Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T07:58:24.591Z Has data issue: false hasContentIssue false

Part V - Methodological Approaches to the Study of the Effects of Aging on Emotion Communication

Published online by Cambridge University Press:  07 December 2023

Ursula Hess
Affiliation:
Humboldt-Universität zu Berlin
Reginald B. Adams, Jr.
Affiliation:
Pennsylvania State University
Robert E. Kleck
Affiliation:
Dartmouth College, New Hampshire
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Emotion Communication by the Aging Face and Body
A Multidisciplinary View
, pp. 263 - 312
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adams, R. B. Jr., Albohn, D. N., Hedgecoth, N., Garrido, C. O., & Adams, K. D. (2022). Angry White faces: A contradiction of racial stereotypes and emotion-resembling appearance. Affective Science. https://doi.org/10.1007/s42761-021-00091-5CrossRefGoogle Scholar
Adams, R. B. Jr., Garrido, C. O., Albohn, D. N., Hess, U., & Kleck, R. E. (2016). What facial appearance reveals over time: When perceived expressions in neutral faces reveal stable emotion dispositions. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.00986CrossRefGoogle ScholarPubMed
Adams, R. B. Jr., Nelson, A. J., Soto, J. A., Hess, U., & Kleck, R. E. (2012). Emotion in the neutral face: A mechanism for impression formation? Cognition & Emotion, 26(3), 431441. https://doi.org/10.1080/02699931.2012.666502CrossRefGoogle Scholar
Albohn, D. N., & Adams, R. B. Jr. (2020a). Everyday beliefs about emotion perceptually derived from neutral facial appearance. Frontiers in Psychology, 11, 264. https://doi.org/10.3389/fpsyg.2020.00264CrossRefGoogle ScholarPubMed
Albohn, D. N., & Adams, R. B. Jr. (2020b). Emotion residue in neutral faces: Implications for impression formation. Social Psychological and Personality Science, 12(4), 479486. https://doi.org/10.1177/1948550620923229CrossRefGoogle Scholar
Albohn, D. N., & Adams, R. B. Jr., (2021). The expressive triad: Structure, color, and texture similarity of emotion expressions predict impressions of neutral faces. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.612923CrossRefGoogle ScholarPubMed
Baltrušaitis, T., Zadeh, A., Lim, Y. C., & Morency, L.-P. (2018). OpenFace 2.0: Facial Behavior Analysis Toolkit. 2018 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018), 5966. https://doi.org/10.1109/FG.2018.00019CrossRefGoogle Scholar
Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques – SIGGRAPH ’99, 187194. https://doi.org/10.1145/311535.311556CrossRefGoogle Scholar
Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. Proceedings of Machine Learning Research, 81, 115.Google Scholar
Coeckelbergh, M. (2020). AI ethics. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Cula, G. O., Bargo, P. R., Nkengne, A., & Kollias, N. (2013). Assessing facial wrinkles: Automatic detection and quantification. Skin Research and Technology, 19(1), e243e251. https://doi.org/10.1111/j.1600-0846.2012.00635.xCrossRefGoogle ScholarPubMed
DeBruine, L. M., Jones, B. C., Little, A. C., & Perrett, D. I. (2008). Social perception of facial resemblance in humans. Archives of Sexual Behavior, 37(1), 6477. https://doi.org/10.1007/s10508-007-9266-0CrossRefGoogle ScholarPubMed
Dotsch, R., & Todorov, A. (2012). Reverse correlating social face perception. Social Psychological and Personality Science, 3(5), 562571. https://doi.org/10.1177/1948550611430272CrossRefGoogle Scholar
Dotsch, R., Wigboldus, D. H. J., Langner, O., & van Knippenberg, A. (2008). Ethnic out-group faces are biased in the prejudiced mind. Psychological Science, 19(10), 978980. https://doi.org/10.1111/j.1467-9280.2008.02186.xCrossRefGoogle ScholarPubMed
Dupré, D., Krumhuber, E. G., Küster, D., & McKeown, G. J. (2020). A performance comparison of eight commercially available automatic classifiers for facial affect recognition. PLoS ONE, 15(4), e0231968. https://doi.org/10.1371/journal.pone.0231968CrossRefGoogle ScholarPubMed
Ekman, P., & Friesen, W. V. (1978). Facial action coding system. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Elbashir, R. M., & Hoon Yap, M. (2020). Evaluation of automatic facial wrinkle detection algorithms. Journal of Imaging, 6(4), 17. https://doi.org/10.3390/jimaging6040017CrossRefGoogle ScholarPubMed
Engelmann, S., Ullstein, C., Papakyriakopoulos, O., & Grossklags, J. (2022). What People Think AI Should Infer From Faces. 2022 ACM Conference on Fairness, Accountability, and Transparency, 128141. https://doi.org/10.1145/3531146.3533080CrossRefGoogle Scholar
Essa, I. A., & Pentland, A. P. (1997). Coding, analysis, interpretation, and recognition of facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 757763. https://doi.org/10.1109/34.598232CrossRefGoogle Scholar
Fink, B., & Prager, M. (2014). The effect of incobotulinumtoxin a and dermal filler treatment on perception of age, health, and attractiveness of female faces. The Journal of Clinical and Aesthetic Dermatology, 7(1), 3640.Google ScholarPubMed
Gal, R., Patashnik, O., Maron, H., Chechik, G., & Cohen-Or, D. (2021). StyleGAN-NADA: CLIP-guided domain adaptation of image generators. ArXiv:2108.00946 [Cs]. http://arxiv.org/abs/2108.00946Google Scholar
Guyuron, B., Rowe, D. J., Weinfeld, A. B., et al. (2009). Factors contributing to the facial aging of identical twins. Plastic and Reconstructive Surgery, 123(4),13211331. https://doi.org/10.1097/PRS.0b013e31819c4d42CrossRefGoogle Scholar
Han, H., Otto, C., Liu, X., & Jain, A. K. (2015). Demographic estimation from face images: Human vs. machine performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(6), 11481161. https://doi.org/10.1109/TPAMI.2014.2362759CrossRefGoogle ScholarPubMed
Hess, U., Adams, R. B. Jr., Simard, A., Stevenson, M. T., & Kleck, R. E. (2012). Smiling and sad wrinkles: Age-related changes in the face and the perception of emotions and intentions. Journal of Experimental Social Psychology, 48(6), 13771380. https://doi.org/10.1016/j.jesp.2012.05.018CrossRefGoogle ScholarPubMed
Holding, B. C., Sundelin, T., Cairns, P., Perrett, D. I., & Axelsson, J. (2019). The effect of sleep deprivation on objective and subjective measures of facial appearance. Journal of Sleep Research, 28(6), e12860. https://doi.org/10.1111/jsr.12860CrossRefGoogle ScholarPubMed
Iga, R., Izumi, K., Hayashi, H., Fukano, G., & Ohtani, T. (2003). A gender and age estimation system from face images. SICE 2003 Annual Conference (IEEE Cat. No. 03TH8734), 1, 756761.Google Scholar
Jack, R. E., Sun, W., Delis, I., Garrod, O. G. B., & Schyns, P. G. (2016). Four not six: Revealing culturally common facial expressions of emotion. Journal of Experimental Psychology: General, 145(6), 708730. https://doi.org/10.1037/xge0000162CrossRefGoogle Scholar
Karras, T., Laine, S., & Aila, T. (2018). A style-based generator architecture for generative adversarial networks. ArXiv:1812.04948 [Cs, Stat]. http://arxiv.org/abs/1812.04948Google Scholar
Karras, T., Laine, S., Aittala, M., et al. (2020). Analyzing and improving the image quality of StyleGAN. ArXiv:1912.04958 [Cs, Eess, Stat]. http://arxiv.org/abs/1912.04958CrossRefGoogle Scholar
Krumhuber, E. G., Küster, D., Namba, S., Shah, D., & Calvo, M. G. (2021). Emotion recognition from posed and spontaneous dynamic expressions: Human observers versus machine analysis. Emotion, 21(2), 447451. https://doi.org/10.1037/emo0000712CrossRefGoogle ScholarPubMed
Malatesta, C. Z., Fiore, M. J., & Messina, J. J. (1987). Affect, personality, and facial expressive characteristics of older people. Psychology and Aging, 2(1), 6. https://doi.org/DOI:10.1037/0882-7974.2.1.64CrossRefGoogle ScholarPubMed
Minsky, M., & Papert, S. A. (2017). Perceptrons: An introduction to computational geometry. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
North, M. S., & Fiske, S. T. (2015). Modern attitudes toward older adults in the aging world: A cross-cultural meta-analysis. Psychological Bulletin, 141(5), 9931021. https://doi.org/10.1037/a0039469CrossRefGoogle ScholarPubMed
Okada, H. C., Alleyne, B., Varghai, K., Kinder, K., & Guyuron, B. (2013). Facial changes caused by smoking: A comparison between smoking and nonsmoking identical twins. Plastic and Reconstructive Surgery, 132(5), 10851092. https://doi.org/10.1097/PRS.0b013e3182a4c20aCrossRefGoogle ScholarPubMed
Oosterhof, N. N., & Todorov, A. (2008). The functional basis of face evaluation. Proceedings of the National Academy of Sciences, 105(32), 1108711092. https://doi.org/10.1073/pnas.0805664105CrossRefGoogle ScholarPubMed
Palumbo, R., Adams, R. B. Jr., Hess, U., Kleck, R. E., & Zebrowitz, L. (2017). Age and Gender Differences in Facial Attractiveness, but Not Emotion Resemblance, Contribute to Age and Gender Stereotypes. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.01704CrossRefGoogle ScholarPubMed
Peterson, J. C., Uddenberg, S., Griffiths, T. L., Todorov, A., & Suchow, J. W. (2022). Deep models of superficial face judgments. Proceedings of the National Academy of Sciences, 119(17), e2115228119. https://doi.org/10.1073/pnas.2115228119CrossRefGoogle ScholarPubMed
Radford, A., Kim, J. W., Hallacy, C., et al. (2021). Learning transferable visual models from natural language supervision. ArXiv:2103.00020. http://arxiv.org/abs/2103.00020Google Scholar
Roich, D., Mokady, R., Bermano, A. H., & Cohen-Or, D. (2021). Pivotal tuning for latent-based editing of real images. ArXiv:2106.05744 [Cs]. http://arxiv.org/abs/2106.05744Google Scholar
Sarhan, S., Hamad, S., & Elmougy, S. (2016). Human injected by Botox age estimation based on active shape models, speed up robust features, and support vector machine. Pattern Recognition and Image Analysis, 26(3), 617629. https://doi.org/10.1134/S1054661816030184CrossRefGoogle Scholar
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A Unified Embedding for Face Recognition and Clustering. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 815823. https://doi.org/10.1109/CVPR.2015.7298682CrossRefGoogle Scholar
Shan, C., Gong, S., & McOwan, P. W. (2005). Robust facial expression recognition using local binary patterns. IEEE International Conference on Image Processing 2005, 2, II370.CrossRefGoogle Scholar
Shen, Y., Yang, C., Tang, X., & Zhou, B. (2020). InterFaceGAN: Interpreting the disentangled face representation learned by GANs. ArXiv:2005.09635. http://arxiv.org/abs/2005.09635Google Scholar
Simonite, T. (2018). When it comes to gorillas, google photos remains blind. Wired. www.wired.com/story/when-it-comes-to-gorillas-google-photos-remains-blind/Google Scholar
Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the Gap to Human-Level Performance in Face Verification. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 1701–1708. https://doi.org/10.1109/CVPR.2014.220CrossRefGoogle Scholar
Tiddeman, B., Burt, M., & Perrett, D. (2001). Prototyping and transforming facial textures for perception research. IEEE Computer Graphics and Applications, 21(4),4250. https://doi.org/10.1109/38.946630CrossRefGoogle Scholar
Trigueros, D. S., Meng, L., & Hartnett, M. (2018). Face recognition: From traditional to deep learning methods. ArXiv Preprint ArXiv:1811.00116.Google Scholar
Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 7186.CrossRefGoogle ScholarPubMed
United Nations. (2020). World population ageing, 2019 highlights.Google Scholar
Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137154.CrossRefGoogle Scholar
Wehrli, S., Hertweck, C., Amirian, M., Glüge, S., & Stadelmann, T. (2021). Bias, awareness, and ignorance in deep-learning-based face recognition. AI and Ethics, 2, 509522. https://doi.org/10.1007/s43681-021-00108-6CrossRefGoogle Scholar
Whitehead, R. D., Ozakinci, G., & Perrett, D. I. (2013). A randomized controlled trial of an appearance-based dietary intervention. Health Psychology, 33(1), 99. https://doi.org/10.1037/a0032322CrossRefGoogle ScholarPubMed
Whitehill, J., Serpell, Z., Lin, Y.-C., Foster, A., & Movellan, J. R. (2014). The faces of engagement: Automatic recognition of student engagementfrom facial expressions. IEEE Transactions on Affective Computing, 5(1), 8698. https://doi.org/10.1109/TAFFC.2014.2316163CrossRefGoogle Scholar
Yan, W.-J., Wu, Q., Liang, J., Chen, Y.-H., & Fu, X. (2013). How fast are the leaked facial expressions: The duration of micro-expressions. Journal of Nonverbal Behavior, 37(4), 217230. https://doi.org/10.1007/s10919-013-0159-8CrossRefGoogle Scholar
Zebrowitz, L. A., Franklin, R. G., Hillman, S., & Boc, H. (2013). Older and younger adults’ first impressions from faces: Similar in agreement but different in positivity. Psychology and Aging, 28(1), 202212. https://doi.org/10.1037/a0030927CrossRefGoogle ScholarPubMed
Zebrowitz, L. A., Kikuchi, M., & Fellous, J.-M. (2010). Facial resemblance to emotions: Group differences, impression effects, and race stereotypes. Journal of Personality and Social Psychology, 98(2), 175189. https://doi.org/10.1037/a0017990CrossRefGoogle ScholarPubMed

References

Adams, R. B., & Kveraga, K. (2015). Social vision: Functional forecasting and the integration of compound social cues. Review of Philosophy and Psychology, 6(4), 591610.CrossRefGoogle ScholarPubMed
Ahumada, A., & Lovell, J. (1971). Stimulus features in signal detection. Journal of the Acoustical Society of America, 49 (6, Pt. 2), 17511756.CrossRefGoogle Scholar
Ambadar, Z., Cohn, J. F., & Reed, L. I. (2009). All smiles are not created equal: Morphology and timing of smiles perceived as amused, polite, and embarrassed/nervous. Journal of Nonverbal Behavior, 33(1), 1734.CrossRefGoogle Scholar
Arak, A., & Enquist, M. (1993). Hidden preferences and the evolution of signals. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 340(1292), 207213.Google Scholar
Back, E., Jordan, T. R., & Thomas, S. M. (2009). The recognition of mental states from dynamic and static facial expressions. Visual Cognition, 17(8), 12711286.CrossRefGoogle Scholar
Barranti, M., Carlson, E. N., & Côté, S. (2017). How to test questions about similarity in personality and social psychology research: Description and empirical demonstration of response surface analysis. Social Psychological and Personality Science, 8(4), 465475.CrossRefGoogle Scholar
Barrett, L. F., Adolphs, R., Marsella, S., Martinez, A. M., & Pollak, S. D. (2019). Emotional expressions reconsidered: Challenges to inferring emotion from human facial movements. Psychological Science in the Public Interest, 20(1), 168.CrossRefGoogle ScholarPubMed
Barrett, L. F., & Bliss‐Moreau, E. (2009). Affect as a psychological primitive. Advances in Experimental Social Psychology, 41, 167218.CrossRefGoogle ScholarPubMed
Bjornsdottir, R. T., & Rule, N. O. (2019). Negative emotion and perceived social class. Emotion, 20(6), 10311041. https://doi.org/10.1037/emo0000613CrossRefGoogle ScholarPubMed
Chen, C., Crivelli, C., Garrod, O. G. B., et al. (2018). Distinct facial expressions represent pain and pleasure across cultures. Proceedings of the National Academy of Sciences, 115(43), e10013. https://doi.org/10.1073/pnas.1807862115CrossRefGoogle ScholarPubMed
Chen, C., Garrod, O., Schyns, P., & Jack, R. (2015). The face is the mirror of the cultural mind. Journal of Vision, 15(12), 928–928.CrossRefGoogle Scholar
Chen, C., Garrod, O. G., Ince, R. A., et al. (2020). Building culturally-valid dynamic facial expressions for a conversational virtual agent using human perception. Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents.CrossRefGoogle Scholar
Chen, C., Hensel, L. B., Duan, Y., et al. (2019). Equipping social robots with culturally-sensitive facial expressions of emotion using data-driven methods. 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), 2019, pp. 18, https://10.1109/FG.2019.8756570Google Scholar
Craig, K., Prkachin, K., & Grunau, R. (1992). The facial expression of pain. In Turk, D. & Melzack, R. (eds.), Handbook of pain assessment (pp. 257276). New York: Guilford.Google Scholar
Darwin, C. (1999/1872). The expression of the emotions in man and animals (3rd ed.). London: Fontana Press.Google Scholar
Daube, C., Xu, T., Zhan, J., et al. (2021). Grounding deep neural network predictions of human categorization behavior in understandable functional features: The case of face identity. Patterns, 2(10), 100348.CrossRefGoogle ScholarPubMed
de Lurdes Carrito, M., dos Santos, I. M. B., Lefevre, C. E., et al. (2016). The role of sexually dimorphic skin colour and shape in attractiveness of male faces. Evolution and Human Behavior, 37(2), 125133.CrossRefGoogle Scholar
Dotsch, R., Wigboldus, D. H., Langner, O., & van Knippenberg, A. (2008). Ethnic out-group faces are biased in the prejudiced mind. Psychological Science, 19(10), 978980. https://doi.org/10.1111/j.1467-9280.2008.02186.xCrossRefGoogle ScholarPubMed
Dukas, R. (1998). Cognitive ecology: The evolutionary ecology of information processing and decision making. Chicago, IL: University of Chicago Press.Google Scholar
Ebner, N. C., He, Y., & Johnson, M. K. (2011). Age and emotion affect how we look at a face: Visual scan patterns differ for own-age versus other-age emotional faces. Cognition & Emotion, 25(6), 983997.CrossRefGoogle Scholar
Edwards, J. R. (1994). The study of congruence in organizational behavior research: Critique and a proposed alternative. Organizational Behavior and Human Decision Processes, 58(1), 51100.CrossRefGoogle Scholar
Ekman, P. (1972). Universals and cultural differences in facial expressions of emotion. In Cole, J. (ed.), Nebraska symposium on motivation, 1971 (pp. 207283). Lincoln, NE: University of Nebraska Press.Google Scholar
Ekman, P., & Cordaro, D. (2011). What is meant by calling emotions basic. Emotion Review, 3(4), 364370. https://doi.org/10.1177/1754073911410740CrossRefGoogle Scholar
Ekman, P., & Friesen, W. V. (1978). The facial action coding system: A technique for the measurement of facial movement. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Ekman, P., & Friesen, W. V. (1982). Felt, false, and miserable smiles. Journal of Nonverbal Behavior, 6(4), 238252.CrossRefGoogle Scholar
Ekman, P., Sorenson, E. R., & Friesen, W. V. (1969). Pan-cultural elements in facial displays of emotion. Science, 164(3875), 8688. https://doi.org/10.1126/science.164.3875.86CrossRefGoogle ScholarPubMed
Elfenbein, H. A., & Ambady, N. (2002a). Is there an in-group advantage in emotion recognition? Psychological Bulletin, 128(2), 243249.CrossRefGoogle ScholarPubMed
Elfenbein, H. A., & Ambady, N. (2002b). On the universality and cultural specificity of emotion recognition: A meta-analysis. Psychological Bulletin, 128(2), 203235. https://doi.org/http://dx.doi.org/10.1037/0033-2909.128.2.203CrossRefGoogle ScholarPubMed
Elfenbein, H. A., Mandal, M. K., Ambady, N., Harizuka, S., & Kumar, S. (2002). Cross-cultural patterns in emotion recognition: Highlighting design and analytical techniques. Emotion, 2(1), 7584.CrossRefGoogle ScholarPubMed
Fechner, G. T. (1860). Elemente der Psychophysik (Vol. 1). Leipzig, Germany: Breitkopf & Härtel.Google Scholar
Fernández-Dols, J. M. (2013). Advances in the study of facial expression: An introduction to the special section. Emotion Review, 5(1), 37. https://doi.org/10.1177/1754073912457209CrossRefGoogle Scholar
Fernández-Dols, J. M., Carrera, P., & Crivelli, C. (2011). Facial behavior while experiencing sexual excitement. Journal of Nonverbal Behavior, 35(1), 6371.CrossRefGoogle Scholar
Freudenberg, M., Adams, R. B. Jr., Kleck, R. E., & Hess, U. (2015). Through a glass darkly: Facial wrinkles affect our processing of emotion in the elderly. Frontiers in Psychology, 6, 1476.CrossRefGoogle Scholar
Freudenberg, M., Albohn, D. N., Kleck, R. E., Adams, R. B. Jr., & Hess, U. (2020). Emotional stereotypes on trial: Implicit emotion associations for young and old adults. Emotion, 20(7), 12441254.CrossRefGoogle ScholarPubMed
Gibson, B. M., Wasserman, E. A., Gosselin, F., & Schyns, P. G. (2005). Applying bubbles to localize features that control pigeons’ visual discrimination behavior. Journal of Experimental Psychology: Animal Behavior Processes, 31(3), 376382.Google ScholarPubMed
Gill, D., Garrod, O. G., Jack, R. E., & Schyns, P. G. (2014). Facial movements strategically camouflage involuntary social signals of face morphology. Psychological Science, 25(5), 10791086.CrossRefGoogle ScholarPubMed
Guilford, T., & Dawkins, M. S. (1991). Receiver psychology and the evolution of animal signals. Animal Behaviour, 42(1), 114. https://doi.org/http://dx.doi.org/10.1016/S0003-3472(05)80600-1CrossRefGoogle Scholar
Hall, E. (1966). The hidden dimension. New York: Doubleday.Google Scholar
Hass, N. C., Weston, T. D., & Lim, S.-L. (2016). Be happy not sad for your youth: The effect of emotional expression on age perception. PloS One, 11(3), e0152093.CrossRefGoogle Scholar
Hasson, O. (1997). Towards a general theory of biological signaling. Journal of Theoretical Biology, 185(2), 139156. http://10.1006/jtbi.1996.0258CrossRefGoogle ScholarPubMed
Hasson, O. (2000). Knowledge, information, biases and signal assemblages. In Espmark, Y., Amundsen, T., & Rosenqvist, G. (eds.), Animal signals: Signalling and signal design in animal communication (pp. 445–463). Trondheim, Norway: Tapir Academic Press.Google Scholar
Hawkley, L. C., & Cacioppo, J. T. (2007). Aging and loneliness: Downhill quickly? Current Directions in Psychological Science, 16(4), 187191. https://doi.org/10.1111/j.1467-8721.2007.00501.xCrossRefGoogle Scholar
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223233.CrossRefGoogle ScholarPubMed
Hebets, E. A., & Papaj, D. R. (2005). Complex signal function: Developing a framework of testable hypotheses. Behavioral Ecology and Sociobiology, 57(3), 197214.CrossRefGoogle Scholar
Hehman, E., Sutherland, C. A., Flake, J. K., & Slepian, M. L. (2017). The unique contributions of perceiver and target characteristics in person perception. Journal of Personality and Social Psychology, 113(4), 513529.CrossRefGoogle ScholarPubMed
Hensel, L. B., Zhan, J., Bjornsdottir, R. T., et al. (2020). Social trait perception is structured by a latent composition of 3D face features. Journal of Vision, 20(11), 1365–1365.CrossRefGoogle Scholar
Hess, U., Adams, R. B. Jr., & Kleck, R. E. (2009). The face is not an empty canvas: How facial expressions interact with facial appearance. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 34973504.CrossRefGoogle Scholar
Hess, U., Adams, R. B. Jr., Simard, A., Stevenson, M. T., & Kleck, R. E. (2012). Smiling and sad wrinkles: Age-related changes in the face and the perception of emotions and intentions. Journal of Experimental Social Psychology, 48(6), 13771380.CrossRefGoogle ScholarPubMed
Hess, U., & Hareli, S. (2015). The role of social context for the interpretation of emotional facial expressions. In Mandal, M. K. & Awasthi, A. (eds.), Understanding facial expressions in communication (pp. 119141). New York: Springer.CrossRefGoogle Scholar
Hill, H., Bruce, V., & Akamatsu, S. (1995). Perceiving the sex and race of faces: The role of shape and colour. Proceedings of the Royal Society B: Biological Sciences, 261(1362), 367373.Google ScholarPubMed
Hubel, D., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat’s striate visual cortex. Journal of Physics, 148, 574591.Google Scholar
Hummert, M. L. (2014). Age changes in facial morphology, emotional communication, and age stereotyping. In Verhaeghen, P. & Hertzog, C. (eds.), The Oxford handbook of emotion, social cognition, and problem solving in adulthood (pp. 4760). Oxford, UK: Oxford University PressGoogle Scholar
Hwang, H., & Matsumoto, D. (2015). Evidence for the universality of facial expressions of emotion. In Mandal, M. K. & Awasthi, A. (eds.), Understanding facial expressions in communication (pp. 4156). New York: Springer.CrossRefGoogle Scholar
Hönekopp, J. (2006). Once more: is beauty in the eye of the beholder? Relative contributions of private and shared taste to judgments of facial attractiveness. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 199209.Google ScholarPubMed
Izard, C. E. (1971). The face of emotion. New York: Appleton-Century-Crofts.Google Scholar
Izard, C. E. (1977). Human emotions. New York: Plenum Press.CrossRefGoogle Scholar
Jack, R. E., Crivelli, C., & Wheatley, T. (2018). Data-driven methods to diversify knowledge of human psychology. Trends in Cognitive Sciences, 22(1), 15.CrossRefGoogle ScholarPubMed
Jack, R. E., Garrod, O. G., & Schyns, P. G. (2014). Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time. Current Biology, 24(2), 187192. https://doi.org/10.1016/j.cub.2013.11.064CrossRefGoogle ScholarPubMed
Jack, R. E., Garrod, O. G., Yu, H., Caldara, R., & Schyns, P. G. (2012). Facial expressions of emotion are not culturally universal. Proceedings of the National Academy of Sciences, 109(19), 72417244. https://doi.org/10.1073/pnas.1200155109CrossRefGoogle Scholar
Jack, R. E., & Schyns, P. G. (2017). Toward a social psychophysics of face communication. Annual Review of Psychology, 68, 269297.CrossRefGoogle Scholar
Jack, R. E., Sun, W., Delis, I., Garrod, O. G. B., & Schyns, P. G. (2016). Four not six: Revealing culturally common facial expressions of emotion. Journal of Experimental Psychology: General, 145(6), 708730.CrossRefGoogle Scholar
Jones, A. L., Kramer, R. S. S., & Ward, R. (2012). Signals of personality and health: The contributions of facial shape, skin texture, and viewing angle. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 13531361. https://doi.org/10.1037/a0027078Google ScholarPubMed
Keltner, D., Sauter, D., Tracy, J., & Cowen, A. (2019). Emotional expression: Advances in basic emotion theory. Journal of Nonverbal Behavior, 43(2), 133160.CrossRefGoogle ScholarPubMed
Korb, S., With, S., Niedenthal, P., Kaiser, S., & Grandjean, D. (2014). The perception and mimicry of facial movements predict judgments of smile authenticity. PLoS One, 9(6), e99194.CrossRefGoogle ScholarPubMed
Kraft, N. A., Malloy, B. A., & Power, J. F. (2006). G4re: Harnessing gcc to reverse engineer C++ applications. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.Google Scholar
Krys, K., Vauclair, C.-M., Capaldi, C. A., et al. (2016). Be careful where you smile: Culture shapes judgments of intelligence and honesty of smiling individuals. Journal of Nonverbal Behavior, 40(2), 101116.CrossRefGoogle ScholarPubMed
Langlois, J. H., Kalakanis, L., Rubenstein, A. J., et al. (2000). Maxims or myths of beauty? A meta-analytic and theoretical review. Psychological Bulletin, 126(3), 390423. https://doi.org/10.1037/0033-2909.126.3.390CrossRefGoogle ScholarPubMed
Langlois, J. H., & Roggman, L. A. (1990). Attractive faces are only average. Psychological Science, 1(2), 115121.CrossRefGoogle Scholar
Lee, Y., & Schetzen, M. (1965). Measurement of the Wiener kernels of a non-linear system by cross-correlation. International Journal of Control, 2(3), 237254.CrossRefGoogle Scholar
Little, A. C., Jones, B. C., Waitt, C., et al. (2008). Symmetry is related to sexual dimorphism in faces: Data across culture and species. PloS One, 3(5), e2106.CrossRefGoogle ScholarPubMed
Liu, M., Duan, Y., Ince, R. A., et al. (2022). Facial expressions elicit multiplexed perceptions of emotion categories and dimensions. Current Biology, 32(1), 200209. E206.CrossRefGoogle ScholarPubMed
Magai, C., Consedine, N. S., Krivoshekova, Y. S., Kudadjie-Gyamfi, E., & McPherson, R. (2006). Emotion experience and expression across the adult life span: Insights from a multimodal assessment study. Psychology and Aging, 21(2), 303317.CrossRefGoogle ScholarPubMed
Malatesta, C. Z., Izard, C. E., Culver, C., & Nicolich, M. (1987). Emotion communication skills in young, middle-aged, and older women. Psychology and Aging, 2(2), 193203.CrossRefGoogle ScholarPubMed
Mangini, M. C., & Biederman, I. (2004). Making the ineffable explicit: Estimating the information employed for face classifications. Cognitive Science, 28(2), 209226.CrossRefGoogle Scholar
Mareschal, I., Dakin, S. C., & Bex, P. J. (2006). Dynamic properties of orientation discrimination assessed by using classification images. Proceedings of the National Academy of Sciences, 103(13), 51315136.CrossRefGoogle ScholarPubMed
Matsumoto, D., & Ekman, P. (1989). American-Japanese cultural differences in intensity ratings of facial expressions of emotion. Motivation and Emotion, 13(2), 143157.CrossRefGoogle Scholar
McKone, E., Crookes, K., & Kanwisher, N. (2009). The cognitive and neural development of face recognition in humans. The Cognitive Neurosciences, 4, 467482.Google Scholar
Medin, D. L., Goldstone, R. L., & Gentner, D. (1993). Respects for similarity. Psychological Review, 100(2), 254278. https://doi.org/10.1037/0033-295X.100.2.254CrossRefGoogle Scholar
Niedenthal, P. M., Mermillod, M., Maringer, M., & Hess, U. (2010). The Simulation of Smiles (SIMS) model: Embodied simulation and the meaning of facial expression. Behavioral and Brain Sciences, 33(6), 417433. https://doi.org/doi:10.1017/S0140525X10000865CrossRefGoogle ScholarPubMed
Nielsen, K. J., Logothetis, N. K., & Rainer, G. (2006). Discrimination strategies of humans and rhesus monkeys for complex visual displays. Current Biology, 16(8), 814820.CrossRefGoogle ScholarPubMed
Nölle, J., Wu, Y., Arias, P., et al. (2022). More than affect: Human facial expressions provide iconic and pragmatic functions. In Ravignani, A., Asano, R., Valente, D., et al. (eds.), The evolution of language: Proceedings of the joint conference on language evolution (JCoLE) (pp. 558561). Nijmegen, Netherlands: Joint Conference on Language Evolution. https://doi.org/doi:10.17617/2.3398549Google Scholar
O’Toole, A. J., Deffenbacher, K. A., Valentin, D., & Abdi, H. (1994). Structural aspects of face recognition and the other-race effect. Memory and Cognition, 22(2), 208224.CrossRefGoogle ScholarPubMed
Oosterhof, N. N., & Todorov, A. (2008). The functional basis of face evaluation. Proceedings of the National Academy of Sciences, 105(32), 1108711092. https://doi.org/10.1073/pnas.0805664105CrossRefGoogle ScholarPubMed
Patricelli, G. L., & Hebets, E. A. (2016). New dimensions in animal communication: The case for complexity. Current Opinion in Behavioral Sciences, 12, 8089.CrossRefGoogle Scholar
Perrett, D., Lee, K., Penton-Voak, I., et al. (1998). Effects of sexual dimorphism on facial attractiveness. Nature, 394(6696), 884887.CrossRefGoogle ScholarPubMed
Ponsot, E., Burred, J. J., Belin, P., & Aucouturier, J.-J. (2018). Cracking the social code of speech prosody using reverse correlation. Proceedings of the National Academy of Sciences, 115(15), 39723977.CrossRefGoogle ScholarPubMed
Rhodes, G. (2006). The evolutionary psychology of facial beauty. Annual Review of Psychology, 57, 199226.CrossRefGoogle ScholarPubMed
Rhodes, G., Zebrowitz, L. A., Clark, A., et al. (2001). Do facial averageness and symmetry signal health? Evolution and Human Behavior, 22(1), 3146.CrossRefGoogle ScholarPubMed
Rhodes, M. G. (2009). Age estimation of faces: A review. Applied Cognitive Psychology, 23(1), 112.CrossRefGoogle Scholar
Rhodes, M. G., & Anastasi, J. S. (2012). The own-age bias in face recognition: A meta-analytic and theoretical review. Psychological Bulletin, 138(1), 146174. https://doi.org/10.1037/a0025750CrossRefGoogle ScholarPubMed
Riediger, M., Voelkle, M. C., Ebner, N. C., & Lindenberger, U. (2011). Beyond “happy, angry, or sad?”: Age-of-poser and age-of-rater effects on multi-dimensional emotion perception. Cognition & Emotion, 25(6), 968982.CrossRefGoogle ScholarPubMed
Ringach, D., & Shapley, R. (2004). Reverse correlation in neurophysiology. Cognitive Science, 28(2), 147166. https://doi.org/10.1016/j.cogsci.2003.11.003CrossRefGoogle Scholar
Rowe, C. (1999). Receiver psychology and the evolution of multicomponent signals. Animal Behaviour, 58(5), 921931.CrossRefGoogle ScholarPubMed
Rychlowska, M., Jack, R. E., Garrod, O. G. B., et al. (2017). Functional smiles: Tools for love, sympathy, and war. Psychological Science, 28(9), 12591270. https://doi.org/10.1177/0956797617706082CrossRefGoogle ScholarPubMed
Scarfe, P., & Hibbard, P. B. (2013). Reverse correlation reveals how observers sample visual information when estimating three-dimensional shape. Vision Research, 86, 115127.CrossRefGoogle ScholarPubMed
Schyns, P. G., Bonnar, L., & Gosselin, F. (2002). Show me the features! Understanding recognition from the use of visual information. Psychological Science, 13(5), 402409.CrossRefGoogle ScholarPubMed
Schyns, P. G., Goldstone, R. L., & Thibaut, J. P. (1998). The development of features in object concepts. Behavioral and Brain Sciences, 21(1), 117; discussion 1754.CrossRefGoogle ScholarPubMed
Schyns, P. G., Thut, G., & Gross, J. (2011). Cracking the code of oscillatory activity. PloS Biology, 9(5), e1001064.CrossRefGoogle ScholarPubMed
Scott-Phillips, T. C. (2008). Defining biological communication. Journal of Evolutionary Biology, 21, 387395. https://doi.org/10.1111/j.1420-9101.2007.01497.xCrossRefGoogle ScholarPubMed
Shannon, C. E. (1948) A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379423, July, https://10.1002/j.1538-7305.1948.tb01338.xCrossRefGoogle Scholar
Smith, F. W., & Schyns, P. G. (2009). Smile through your fear and sadness. Psychological Science, 20(10), 12021208. https://doi.org/10.1111/j.1467-9280.2009.02427.xCrossRefGoogle ScholarPubMed
Smith, M. L., Gosselin, F., & Schyns, P. G. (2004). Receptive fields for flexible face categorizations. Psychological Science, 15(11), 753761.CrossRefGoogle ScholarPubMed
Smith, M. L., Gosselin, F., & Schyns, P. G. (2012). Measuring internal representations from behavioral and brain data. Current Biology, 22(3), 191196. https://doi.org/10.1016/j.cub.2011.11.061CrossRefGoogle ScholarPubMed
Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64(3), 153181.CrossRefGoogle ScholarPubMed
Sutherland, C. A., Liu, X., Zhang, L., et al. (2018). Facial first impressions across culture: Data-driven modeling of Chinese and British perceivers’ unconstrained facial impressions. Personality and Social Psychology Bulletin, 44(4), 521537.CrossRefGoogle ScholarPubMed
Sutherland, C. A., Oldmeadow, J. A., Santos, I. M., et al. (2013). Social inferences from faces: Ambient images generate a three-dimensional model. Cognition, 127(1), 105118.CrossRefGoogle ScholarPubMed
Tanaka, J., & Gauthier, I. (1997). Expertise in object and face recognition. In Goldstone, R. L. & Schyns, P. G. (eds.), Mechanisms of perceptual learning. Cambridge, MA: Academic Press.Google Scholar
Tanaka, J. W., Kiefer, M., & Bukach, C. M. (2004). A holistic account of the own-race effect in face recognition: Evidence from a cross-cultural study. Cognition, 93(1), B1B9.CrossRefGoogle ScholarPubMed
Tanaka, J. W., & Taylor, M. (1991). Object categories and expertise: Is the basic level in the eye of the beholder? Cognitive Psychology, 23(3), 457482.CrossRefGoogle Scholar
Tanaka, T., Mikuni, J., Shimane, D., Nakamura, K., & Watanabe, K. (2020) Accounting for private taste: Facial shape analysis of Attractiveness and Inter-individual Variance. 2020 12th International Conference on Knowledge and Smart Technology (KST), 203206, http://10.1109/KST48564.2020.9059511CrossRefGoogle Scholar
Thibault, P., Bourgeois, P., & Hess, U. (2006). The effect of group-identification on emotion recognition: The case of cats and basketball players. Journal of Experimental Social Psychology, 42(5), 676683.CrossRefGoogle Scholar
Thompson, W. B., Owen, J. C., Germain, H. D. S., Stark, S. R., & Henderson, T. C. (1999). Feature-based reverse engineering of mechanical parts. IEEE Transactions on Robotics and Automation, 15(1), 5766.CrossRefGoogle Scholar
Thornhill, R., & Gangestad, S. W. (2006). Facial sexual dimorphism, developmental stability, and susceptibility to disease in men and women. Evolution and Human Behavior, 27(2), 131144.CrossRefGoogle Scholar
Thorstenson, C. A., Pazda, A. D., & Krumhuber, E. G. (2021). The influence of facial blushing and paling on emotion perception and memory. Motivation and Emotion, 45(6), 818830.CrossRefGoogle Scholar
Tinbergen, N. (1948). Social releasers and the experimental method required for their study. The Wilson Bulletin, 60(1), 651.Google Scholar
Tomkins, S. S. (1962). Affect, imagery, and consciousness (Vol. 1: The positive emotions). New York: Springer.Google Scholar
Tsai, J. L., Ang, J. Y. Z., Blevins, E., et al. (2016). Leaders’ smiles reflect cultural differences in ideal affect. Emotion, 16(2), 183195.CrossRefGoogle ScholarPubMed
Van Rijsbergen, N., Jaworska, K., Rousselet, G. A., & Schyns, P. G. (2014). With age comes representational wisdom in social signals. Current Biology, 24(23), 27922796.CrossRefGoogle ScholarPubMed
Voelkle, M. C., Ebner, N. C., Lindenberger, U., & Riediger, M. (2012). Let me guess how old you are: Effects of age, gender, and facial expression on perceptions of age. Psychology and Aging, 27(2), 265277. https://doi.org/10.1037/a0025065CrossRefGoogle ScholarPubMed
Volterra, V. (1930). Theory of functionals and of integral and integro-differential equations. London, UK: Blackie.Google Scholar
Wilson, J. P., & Rule, N. O. (2014). Perceptions of others’ political affiliation are moderated by individual perceivers’ own political attitudes. PLoS One, 9(4), e95431.CrossRefGoogle ScholarPubMed
Wollman, I., Arias, P., Aucouturier, J.-J., & Morillon, B. (2020). Neural entrainment to music is sensitive to melodic spectral complexity. Journal of Neurophysiology, 123(3), 10631071.CrossRefGoogle ScholarPubMed
Yu, H., Garrod, O. G. B., & Schyns, P. G. (2012). Perception-driven facial expression synthesis. Computers & Graphics, 36(3), 152162.CrossRefGoogle Scholar
Zebrowitz, L. A., Hall, J. A., Murphy, N. A., & Rhodes, G. (2002). Looking smart and looking good: Facial cues to intelligence and their origins. Personality and Social Psychology Bulletin, 28(2), 238249.CrossRefGoogle Scholar
Zebrowitz, L. A., & Rhodes, G. (2004). Sensitivity to “bad genes” and the anomalous face overgeneralization effect: Cue validity, cue utilization, and accuracy in judging intelligence and health. Journal of Nonverbal Behavior, 28(3), 167185.CrossRefGoogle Scholar
Zhan, J., Garrod, O.G.B., van Rijsbergen, N., & Schyns, P. G. (2019) Modelling face memory reveals task-generalizable representations. Nature Human Behavior, 3, 817826. https://doi.org/10.1038/s41562-019-0625-3CrossRefGoogle ScholarPubMed
Zhan, J., Ince, R. A. A., Van Rijsbergen, N., & Schyns, P. G. (2019). Dynamic construction of reduced representations in the brain for perceptual decision behavior. Current Biology, 29(2), 319326.CrossRefGoogle ScholarPubMed
Zhan, J., Liu, M., Garrod, O. G. B., et al. (2021). Modeling individual preferences reveals that face beauty is not universally perceived across cultures. Current Biology, 31(10), 22432252. e2246.CrossRefGoogle Scholar

References

Adams, R. B. Jr., Ambady, N., Nakayama, K., & Shimojo, S. (2010). The Science of Social Vision. Oxford: Oxford University Press.CrossRefGoogle Scholar
Hareli, S., & Hess, U. (2010). What emotional reactions can tell us about the nature of others: An appraisal perspective on person perception. Cognition and Emotion, 24, 128140. https://doi.org/doi.org/10.1080/02699930802613828CrossRefGoogle Scholar
Hess, U., & Kafetsios, K. (2021). Infusing context into emotion perception impacts emotion decoding accuracy. Experimental Psychology, 68(6), 285294. https://doi.org/10.1027/1618-3169/a000531CrossRefGoogle ScholarPubMed
Malatesta, C. Z., Izard, C. E., Culver, C., & Nicolich, M. (1987). Emotion communication skills in young, middle-aged, and older women. Psychology and Aging, 2, 193203.CrossRefGoogle ScholarPubMed
Newen, A., De Bruin, L., & Gallagher, S. (2018). 4E cognition: Historical roots, key concepts, and central issues. In The Oxford handbook of 4E cognition (Vol. 1), pp. 315). Oxford: Oxford University Press.CrossRefGoogle Scholar
Niedenthal, P. M., Wood, A., Rychlowska, M., & Korb, S. (2017). Embodied simulation in decoding facial expression. In Fernández-Dols, J.-M. & Russell, J. A. (eds.), The science of facial expression (pp. 397414). Oxford: Oxford University Press.Google Scholar
United Nations. (2020). World population ageing: 2019 highlights.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×