Lamberti, G. A. (2001) ‘Aquatic insect ecology’, in Thorp, J. H. and Covich, A. P. (eds.) Ecology and Classification of North American Freshwater Invertebrates, 2nd ed. Academic, pp. 733775. doi: 10.2307/1310031.CrossRefGoogle Scholar
Hoffmann, E. P., Cavanough, K. L. and Mitchell, N. J. (2021) ‘Low desiccation and thermal tolerance constrains a terrestrial amphibian to a rare and disappearing microclimate niche’, Conservation Physiology, 9, pp. 115. doi: 10.1093/conphys/coab027.CrossRefGoogle ScholarPubMed
Holdgate, M. W. (1956) ‘Transpiration through the cuticles of some aquatic insects’, Journal of Experimental Biology, 33, pp. 107118. doi: 10.1242/jeb.33.1.107.CrossRefGoogle Scholar
Houlahan, J. E., Findlay, C. S., Schmidt, B. R., Meyer, A. H. and Kuzmin, S. L. (2000) ‘Quantitative evidence for global amphibian population declines’, Nature, 404, pp. 752755. doi: 10.1038/35008052.CrossRefGoogle ScholarPubMed
Jones, J. C., Myerscough, M. R., Graham, S. and Oldroyd, B. P. (2004) ‘Honey bee nest thermoregulation: Diversity promotes stability’, Science, 305, pp. 402404. doi: 10.1126/science.1096340.CrossRefGoogle ScholarPubMed
Kiesecker, J. M., Blaustein, A. R. and Belden, L. K. (2001) ‘Complex causes of amphibian population declines’, Nature, 410, pp. 681684. doi: 10.1038/35070552.CrossRefGoogle ScholarPubMed
Klok, C. J. and Chown, S. L. (1997) ‘Critical thermal limits, temperature tolerance and water balance of a sub-antarctic caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae)’, Journal of Insect Physiology, 43, pp. 685694. doi: 10.1016/S0022-1910(97)00001-2.CrossRefGoogle Scholar
Lancaster, J. and Downes, B. J. (2013) ‘Evolution, biogeography, and aquatic insect distributions’, in Aquatic Entomology. Oxford University Press. doi: 10.1093/acprof:oso/9780199573219.001.0001.CrossRefGoogle Scholar
Maeno, K. O., Ould Ely, S., Nakamura, S. et al. (2016) ‘Daily microhabitat shifting of solitarious-phase desert locust adults: implications for meaningful population monitoring’, SpringerPlus, 5, pp. 110. doi: 10.1186/s40064-016-1741-4.CrossRefGoogle ScholarPubMed
Marsh, A. C. (1985) ‘Thermal responses and temperature tolerance in a diurnal desert ant, Ocymyrmex barbiger’, Physiological Zoology, 58, pp. 629636. doi: 10.1086/physzool.58.6.30156067.CrossRefGoogle Scholar
Mautz, W. J. (1982) ‘Correlation of both respiratory and cutaneous water losses of lizards with habitat aridity’, Journal of Comparative Physiology B, 149, pp. 2530. doi: 10.1007/BF00735711.CrossRefGoogle Scholar
May, R. M. (1986) ‘How many species are there?’, Nature, 324, pp. 514515. doi: 10.1111/j.1523-1739.1991.tb00145.x.CrossRefGoogle Scholar
Mellanby, K. (1941) ‘The body temperature of the frog’, Journal of Experimental Biology, 18, pp. 5561. doi: 10.1242/jeb.28.3.271.CrossRefGoogle Scholar
Mitra, S., Wassmann, R. and Vlek, P. L. G. (2003) Global Inventory of Wetlands and Their Role in the Carbon Cycle. ZEF Discussion Paper on Development Policy, Bonn, no. 64, p. 57.Google Scholar
Nguete Nguiffo, D., Mpoame, M. and Wondji, C. S. (2019) ‘Genetic diversity and population structure of goliath frogs (Conraua goliath) from Cameroon’, Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 30, pp. 657663. doi: 10.1080/24701394.2019.1615060.CrossRefGoogle ScholarPubMed
Noble-Nesbiti, J. (1990) ‘Insects and their water requirements’, Interdisciplinary Science Reviews, 15, pp. 264282.CrossRefGoogle Scholar
Pritchard, G., McKee, M. H., Pike, E. M., Scrimgeour, G. J. and Zloty, J. (1993) ‘Did the first insects live in water or in air?’, Biological Journal of the Linnean Society, 49, pp. 3144.CrossRefGoogle Scholar
Rittmeyer, E. N., Allison, A., Gründler, M. C., Thompson, D. K. and Austin, C. C. (2012) ‘Ecological guild evolution and the discovery of the world’s smallest vertebrate’, PLoS ONE, 7, pp. 111. doi: 10.1371/journal.pone.0029797.CrossRefGoogle ScholarPubMed
Rozen-Rechels, D., Dupoué, A., Lourdais, O. et al. (2019) ‘When water interacts with temperature: Ecological and evolutionary implications of thermo-hydroregulation in terrestrial ectotherms’, Ecology and Evolution, 9, pp. 1002910043. doi: 10.1002/ece3.5440.CrossRefGoogle ScholarPubMed
Sannolo, M., Civantos, E., Martin, J. and Carretero, M. A. (2020) ‘Variation in field body temperature and total evaporative water loss along an environmental gradient in a diurnal ectotherm’, Journal of Zoology, 310, pp. 221231. doi: 10.1111/jzo.12744.CrossRefGoogle Scholar
Seely, M. K. and Hamilton, W. J. (1976) ‘Fog catchment sand trenches constructed by tenebrionid beetles, Lepidochora, from the Namib Desert’, Science, 193, pp. 484486. doi: 10.1126/science.193.4252.484.CrossRefGoogle ScholarPubMed
Sodhi, N. S., Bickford, D., Diesmos, A. C. et al. (2008) ‘Measuring the meltdown: Drivers of global amphibian extinction and decline’, PLoS ONE, 3, pp. 18. doi: 10.1371/journal.pone.0001636.CrossRefGoogle ScholarPubMed
Stevenson, R. D. (1985) ‘The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms’, The American Naturalist, 126, pp. 362386.CrossRefGoogle Scholar
Stork, N. E. (2018) ‘How many species of insects and other terrestrial arthropods are there on Earth?’, Annual Review of Entomology, 63, pp. 3145. doi: 10.1146/annurev-ento-020117-043348.CrossRefGoogle ScholarPubMed
Tracy, C. R., Christian, K. A. and Tracy, C. R. (2010) ‘Not just small, wet, and cold: Effects of body size and skin resistance on thermoregulation and arboreality of frogs’, Ecology, 91, pp. 14771484. doi: 10.1890/09-0839.1.CrossRefGoogle ScholarPubMed
Vanburen, C. S., Norman, D. B. and Fröbisch, N. B. (2019) ‘Examining the relationship between sexual dimorphism in skin anatomy and body size in the white-lipped treefrog, Litoria infrafrenata (Anura: Hylidae)’, Zoological Journal of the Linnean Society, 186, pp. 491500. doi: 10.1093/zoolinnean/zly070.CrossRefGoogle Scholar
Visscher, P. K., Crailsheim, K. and Sherman, G. (1996) ‘How do honey bees (Apis mellifera) fuel their water foraging flights?’, Journal of Insect Physiology, 42, pp. 10891094. doi: 10.1016/S0022-1910(96)00058-3.CrossRefGoogle Scholar
Warkentin, K. M. (2002) ‘Hatching timing, oxygen availability, and external gill regression in the tree frog, Agalychnis callidryas’, Physiological and Biochemical Zoology, 75, pp. 155164. doi: 10.1086/339214.CrossRefGoogle ScholarPubMed
Wygoda, M. L. (1984) ‘Low cutaneous evaporative water loss in arboreal frogs’, Physiological Zoology, 57, pp. 329337. doi: 10.1086/physzool.57.3.30163722.CrossRefGoogle Scholar
Young, J. E., Christian, K. A., Donnellan, S., Tracy, C. R. and Parry, D. (2005) ‘Comparative analysis of cutaneous evaporative water loss in frogs demonstrates correlation with ecological habits’, 78, pp. 847856.Google ScholarPubMed
Zachariassen, K. E. (1996) ‘The water conserving physiological compromise of desert insects’, European Journal of Entomology, 93(3), pp. 359367.Google Scholar
Zhang, Z.-Q. (2013) ‘Phylum Arthropoda’, Zootaxa, 3703, pp. 1726.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×