Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T20:10:38.793Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 April 2021

Adrian C. Newton
Affiliation:
Bournemouth University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aber, J. D., Nadelhoffer, K. J., Steudler, P. and Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. BioScience, 39(6), 378386.Google Scholar
Abernethy, K. A., Coad, L., Taylor, G., Lee, M. E. and Maisels, F. (2013). Extent and ecological consequences of hunting in Central African rainforests in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120303.Google Scholar
Adair, S. (2016). Carrifran: Ecological restoration in the Southern Uplands: New native woodland and vegetation succession in the Moffat Hills. Scottish Forestry, 70(1), 3040.Google Scholar
Adams, C., Rodrigues, S. T., Calmon, M. and Kumar, C. (2016). Impacts of large‐scale forest restoration on socioeconomic status and local livelihoods: What we know and do not know. Biotropica, 48, 731744.Google Scholar
Ahl, V. and Allen, T. F. H. (1996). Hierarchy Theory: A Vision, Vocabulary and Epistemology. Columbia University Press, New York.Google Scholar
Alaniz, A. J., Pérez-Quezada, J. F., Galleguillos, M., Vásquez, A. E. and Keith, D. A. (2019). Operationalizing the IUCN Red List of Ecosystems in public policy. Conservation Letters, 12(5), e12665. https://doi.org/10.1111/conl.12665.Google Scholar
Algeo, T. J., Chen, Z. Q., Fraiser, M. L. and Twitchett, R. J. (2011). Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1–2), 111.Google Scholar
Allan, J. D., Abell, R., Hogan, Z., et al. (2005). Overfishing of inland waters. BioScience, 55(12), 10411051.Google Scholar
Allen, C. D., Macalady, A. K., Chenchouni, H., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660684.Google Scholar
Allen, C. D., Breshears, D. D. and McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6(8), 129. https://dx.doi.org/10.1890/ES15–00203.1.Google Scholar
Allen, J. R. M., Hickler, T., Singarayer, J. S., Sykes, M. T., Valdes, P. J. and Huntley, B. (2010). Last glacial vegetation of northern Eurasia. Quaternary Science Reviews, 29, 26042618.Google Scholar
Allendorf, F. W. (1997). The conservation biologist as Zen student. Conservation Biology, 11, 10451046.Google Scholar
Allesina, S. and Tang, S. (2012). Stability criteria for complex ecosystems. Nature, 483, 205208.Google Scholar
Allesina, S., Bodini, A. and Pascual, M. (2009). Functional links and robustness in food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1524), 17011709.Google Scholar
Allison, G. (2004). The influence of species diversity and stress intensity on community resistance and resilience. Ecological Monographs, 74, 117134.Google Scholar
Allnutt, T. R., Newton, A. C., Lara, A., et al. (1999). Genetic variation in Fitzroya cupressoides (alerce), a threatened South American conifer. Molecular Ecology, 8, 975987.Google Scholar
Altieri, A. H., Harrison, S. B., Seemann, J., Collin, R., Diaz, R. J. and Knowlton, N. (2017). Tropical dead zones and mass mortalities on coral reefs. Proceedings of the National Academy of Sciences of the United States of America, 114, 36603665.Google Scholar
Alvarez, L. W., Alvarez, W., Asaro, F. and Michel, H. V. (1980). Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science, 208(4448), 10951108.Google Scholar
Andersen, K. H. and Pedersen, M. (2010). Damped trophic cascades driven by fishing in model marine ecosystems. Proceedings of the Royal Society B: Biological Sciences, 277, 795802.Google Scholar
Anderson, P. (1999). Complexity theory and organization science. Organization Science, 10(3), 216232.Google Scholar
Anderson, S. H., Kelly, D., Ladley, J. J., Molloy, S. and Terry, J. (2011). Cascading effects of bird functional extinction reduce pollination and plant density. Science, 331(6020), 10681071.Google Scholar
Andrén, H. (1994). Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review. Oikos, 71, 355366.Google Scholar
Angeli, D., Ferrell, J. E. and Sontag, E. D. (2004). Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 18221827.Google Scholar
Aragão, L. E. O. C., Anderson, L. O., Fonseca, M. G., et al. (2018). 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, 9(1), 536.Google Scholar
Araujo, B. B. A., Oliveira-Santos, L. G. R., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. and Fernandez, F. A. S. (2017). Bigger kill than chill: The uneven roles of humans and climate on late Quaternary megafaunal extinctions. Quaternary International, 431, 216222.Google Scholar
Arens, N. C. and West, I. D. (2008). Press-pulse: A general theory of mass extinction? Paleobiology, 34(4), 456471.Google Scholar
Aronson, J., Clewell, A. F., Blignaut, J. N. and Milton, S. J. (2006). Ecological restoration: A new frontier for nature conservation and economics. Journal for Nature Conservation, 14(3–4), 135139.Google Scholar
Aronson, J., Murcia, C., Kattan, G. H., Moreno-Mateos, D., Dixon, K. and Simberloff, D. (2014). The road to confusion is paved with novel ecosystem labels: A reply to Hobbs et al. Trends in Ecology & Evolution, 29(12), 646647.Google Scholar
Aronson, J. C., Simberloff, D., Ricciardi, A. and Goodwin, N. (2018). Restoration science does not need redefinition. Nature Ecology & Evolution, 2(6), 916.Google Scholar
Arranz-Otaegui, A., Gonzalez Carretero, L., Ramsey, M. N., Fuller, D. Q. and Richter, T. (2018). Archaeobotanical evidence reveals the origins of bread 14,400 years ago in northeastern Jordan. Proceedings of the National Academy of Sciences of the United States of America, 115(31), 79257930.Google Scholar
Arroyo-Rodríguez, V., Melo, F. P. L., Martínez-Ramos, M., et al. (2017). Multiple successional pathways in human-modified tropical landscapes: New insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews, 92, 326340.Google Scholar
Ashmole, M. and Ashmole, P. (2009). The Carrifran Wildwood Story: Ecological Restoration from the Grass Roots. Borders Forest Trust, Jedburgh, Scotland.Google Scholar
Ashwin, P., Wieczorek, S., Vitolo, R. and Cox, P. (2012). Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 370(1962), 11661184.Google Scholar
Asner, G. P., Broadbent, E. N., Oliveira, P. J. C., Keller, M., Knapp, D. E. and Silva, J. N. M. (2006). Condition and fate of logged forests in the Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 103(34), 1294712950.Google Scholar
Aubin, D. and Dahan Dalmedico, A. (2002). Writing the history of dynamical systems and chaos: Longue durée and revolution, disciplines and cultures. Historia Mathematica, 29, 273339.Google Scholar
Baker, A. C., Glynn, P. W. and Riegl, B. (2008). Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science, 80(4), 435471.Google Scholar
Bakun, A. (2017). Climate change and ocean deoxygenation within intensified surface-driven upwelling circulations. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 375, 20160327.Google Scholar
Bakun, A. and Weeks, S. J. (2004). Greenhouse gas buildup, sardines, submarine eruptions, and the possibility of abrupt degradation of intense marine upwelling ecosystems. Ecology Letters, 7, 10151023.Google Scholar
Bakun, A. and Weeks, S. J. (2006). Adverse feedback sequences in exploited marine systems: Are deliberate interruptive actions warranted? Fish and Fisheries, 7, 316333.Google Scholar
Balaguer, L., Escudero, A., Martín-Duque, J. F., Mola, I. and Aronson, J. (2014). The historical reference in restoration ecology: Re-defining a cornerstone concept. Biological Conservation, 176, 1220.Google Scholar
Balch, J. K., Nepstad, D. C., Brando, P. M., et al. (2008). Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14, 22762287.Google Scholar
Balme, J. (2013). Of boats and string: The maritime colonisation of Australia. Quaternary International, 285, 6875.Google Scholar
Balmford, A. (2012). Wild Hope. On the Front Lines of Conservation Success. The University of Chicago Press, Chicago, IL.Google Scholar
Balmford, A. and Knowlton, N. (2017). Why Earth Optimism? Science, 356(6335), 225.Google Scholar
Balmford, A., Carey, P., Kapos, V., et al. (2009). Capturing the many dimensions of threat: Comment on Salafsky et al. Conservation Biology, 23, 482487.Google Scholar
Balvanera, P., Pfisterer, A. B., Buchmann, N., et al. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9(10), 11461156.Google Scholar
Balvanera, P., Siddique, I., Dee, L., et al. (2014). Linking biodiversity and ecosystem services: Current uncertainties and the necessary next steps. BioScience, 64(1), 4957.Google Scholar
Bambach, R. K., Knoll, A. H. and Wang, S. C. (2004). Origination, extinction, and mass depletions of marine diversity. Paleobiology, 30, 522542.Google Scholar
Ban, S. S., Graham, N. A. J. and Connolly, S. R. (2014). Evidence for multiple stressor interactions and effects on coral reefs. Global Change Biology, 20(3), 681697.Google Scholar
Bardgett, R. D. and Wardle, D. A. (2010). Aboveground-Belowground Linkages. Biotic Interactions, Ecosystem Processes, and Global Change. Oxford University Press, Oxford.Google Scholar
Barlow, C. (2002). The Ghosts of Evolution: Nonsensical Fruit, Missing Partners, and Other Ecological Anachronisms. Basic Books, New York.Google Scholar
Barlow, J. and Peres, C. A. (2008). Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 17871794.Google Scholar
Barlow, J., Gardner, T. A., Araujo, I. S., et al. (2007). Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 1855518560.Google Scholar
Barlow, J., Lennox, G. D., Ferreira, J., et al. (2016). Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 535(7610), 144147.Google Scholar
Barlow, J., França, F., Gardner, T. A., et al. (2018). The future of hyperdiverse tropical ecosystems. Nature, 559(7715), 517526.Google Scholar
Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. and Shabel, A. B. (2004). Assessing the causes of late Pleistocene extinctions on the continents. Science, 306, 7075.Google Scholar
Barnosky, A. D., Matzke, N., Tomiya, S., et al. (2011). Has the Earth’s sixth mass extinction already arrived? Nature, 471, 5157.Google Scholar
Barnosky, A. D., Hadly, E. A., Bascompte, J., et al. (2012). Approaching a state shift in Earth’s biosphere. Nature, 486, 5258.Google Scholar
Barnosky, A. D., Brown, J. H., Daily, G. C., et al. (2013). Scientific Consensus on Maintaining Humanity’s Life Support Systems in the 21st Century: Information for Policy Makers. Department of Integrative Biology and Museum of Paleontology, University of California‐Berkeley, Berkeley.Google Scholar
Barnosky, A. D., Brown, J. H., Daily, G. C., et al. (2014). Introducing the Scientific consensus on maintaining humanity’s life support systems in the 21st century: Information for policy makers. The Anthropocene Review, 1(1), 78109.Google Scholar
Barnosky, A. D., Lindsey, E. L., Villavicencio, N. A., et al. (2016). Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proceedings of the National Academy of Sciences of the United States of America, 113(4), 856861.Google Scholar
Barral, M. P., Rey Benayas, J. M., Meli, P. and Maceira, N. O. (2015). Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: A global meta-analysis. Agriculture, Ecosystems & Environment, 202, 223231.Google Scholar
Bartlett, L. J., Williams, D. R., Prescott, G. W., et al. (2016). Robustness despite uncertainty: Regional climate data reveal the dominant role of humans in explaining global extinctions of Late Quaternary megafauna. Ecography, 39, 152161.Google Scholar
Bascompte, J. and Stouffer, D. B. (2009). The assembly and disassembly of ecological networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1524), 17811787.Google Scholar
Bastin, J.-F., Finegold, Y., Garcia, C., et al. (2019). The global tree restoration potential. Science, 365(6448), 7679.Google Scholar
Batt, R. D., Carpenter, S. R., Cole, J. J., Pace, M. L. and Johnson, R. A. (2013). Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation. Proceedings of the National Academy of Sciences of the United States of America, 110(43), 1739817403.Google Scholar
Battisti, C., Poeta, G. and Fanelli, G. (2016). An Introduction to Disturbance Ecology. A Road Map for Wildlife Management and Conservation. Springer International, Switzerland.Google Scholar
Baxter-Gilbert, J. H., Riley, J. L., Neufeld, C. J. H., et al. (2015). Road mortality potentially responsible for billions of pollinating insect deaths annually. Journal of Insect Conservation, 19(5), 10291035.Google Scholar
Bayraktarov, E., Saunders, M. I., Abdullah, S., et al. (2016). The cost and feasibility of marine coastal restoration. Ecological Applications, 26(4), 10551074.Google Scholar
BCT (Bat Conservation Trust). (2017). The State of the UKs Bats 2017. Bat Conservation Trust / JNCC, London.Google Scholar
Beisner, B., Haydon, D. and Cuddington, K. (2003). Alternative stable states in ecology. Frontiers in Ecology and the Environment, 1, 376382.Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. and Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365377.Google Scholar
Bello, C., Galetti, M., Pizo, M. A., et al. (2015). Defaunation affects carbon storage in tropical forests. Science Advances, 1(11), e1501105.Google Scholar
Bellwood, D. R., Hughes, T. P., Folke, C. and Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429, 827833.Google Scholar
Bellwood, D. R., Hughes, T. P. and Hoey, A. S. (2006). Sleeping functional group drives coral reef recovery. Current Biology, 16, 24342439.Google Scholar
Bellwood, D. R., Baird, A. H., Depczynski, M., et al. (2012). Coral recovery may not herald the return of fishes on damaged reefs. Oecologia, 170, 567573.Google Scholar
Belovsky, G. E., Botkin, D. B., Crowl, T. A., et al. (2004). Ten suggestions to strengthen the science of ecology. BioScience, 54(4), 345351.Google Scholar
Belyazid, S., Westling, O. and Sverdrup, H. (2006). Modelling changes in forest soil chemistry at 16 Swedish coniferous forest sites following deposition reduction. Environmental Pollution, 144, 596609.Google Scholar
Belyea, L. R. and Lancaster, J. (1999). Assembly rules within a contingent ecology. Oikos, 86, 402416.Google Scholar
Bender, E. A., Case, T. J. and Gilpin, M. E. (1984). Perturbation experiments in community ecology: Theory and practice. Ecology, 65, 113.Google Scholar
BenDor, T., Shoemaker, D. A., Thill, J.-C., Dorning, M. A. and Meentemeyer, R. K. (2014). A mixed-methods analysis of socialecological feedbacks between urbanization and forest persistence. Ecology and Society, 19(3), 3. https://dx.doi.org/10.5751/ES-06508-190303.Google Scholar
Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. and Huijbregts, M. A. J. (2019). Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biology, 17(5), e3000247.Google Scholar
Bennion, H., Simpson, G. and Goldsmith, B. (2015). Assessing degradation and recovery pathways in lakes impacted by eutrophication using the sediment record. Frontiers in Ecology and Evolution, 3, 94. https://doi.org/10.3389/fevo.2015.00094.Google Scholar
Benton, M. J., Tverdokhlebov, V. P. and Surkov, M. V. (2004). Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. Nature, 432, 97100.Google Scholar
Berg, S., Pimenov, A., Palmer, C., Emmerson, M. and Jonsson, T. (2015). Ecological communities are vulnerable to realistic extinction sequences. Oikos, 124(4), 486496.Google Scholar
Berumen, M. L. and Pratchett, M. S. (2006). Recovery without resilience: Persistent disturbance and long-term shifts in the structure of fish and coral communities at Tiahura Reef, Moorea. Coral Reefs, 25, 647653.Google Scholar
Beschta, R. L., Painter, L. E. and Ripple, W. J. (2018). Trophic cascades at multiple spatial scales shape recovery of young aspen in Yellowstone. Forest Ecology and Management, 413, 6269.Google Scholar
Beschta, R. L., Painter, L. E. and Ripple, W. J. (2019). Trophic cascades and Yellowstone’s aspen: A reply to Fleming (2019). Forest Ecology and Management, 454, 117344.Google Scholar
Bestelmeyer, B. T., Ellison, A. M., Fraser, W. R., et al. (2011). Analysis of abrupt transitions in ecological systems. Ecosphere, 2(12), art129. https://doi.org/10.1890/es11-00216.1.Google Scholar
Bestelmeyer, B. T., Duniway, M. C., James, D. K., Burkett, L. M. and Havstad, K. M. (2013). A test of critical thresholds and their indicators in a desertification-prone ecosystem: More resilience than we thought. Ecology Letters, 16, 339345.Google Scholar
Bestelmeyer, B. T., Ash, A., Brown, J. R., et al. (2017). State and transition models: Theory, applications, and challenges. In: Briske, D. D. (ed.), Rangeland Systems. Processes, Management and Challenges. Springer Nature, Cham, Switzerland, pp. 303346.Google Scholar
Betts, R. A., Cox, P. M., Collins, M., Harris, P. P., Huntingford, C. and Jones, C. D. (2004). The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology, 78(1–3), 157175.Google Scholar
Binney, H., Edwards, M., Macias-Fauria, M., et al. (2017). Vegetation of Eurasia from the last glacial maximum to present: Key biogeographic patterns. Quaternary Science Reviews, 157, 8097.Google Scholar
Birch, J., Newton, A. C., Alvarez Aquino, C., et al. (2010). Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 2192521930.Google Scholar
Bird, M. I., Hutley, L. B., Lawes, M. J., et al. (2013). Humans, megafauna and environmental change in tropical Australia. Journal of Quaternary Science, 28(5), 439452.Google Scholar
Bird, M. I., O’Grady, D. and Ulm, S. (2016). Humans, water, and the colonization of Australia. Proceedings of the National Academy of Sciences of the United States of America, 113(41), 1147711482.Google Scholar
Birks, H. H. and Birks, H. J. B. (2004). The rise and fall of forests. Science, 305(5683), 484485.Google Scholar
Blake, L. (2015). ‘Are we worth saving? You tell me’: Neoliberalism, zombies and the failure of free trade. Gothic Studies, 17(2), 2641.Google Scholar
Blanchon, P. and Shaw, J. (1995). Reef drowning during the last deglaciation: Evidence for catastrophic sea-level rise and ice-sheet collapse. Geology, 23(1), 48.Google Scholar
Bland, L. M., Keith, D. A., Miller, R. M., Murray, N. J. and Rodríguez, J. P. (eds.). (2017a). Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.1. IUCN, Gland, Switzerland.Google Scholar
Bland, L. M., Regan, T. J., Dinh, M. N., et al. (2017b). Using multiple lines of evidence to assess the risk of ecosystem collapse. Proceedings of the Royal Society B: Biological Sciences, 284(1863), 20170660.Google Scholar
Bland, L. M., Rowland, J. A., Regan, T. J., et al. (2018a). Developing a standardized definition of ecosystem collapse for risk assessment. Frontiers in Ecology and the Environment, 16(1), 2936.Google Scholar
Bland, L. M., Watermeyer, K. E., Keith, D. A., Nicholson, E., Regan, T. J. and Shannon, L. J. (2018b). Assessing risks to marine ecosystems with indicators, ecosystem models and experts. Biological Conservation, 227, 1928.Google Scholar
Blew, R. D. (1996). On the definition of ecosystem. Bulletin of the Ecological Society of America, 77, 171173.Google Scholar
Bliege Bird, R., Bird, D. W., Codding, B. F., Parker, C. H. and Jones, J. H. (2008). The ‘fire stick farming’ hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 1479614801.Google Scholar
Blignaut, J. and Aronson, J. (2020). Developing a restoration narrative: A pathway towards system-wide healing and a restorative culture. Ecological Economics, 168, 106483.Google Scholar
Boast, A. P., Weyrich, L. S., Wood, J. R., et al. (2018). Coprolites reveal ecological interactions lost with the extinction of New Zealand birds. Proceedings of the National Academy of Sciences of the United States of America, 115, 15461551.Google Scholar
Bobbink, R., Hicks, K., Galloway, J., et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 3059.Google Scholar
Boettiger, C. and Hastings, A. (2012). Early warning signals and the prosecutor’s fallacy. Proceedings of the Royal Society B: Biological Sciences, 279, 47344739.Google Scholar
Boettiger, C. and Hastings, A. (2013). From patterns to predictions. Nature, 493, 157158.Google Scholar
Boitani, L., Mace, G. M. and Rondinini, C. (2015). Challenging the scientific foundations for an IUCN Red List of ecosystems. Conservation Letters, 8(2), 125131.Google Scholar
Bonan, G. B., Pollard, D. and Thompson, S. L. (1992). Effects of Boreal forest vegetation on global climate. Nature, 359, 716718.Google Scholar
Bond, D. P. G. and Grasby, S. E. (2017). On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 329.Google Scholar
Bond, W. J. (2008). What limits trees in C4 grasslands and savannas? Annual Review of Ecology, Evolution, and Systematics, 39(1), 641659.Google Scholar
Bond, W. J. and Midgley, J. J. (2012). Fire and the angiosperm revolutions. International Journal of Plant Science, 173, 569583.Google Scholar
Bond, W. J., Woodward, F. I. and Midgley, G. F. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525538.Google Scholar
Borer, E. T., Seabloom, E. W., Shurin, J. B., et al. (2005). What determines the strength of a trophic cascade? Ecology, 86, 528537.Google Scholar
Borie, M. and Hulme, M. (2015). Framing global biodiversity: IPBES between mother earth and ecosystem services. Environmental Science & Policy, 54, 487496.Google Scholar
Börner, J., Baylis, K., Corbera, E., et al. (2017). The effectiveness of payments for environmental services. World Development, 96, 359374.Google Scholar
Boulton, A. J. (2003). Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology, 48, 11731185.Google Scholar
Bowman, D. M. J. S., Perry, G. L. W. and Marston, J. B. (2015). Feedbacks and landscape-level vegetation dynamics. Trends in Ecology & Evolution, 30(5), 255260.Google Scholar
Braat, L. C. (2018). Five reasons why the Science publication ‘Assessing nature’s contributions to people’ (Diaz et al. 2018) would not have been accepted in Ecosystem Services. Ecosystem Services, 30, A1A2.Google Scholar
Bradshaw, A. D. (1984). Ecological principles and land reclamation practice. Landscape Planning, 11, 3548.Google Scholar
Bradshaw, R. and Mitchell, F. J. G. (1999). The palaeoecological approach to reconstructing former grazing–vegetation interactions. Forest Ecology and Management, 120, 312.Google Scholar
Branch, T. A. (2013). Citation patterns of a controversial and high-impact paper: Worm et al. (2006). “Impacts of biodiversity loss on ocean ecosystem services”. PLoS One, 8(2), e56723. https://doi.org/10.1371/journal.pone.0056723.Google Scholar
Branch, T. A. (2015). Fishing impacts on food webs: Multiple working hypotheses. Fisheries, 40, 373375.Google Scholar
Branch, T. A. (2016). Books and papers cited most often by fisheries scientists. https://sites.google.com/a/uw.edu/most-cited-fisheries/home (accessed on 14 March 2019).Google Scholar
Branch, T. A., Watson, R., Fulton, E. A., et al. (2010). The trophic fingerprint of marine fisheries. Nature, 468, 431435.Google Scholar
Brand, F. S. and Jax, K. (2007). Focusing the meaning(s) of resilience: Resilience as a descriptive concept and a boundary object. Ecology and Society, 12(1), 23. www.ecologyandsociety.org/vol12/iss1/art23/.Google Scholar
Brando, P. M., Balch, J. K., Nepstad, D. C., et al. (2014). Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 63476352.Google Scholar
Brannen, P. (2017). The Ends of the World. Volcanic Apocalypses, Lethal Oceans and Our Quest to Understand the Earth’s Part Mass Extinctions. Oneworld Publications, London.Google Scholar
Brault, M., Mysak, L., Matthews, H. and Simmons, C. (2013). Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate. Climate of the Past, 9, 17611771.Google Scholar
Bremer, L. L. and Farley, K. A. (2010). Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodiversity and Conservation, 19, 38933915.Google Scholar
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., et al. (2015). Long-term decline of the Amazon carbon sink. Nature, 519, 344348.Google Scholar
Brierley, C., Manning, K. and Maslin, M. (2018). Pastoralism may have delayed the end of the green Sahara. Nature Communications, 9(1), 4018.Google Scholar
Briggs, J. C. (2014). Global biodiversity gain is concurrent with declining population sizes. Biodiversity Journal, 5(4), 447452.Google Scholar
Brinck, K., Fischer, R., Groeneveld, J., et al. (2017). High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nature Communications, 8, 14855.Google Scholar
Briske, D. D., Fuhlendorf, S. D. and Smeins, F. E. (2006). A unified framework for assessment and application of ecological thresholds. Rangeland Ecology & Management, 59(3), 225236.Google Scholar
Briske, D. D., Washington-Allen, R. A., Johnson, C. R., et al. (2010). Catastrophic thresholds: A synthesis of concepts, perspectives and applications. Ecology and Society, 15(3), 37. www.ecologyandsociety.org/vol15/iss3/art37/.Google Scholar
Brockerhoff, E. G., Jactel, H., Parrotta, J. A. and Ferraz, S. F. B. (2013). Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. Forest Ecology and Management, 301, 4350.Google Scholar
Brodie, J. F., Aslan, C. E., Rogers, H. S., et al. (2014). Secondary extinctions of biodiversity. Trends in Ecology & Evolution, 29(12), 664672.Google Scholar
Brook, B. W., Sodhi, N. S. and Ng, P. K. L. (2003). Catastrophic extinctions follow deforestation in Singapore. Nature, 424, 420426.Google Scholar
Brook, B. W., Bradshaw, C. J. A., Pin Koh, L. and Sodhi, N. S. (2006). Momentum drives the crash: Mass extinction in the tropics. Biotropica, 38, 302305.Google Scholar
Brook, B. W., Sodhi, N. S. and Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23(8), 453460.Google Scholar
Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W. and Blomqvist, L. (2013). Does the terrestrial biosphere have planetary tipping points? Trends in Ecology & Evolution, 28(7), 396401.Google Scholar
Brooks, M. L., D’Antonio, C. M., Richardson, D. M., et al. (2004). Effects of invasive alien plants on fire regimes. BioScience, 54(7), 677688.Google Scholar
Broughton, J. M. and Weitzel, E. M. (2018). Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nature Communications, 9(1), 5441.Google Scholar
Brovkin, V., Claussen, M., Petoukhov, V. and Ganopolski, A. (1998). On the stability of the atmosphere-vegetation system in the Sahara / Sahel region. Journal of Geophysical Research, 103, 3161331624.Google Scholar
Brown, A. A. and Crema, E. R. (2019). Māori population growth in pre-contact New Zealand: Regional population dynamics inferred from summed probability distributions of radiocarbon dates. The Journal of Island and Coastal Archaeology, 1–19.Google Scholar
Bruelheide, H. and Luginbűhl, U. (2009). Peeking at ecosystem stability: Making use of a natural disturbance experiment to analyze resistance and resilience. Ecology, 90, 13141325.Google Scholar
Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. and Schutte, V. G. (2009). Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology, 90, 14781484.Google Scholar
Buckley, M. C. and Crone, E. E. (2008). Negative off-site impacts of ecological restoration: Understanding and addressing the conflict. Conservation Biology, 22(5), 11181124.Google Scholar
Bull, K. R. (1995). Critical loads – Possibilities and constraints. Water, Air, and Soil Pollution, 85(1), 201212.Google Scholar
Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. and Rey-Benayas, J. M. (2011). Restoration of ecosystem services and biodiversity: Conflicts and opportunities. Trends in Ecology & Evolution, 26, 541549.Google Scholar
Buma, B. (2015). Disturbance interactions: Characterization, prediction, and the potential for cascading effects. Ecosphere, 6(4), 70.Google Scholar
Burke, L., Reytar, K., Spalding, M. and Perry, A. (2011). Reefs at Risk Revisited. World Resources Institute, Washington, DC.Google Scholar
Burkepile, D. E. and Hay, M. E. (2006). Herbivore vs. nutrient control of marine primary producers: Context-dependent effects. Ecology, 87, 31283139.Google Scholar
Burnett, J. L. (2019). Regime Detection Measures for the Practical Ecologist. Dissertations and Theses in Natural Resources, p. 299. https://digitalcommons.unl.edu/natresdiss/299.Google Scholar
Burney, D. A., Robinson, G. S. and Burney, L. P. (2003). Sporormiella and the late Holocene extinctions in Madagascar. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 1080010805.Google Scholar
Burney, D. A, Pigott Burney, L., Godfrey, L. R., et al. (2004). A chronology for late prehistoric Madagascar. Journal of Human Evolution, 47(1–2), 2563.Google Scholar
Burns, D. A., Blett, T., Haeuber, R. and Pardo, L. H. (2008). Critical loads as a policy tool for protecting ecosystems from the effects of air pollutants. Frontiers in Ecology and the Environment, 6(3), 156159.Google Scholar
Burthe, S. J., Henrys, P. A., Mackay, E. B., et al. (2016). Do early warning indicators consistently predict nonlinear change in long-term ecological data? Journal of Applied Ecology, 53(3), 666676.Google Scholar
Busby, P. E. and Canham, C. D. (2011). An exotic insect and pathogen disease complex reduces aboveground tree biomass in temperate forests of eastern North America. Canadian Journal of Forest Research, 41, 401411.Google Scholar
Büscher, B., Sullivan, S., Neves, K., Igoe, J. and Brockington, D. (2012). Towards a synthesized critique of neoliberal biodiversity conservation. Capitalism Nature Socialism, 23(2), 430.Google Scholar
Butchart, S. H. M., Walpole, M., Collen, B., et al. (2010). Global biodiversity: Indicators of recent declines. Science, 328, 11641168.Google Scholar
Butzer, K. W. (2012). Collapse, environment, and society. Proceedings of the National Academy of Sciences of the United States of America, 109(10), 36323639.Google Scholar
Buxton, T. H., Buffington, J. M., Tonina, D., Fremier, A. K. and Yager, E. M. (2015). Modeling the influence of salmon spawning on hyporheic exchange of marine-derived nutrients in gravel stream beds. Canadian Journal of Fisheries and Aquatic Sciences, 72(8), 11461158.Google Scholar
Cafaro, P. (2015). Three ways to think about the sixth mass extinction. Biological Conservation, 192, 387393.Google Scholar
Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C., et al. (2012). How does climate change cause extinction? Proceedings of the Royal Society B: Biological Sciences, 280, 20121890.Google Scholar
Calvet-Mir, L., Corbera, E., Martin, A., Fisher, J. and Gross-Camp, N. (2015). Payments for ecosystem services in the tropics: A closer look at effectiveness and equity. Current Opinion in Environmental Sustainability, 14, 150162.Google Scholar
Cambridge Dictionary. (2019). Cambridge Dictionary. Cambridge University Press. https://dictionary.cambridge.org/ (accessed on 11 December 2019).Google Scholar
Campos-Arceiza, A. and Blake, S. (2011). Megagardeners of the forest – The role of elephants in seed dispersal. Acta Oecologica, 37, 542553.Google Scholar
Cantarello, E., Newton, A. C., Hill, R. A., et al. (2011). Simulating the potential for ecological restoration of dryland forests in Mexico under different disturbance regimes. Ecological Modelling, 222(5), 11121128.Google Scholar
Cantarello, E., Newton, A. C., Martin, P. A., Evans, P. M., Gosal, A. and Lucash, M. S. (2017). Quantifying resilience of multiple ecosystem services and biodiversity in a temperate forest landscape. Ecology and Evolution, 7(22), 96619675.Google Scholar
Capon, S. J., Lynch, A. J. J., Bond, N., et al. (2015). Regime shifts, thresholds and multiple stable states in freshwater ecosystems; a critical appraisal of the evidence. Science of the Total Environment, 534, 122130.Google Scholar
Cardinale, B. J., Duffy, J. E., Gonzalez, A., et al. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 5967.Google Scholar
Cardoso, P., Branco, V. V., Chichorro, F., Fukushima, C. S. and Macías-Hernández, N. (2019). Can we really predict a catastrophic worldwide decline of entomofauna and its drivers? Global Ecology and Conservation, 20, e00621.Google Scholar
Carlson, A. K., Taylor, W. W., Liu, J. and Orlic, I. (2018). Peruvian anchoveta as a telecoupled fisheries system. Ecology and Society, 23, art35. https://doi.org/10.5751/ES-09923-230135.Google Scholar
Carlsson, N. O. L., Brönmark, C. and Hansson, L.-A. (2004). Invading herbivory: The golden apple snail alters ecosystem functioning in Asian wetlands. Ecology, 85, 15751580.Google Scholar
Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sánchez, G. and Peñuelas, J. (2011). Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 108(4), 14741478.Google Scholar
Carpenter, J. K., Wood, J. R., Wilmshurst, J. M. and Kelly, D. (2018). An avian seed dispersal paradox: New Zealand’s extinct megafaunal birds did not disperse large seeds. Proceedings of the Royal Society B: Biological Sciences, 285, 20180352.Google Scholar
Carpenter, S. R. (2005). Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 1000210005.Google Scholar
Carpenter, S. R., Cole, J. J., Hodgson, J. R., et al. (2001). Trophic cascades, nutrients, and lake productivity: Whole-lake experiments. Ecological Monographs, 71, 163186.Google Scholar
Carpenter, S. R., Brock, W. A., Cole, J. J., Kitchell, J. F. and Pace, M. L. (2008). Leading indicators of trophic cascades. Ecology Letters, 11, 128138.Google Scholar
Carpenter, S. R., Cole, J. J., Pace, M. L., et al. (2011). Early warnings of regime shifts: A whole-ecosystem experiment. Science, 332(6033), 10791082.Google Scholar
Carpenter, S. R., Brock, W. A., Folke, C., van Nes, E. H. and Scheffer, M. (2015). Allowing variance may enlarge the safe operating space for exploited ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 112(46), 1438414389.Google Scholar
Cascales-Miñana, B. and Cleal, C. J. (2011). Plant fossil record and survival analyses. Lethaia, 45, 7182.Google Scholar
Caseldine, C. J. and Turney, C. (2010). The bigger picture: Towards integrating palaeoclimate and environmental data with a history of societal change. Journal of Quaternary Science, 25(1), 8893.Google Scholar
Casey, J. M., Baird, A. H., Brandl, S. J., et al. (2017). A test of trophic cascade theory: Fish and benthic assemblages across a predator density gradient on coral reefs. Oecologia, 183, 161175.Google Scholar
Casini, M., Lövgren, J., Hjelm, J., et al. (2008). Multi-level trophic cascades in a heavily exploited open marine ecosystem. Proceedings of the Royal Society of London Series B: Biological Sciences, 275, 17931801.Google Scholar
Casini, M., Hjelm, J., Molinero, J.-C., et al. (2009). Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 197202.Google Scholar
Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology, 63, 215244.Google Scholar
CBD. (2012). Quick Guide to the Aichi Biodiversity Targets. T15. CBD Secretariat, Montreal, Canada. www.cbd.int/doc/strategic-plan/targets/T15-quick-guide-en.pdf.Google Scholar
Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M. and Palmer, T. M. (2015). Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 1(5), e1400253.Google Scholar
Ceballos, G., Ehrlich, P. R. and Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences of the United States of America, 114(30), E6089E6096.Google Scholar
Cerrano, C., and Bavestrello, G. (2008). Medium-term effects of die-off of rocky benthos in the Ligurian Sea. What can we learn from gorgonians? Chemistry and Ecology, 24(sup1), 7382.Google Scholar
Chapman, D. A., Lickel, B. and Markowitz, E. M. (2017). Reassessing emotion in climate change communication. Nature Climate Change, 7(12), 850852.Google Scholar
Chapin, F. S. III, Matson, P. A. and Mooney, H. A. (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York. 394 p.Google Scholar
Chapin, F. S. III, Callaghan, T. V., Bergeron, Y., et al. (2004). Global change and the boreal forest: Thresholds shifting states or gradual change? AMBIO: A Journal of the Human Environment, 33, 361365.Google Scholar
Chaplin-Kramer, R., Sharp, R. P., Weil, C., et al. (2019). Global modeling of nature’s contributions to people. Science, 366(6462), 255258.Google Scholar
Chazdon, R. L. (2003). Tropical forest recovery: Legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics, 6, 5171.Google Scholar
Chazdon, R. L. (2008). Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science, 320, 14581460.Google Scholar
Chazdon, R. L. (2014). Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation. The University of Chicago Press, Chicago, IL.Google Scholar
Chazdon, R. and Arroyo, J. P. (2013). Tropical forests as complex adaptive systems. In: Messier, C., Puettmann, K. J. and Coates, K. (eds.), Managing Forests as Complex Adaptive Systems. Building Resilience to the Challenge of Global Change. Earthscan / Routledge, London and New York, pp. 3559.Google Scholar
Chazdon, R. L. and Brancalion, P. (2019). Restoring forests as a means to many ends. Science, 365(6448), 2425.Google Scholar
Chazdon, R. L. and Guariguata, M. R. (2016). Natural regeneration as a tool for large‐scale forest restoration in the tropics: Prospects and challenges. Biotropica, 48, 716730.Google Scholar
Chen, D., Qing, H. and Li, R. (2005). The Late Devonian Frasnian–Famennian (F/F) biotic crisis: Insights from δ13Ccarb, δ13Corg and 87Sr/86Sr isotopic systematics. Earth Planetary Science Letters, 235, 151166.Google Scholar
Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. and Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 10241026.Google Scholar
Chen, M.-F. (2015). Impact of fear appeals on pro-environmental behavior and crucial determinants. International Journal of Advertising, 35(1), 7492.Google Scholar
Chen, Z. Q. and Benton, M. J. (2012). The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience, 5, 375383.Google Scholar
Choi, Y. D. (2004). Theories for ecological restoration in changing environment: Toward ‘futuristic’ restoration. Ecological Research, 19, 7581.Google Scholar
Choi, Y. D. (2017). Considering the future. Anticipating the need for ecological restoration. In: Allison, S. K. and Murphy, S. D. (eds.), Routledge Handbook of Ecological and Environmental Restoration. Routledge, Abingdon and New York, pp. 715.Google Scholar
Christie, M., Holland, S. M. and Bush, A. M. (2013). Contrasting the ecological and taxonomic consequences of extinction. Paleobiology, 39(4), 538559.Google Scholar
Chytrý, M., Horsák, M., Danihelka, J., et al. (2018). A modern analogue of the Pleistocene steppe‐tundra ecosystem in southern Siberia. Boreas. https://doi.org/10.1111/bor.12338.Google Scholar
Çilingiroğlu, Ç. (2005). The concept of ‘Neolithic package’: Considering its meaning and applicability. Documenta Praehistorica, 32, 113.Google Scholar
Clapham, M. E. (2016). Organism activity levels predict marine invertebrate survival during ancient global change extinctions. Global Change Biology, 23, 14771485.Google Scholar
Clark, D. B., Hurtado, J. and Saatchi, S. S. (2015). Tropical rain forest structure, tree growth and dynamics along a 2700-m elevational transect in Costa Rica. PLoS One, 10, e0122905.Google Scholar
Clark, J. S. (1989). Ecological disturbance as a renewal process: Theory and application to fire history. Oikos, 56, 1730.Google Scholar
Clark, J. S. (1991). Disturbance and tree life history on the shifting mosaic landscape. Ecology, 72, 11021118.Google Scholar
Clarkson, C., Jacobs, Z., Marwick, B., et al. (2017). Human occupation of northern Australia by 65,000 years ago. Nature, 547, 306310.Google Scholar
Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P. and Pachur, H.-J. (1999). Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophysical Research Letters, 26, 20372040.Google Scholar
Claussen, M., Dallmeyer, A. and Bader, J. (2017). Theory and modeling of the African Humid Period and the Green Sahara. In: Oxford Research Encyclopedias of Climate Science. https://doi.org/10.1093/acrefore/9780190228620.013.532.Google Scholar
Clements, C. F. and Ozgul, A. (2018). Indicators of transitions in biological systems. Ecology Letters, 21(6), 905919.Google Scholar
Clements, C. F., McCarthy, M. A. and Blanchard, J. L. (2019). Early warning signals of recovery in complex systems. Nature Communications, 10(1), 1681 https://doi.org/10.1038/s41467-019-09684-y.Google Scholar
Clewell, A. F. and Aronson, J. (2013). Ecological Restoration: Principles, Values and Structure of an Emerging Profession, 2nd edition. Island Press, Washington, DC.Google Scholar
Clifford, C. C. and Heffernan, J. B. (2018). Artificial aquatic ecosystems. Water, 10, 1096.Google Scholar
Cline, T. J., Seekell, D. A., Carpenter, S. R., et al. (2014). Early warnings of regime shifts: Evaluation of spatial indicators from a whole-ecosystem experiment. Ecosphere, 5(8), art102. https://doi.org/10.1890/es13-00398.1.Google Scholar
Cole, L. E. S., Bhagwat, S. A. and Willis, K. J. (2014). Recovery and resilience of tropical forests after disturbance. Nature Communications, 5, 3906.Google Scholar
Colwell, R. K., Dunn, R. R. and Harris, N. C. (2012). Coextinction and persistence of dependent species in a changing world. Annual Review of Ecology and Systematics, 43, 183203.Google Scholar
Connell, J. H. and Sousa, W. P. (1983). On the evidence needed to judge ecological stability or persistence. The American Naturalist, 121, 789824.Google Scholar
Coomes, D. A., Allen, R. B., Forsyth, D. M. and Lee, W. G. (2003). Factors preventing the recovery of New Zealand forests following control of invasive deer. Conservation Biology, 17, 450459.Google Scholar
Cooper, A., Turney, C., Hughen, K. A., Brook, B. W., McDonald, H. G. and Bradshaw, C. J. A. (2015). Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science, 349(6248), 602606.Google Scholar
Cordingley, J. E., Newton, A. C., Rose, R. J., Clarke, R. and Bullock, J. M. (2015a). Can landscape-scale approaches to conservation management resolve biodiversity – Ecosystem service tradeoffs? Journal of Applied Ecology, 53(1), 96105.Google Scholar
Cordingley, J. E., Newton, A. C., Rose, R. J., Clarke, R. and Bullock, J. M. (2015b). Habitat fragmentation intensifies trade-offs between biodiversity and ecosystem services. PLoS One, 10(6), e0130004. https://doi.org/10.1371/journal.pone.0130004.Google Scholar
Corlett, R. T. (2016). Restoration, reintroduction, and rewilding in a changing world. Trends in Ecology & Evolution, 31(6), 453462.Google Scholar
Cortina, J., Maestre, F. T., Vallejo, R., Baeza, M. J., Valdecantos, A. and Pérez-Devesa, M. (2006). Ecosystem structure, function, and restoration success: Are they related? Journal for Nature Conservation, 14(3), 152160.Google Scholar
Costanza, R., Graumlich, L., Steffen, W., et al. (2007). Sustainability or collapse: What can we learn from integrating the history of humans and the rest of nature? AMBIO: A Journal of the Human Environment, 36(7), 522527.Google Scholar
Costanza, R., de Groot, R., Braat, L., et al. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28, 116.Google Scholar
Costello, C., Ovando, D., Clavelle, T., et al. (2016). Global fishery prospects under contrasting management regimes. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 51255129.Google Scholar
Côté, I. M., Darling, E. S. and Brown, C. J. (2016). Interactions among ecosystem stressors and their importance in conservation. Proceedings of the Royal Society B: Biological Sciences, 283, 20152592.Google Scholar
Côté, S., Rooney, T., Tremblay, J., Dussault, C. and Waller, D. (2004). Ecological Impacts of Deer Overabundance. Annual Review of Ecology, Evolution, and Systematics, 35, 113147.Google Scholar
Cox, M. P., Nelson, M. G., Tumonggor, M. K., Ricault, F.-X. and Sudoyo, H. (2012). A small cohort of Island Southeast Asian women founded Madagascar. Proceedings of the Royal Society B: Biological Sciences, 279(1739), 27612768.Google Scholar
Cox, P., Betts, R., Collins, M., et al. (2004). Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78(1–3), 137156.Google Scholar
Cox, P. M., Pearson, D., Booth, B. B., et al. (2013). Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341344.Google Scholar
Crain, C. M., Kroeker, K. and Halpern, B. S. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters, 11, 13041315.Google Scholar
Crawford, R. J. M. (2007). Food, fishing and seabirds in the Benguela upwelling system. Journal of Ornithology, 148, 253260.Google Scholar
Crossman, N. D., Burkhard, B., Nedkov, S., et al. (2013). A blueprint for mapping and modelling ecosystem services. Ecosystem Services, 4(Supplement C), 414.Google Scholar
Crouzeilles, R. and Curran, M. (2016). Which landscape size best predict the influence of forest cover on restoration success? A global meta-analysis on the scale of effect. Journal of Applied Ecology, 53, 440448.Google Scholar
Crouzeilles, R., Curran, M., Ferreira, M. S., Lindenmayer, D. B., Grelle, C. E. V. and Rey Benayas, J. M. (2016). A global meta-analysis on the ecological drivers of forest restoration success. Nature Communications, 7, 11666.Google Scholar
Crouzeilles, R., Ferreira, M. S., Chazdon, R. L., et al. (2017). Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances, 3(11), e1701345.Google Scholar
Crutzen, P. J. (2006). The ‘Anthropocene’. In: Ehlers, E. and Krafft, T. (eds.), Earth System Science in the Anthropocene. Springer, Berlin/Heidelberg, pp. 1318.Google Scholar
Cruz, I. C. S., Waters, L. G., Kikuchi, R. K. P., Leão, Z. M. A. N. and Turra, A. (2018). Marginal coral reefs show high susceptibility to phase shift. Marine Pollution Bulletin, 135, 551561.Google Scholar
Cui, Y., Bercovici, A., Yu, J., et al. (2017). Carbon cycle perturbation expressed in terrestrial Permian–Triassic boundary sections in South China. Global and Planetary Change, 148, 272285.Google Scholar
Cumming, G. S. and Peterson, G. D. (2017). Unifying research on social and ecological resilience and collapse. Trends in Ecology & Evolution, 32(9), 695713.Google Scholar
Cunsolo, A. and Ellis, N. R. (2018). Ecological grief as a mental health response to climate change-related loss. Nature Climate Change, 8(4), 275281.Google Scholar
Curran, M., Hellweg, S. and Beck, J. (2014). Is there any empirical support for biodiversity offset policy? Ecological Applications, 24(4), 617632.Google Scholar
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. and Hansen, M. C. (2018). Classifying drivers of global forest loss. Science, 361(6407), 11081111.Google Scholar
Curtsdotter, A., Binzer, A., Brose, U., et al. (2011). Robustness to secondary extinctions: Comparing trait-based sequential deletions in static and dynamic food webs. Basic and Applied Ecology, 12(7), 571580.Google Scholar
Cury, P., Bakun, A., Crawford, R. J. M., et al. (2000). Small pelagics in upwelling systems: Patterns of interaction and structural changes in ‘wasp-waist’ ecosystems. ICES Journal of Marine Science, 57, 603618.Google Scholar
Czembor, C. A. and Vesk, P. A. (2009). Incorporating between-expert uncertainty into state-and-transition simulation models for forest restoration. Forest Ecology and Management, 259, 165175.Google Scholar
Daan, N., Gislason, H., Pope, J. G. and Rice, J. C. (2011). Apocalypse in world fisheries? The reports of their death are greatly exaggerated. ICES Journal of Marine Science, 68, 13751378.Google Scholar
Dakos, V. and Bascompte, J. (2014). Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proceedings of the National Academy of Sciences of the United States of America, 111, 1754617551.Google Scholar
Dakos, V., Carpenter, S. R., Brock, W. A., et al. (2012). Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS One, 7, e41010.Google Scholar
Dakos, V., Carpenter, S. R., van Nes, E. H. and Scheffer, M. (2015). Resilience indicators: Prospects and limitations for early warnings of regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20130263.Google Scholar
Danell, K., Bergstrom, R., Edenius, L. and Ericsson, G. (2003). Ungulates as drivers of tree population dynamics at module and genet levels. Forest Ecology and Management, 181, 6776.Google Scholar
Daniels, K., Connolly, S., Ogbonnaya, C., et al. (2018). Democratisation of wellbeing: Stakeholder perspectives on policy priorities for improving national wellbeing through paid employment and adult learning. British Journal of Guidance & Counselling, 46(4), 492511.Google Scholar
Danovaro, R., Gambi, C., Dell’Anno, A., et al. (2008). Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Current Biology, 18(1), 18.Google Scholar
Dantas, V. de L., Batalha, M. A. and Pausas, J. G. (2013). Fire drives functional thresholds on the savanna–forest transition. Ecology, 94(11), 24542463.Google Scholar
Dantas, V. de L., Hirota, M., Oliveira, R. S. and Pausas, J. G. (2016). Disturbance maintains alternative biome states. Ecology Letters, 19(1), 1219.Google Scholar
Darling, E. S. and Côté, I. M. (2008). Quantifying the evidence for ecological synergies. Ecology Letters, 11, 12781286.Google Scholar
Daskalov, G. M., Grishin, A. N., Rodionov, S. and Mihneva, V. (2007). Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proceedings of the National Academy of Sciences of the United States of America, 104, 1051810523.Google Scholar
Davenas, E., Beauvais, F., Amara, J., et al. (1988). Human basophil degranulation triggered by very dilute antiserum against IgE. Nature, 333(6176), 816818.Google Scholar
Davidson, E. A., de Araújo, A. C., Artaxo, P., et al. (2012). The Amazon basin in transition. Nature, 481, 321328.Google Scholar
Dayton, P. K., Tegner, M. J., Edwards, P. B. and Riser, K. L. (1998). Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecological Applications, 8(2), 309322.Google Scholar
Deakin, M. A. B. (1990). Catastrophe modelling in the biological sciences. Acta Biotheoretica, 38, 322.Google Scholar
DeFries, R. S., Foley, J. A. and Asner, G. P. (2004). Land-use choices: Balancing human needs and ecosystem function. Frontiers in Ecology and the Environment, 2(5), 249257.Google Scholar
de Groot, R., Brander, L., van der Ploeg, S., et al. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, 1(1), 5061.Google Scholar
de Groot, R. S., Blignaut, J., van der Ploeg, S., Aronson, J., Elmqvist, T. and Farley, J. (2013). Benefits of investing in ecosystem restoration. Conservation Biology, 27(6), 12861293.Google Scholar
Deguines, N., Jono, C., Baude, M., Henry, M., Julliard, R. and Fontaine, C. (2014). Large-scale trade-off between agricultural intensification and crop pollination services. Frontiers in Ecology and the Environment, 12(4), 212217.Google Scholar
de Laplante, K. (2005). Is ecosystem management a postmodern science? In: Cuddington, K. E. and Beisner, B. E. (eds.), Ecological Paradigms Lost, Routes of Theory Change. Elsevier Academic Press, San Diego, pp. 397418.Google Scholar
Delgado, L. E. and Marín, V. H. (2016). Human well-being and historical ecosystems: The environmentalist’s paradox revisited. BioScience, 67(1), 56.Google Scholar
Deloitte Access Economics. (2013). Economic Contribution of the Great Barrier Reef. Great Barrier Reef Marine Park Authority, Townsville.Google Scholar
de Menocal, P., Oritz, J., Guilderson, T., et al. (2000). Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quaternary Science Reviews, 19, 347361.Google Scholar
Dent, C. L., Cumming, G. S. and Carpenter, S. R. (2002). Multiple states in river and lake ecosystems. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 357(1421), 635645.Google Scholar
de Oliveira Roque, F., Menezes, J. F. S., Northfield, T., Ochoa-Quintero, J. M., Campbell, M. J. and Laurance, W. F. (2018). Warning signals of biodiversity collapse across gradients of tropical forest loss. Scientific Reports, 8(1), 1622.Google Scholar
DePalma, R. A., Smit, J., Burnham, D. A., et al. (2019). A seismically induced onshore surge deposit at the KPg boundary, North Dakota. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 81908199.Google Scholar
Derocher, A. E., Aars, J., Amstrup, S. C., et al. (2013). Rapid ecosystem change and polar bear conservation. Conservation Letters, 6(5), 368375.Google Scholar
de Visser, S. N., Freymann, B. P. and Olff, H. (2011). The Serengeti food web: Empirical quantification and analysis of topological changes under increasing human impact. Journal of Animal Ecology, 80, 484494.Google Scholar
Diamond, J. M. (1975). Assembly of species communities. In: Cody, M. L. and Diamond, J. M. (eds.), Ecology and Evolution of Communities. Harvard University Press, Harvard, pp. 342444.Google Scholar
Diamond, J. M. (1990). Biological effects of ghosts. Nature, 345, 769770.Google Scholar
Diamond, J. M. (2005). Collapse. How Societies Choose to Fail or Succeed. Penguin Books, London.Google Scholar
Diamond, J. M. (1984). ‘Normal’ extinction of isolated populations. In: Nitecki, M. H. (ed.), Extinctions. Chicago University Press, Chicago, pp. 191246.Google Scholar
Diamond, J. M., Ashmole, N. P. and Purves, P. E. (1989). Present, past and future of human-caused extinctions [and discussion]. Proceedings of the Royal Society of London Series B: Biological Sciences, 325, 469477.Google Scholar
Diaz, A., Keith, S. A., Bullock, J. M., Hooftman, D. A. P. and Newton, A. C. (2013). Conservation implications of long-term changes detected in a lowland heath metacommunity. Biological Conservation, 167, 325333.Google Scholar
Díaz, M. F. and Armesto, J. J. (2007). Physical and biotic constraints on tree regeneration in secondary shrublands of Chiloe Island, Chile. Revista Chilena de Historia Natural, 80, 1326.Google Scholar
Diaz, R. J. and Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926929.Google Scholar
Díaz, S., Symstad, A. J., Stuart Chapin, F., Wardle, D. A. and Huenneke, L. F. (2003). Functional diversity revealed by removal experiments. Trends in Ecology & Evolution, 18(3), 140146.Google Scholar
Díaz, S., Demissew, S., Carabias, J., et al. (2015). The IPBES Conceptual Framework – Connecting nature and people. Current Opinion in Environmental Sustainability, 14, 116.Google Scholar
Díaz, S., Pascual, U., Stenseke, M., et al. (2018). Assessing nature’s contributions to people. Science, 359(6373), 270272.Google Scholar
Diaz-Pulido, G., McCook, L. J., Dove, S., et al. (2009). Doom and boom on a resilient reef: Climate change, algal overgrowth and coral recovery. PLoS One, 4(4), e5239. https://doi.org/10.1371/journal.pone.0005239.Google Scholar
Dickey-Collas, M., Nash, R. D. M., Brunel, T., et al. (2010). Lessons learned from stock collapse and recovery of North Sea herring: A review. ICES Journal of Marine Science, 67, 18751886.Google Scholar
Dickman, C. (2020). More than one billion animals killed in Australian bushfires. University of Sydney. https://sydney.edu.au/news-opinion/news/2020/01/08/australian-bushfires-more-than-one-billion-animals-impacted.html (accessed on 28 January 2020).Google Scholar
Dirzo, R. and Raven, P. H. (2003). Global state of biodiversity and loss. Annual Review of Environment and Resources, 28, 137167.Google Scholar
Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B. and Collen, B. (2014). Defaunation in the Anthropocene. Science, 345(6195), 401406.Google Scholar
Doak, D. F., Bigger, D., Harding, E. K., Marvier, M. A., O’Malley, R. E. and Thomson, D. (1998). The statistical inevitability of stability‐diversity relationships in community ecology. The American Naturalist, 151(3), 264276.Google Scholar
Doak, D. F., Estes, J. A., Halpern, B. S., et al. (2008). Understanding and predicting ecological dynamics: Are major surprises inevitable? Ecology, 89, 952961.Google Scholar
Doak, D. F., Bakker, V. J., Goldstein, B. E. and Hale, B. (2014). What is the future of conservation? Trends in Ecology & Evolution, 29(2), 7781.Google Scholar
Doncaster, C. P., Alonso Chávez, V., Viguier, C., et al. (2016). Early warning of critical transitions in biodiversity from compositional disorder. Ecology, 97(11), 30793090.Google Scholar
Done, T. J. (1992). Phase shifts in coral reef communities and their ecological significance. Hydrobiologia, 247, 121132.Google Scholar
Donohue, I., Petchey, O. L., Montoya, J. M., et al. (2013). On the dimensionality of ecological stability. Ecology Letters, 16, 421429.Google Scholar
Donohue, I., Hillebrand, H., Montoya, J. M., et al. (2016). Navigating the complexity of ecological stability. Ecology Letters, 19(9), 11721185.Google Scholar
Doubleday, Z. A. and Connell, S. D. (2018). Weedy futures: Can we benefit from the species that thrive in the marine Anthropocene? Frontiers in Ecology and the Environment, 16(10), 599604.Google Scholar
Doughty, C. E. (2013). Preindustrial human impacts on global and regional environment. Annual Review of Environment and Resources, 38(1), 503527.Google Scholar
Doughty, C. E., Wolf, A. and Field, C. B. (2010). Biophysical feedbacks between the Pleistocene megafauna extinction and climate: The first human-induced global warming? Geophysical Research Letters, 37, L15703.Google Scholar
Doughty, C. E., Wolf, A. and Malhi, Y. (2013). The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geoscience, 6, 761764.Google Scholar
Doughty, C. E., Wolf, A., Morueta-Holm, N., et al. (2016). Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography, 39, 194203.Google Scholar
Downey, S. S., Haas, W. R. and Shennan, S. J. (2016). European Neolithic societies showed early warning signals of population collapse. Proceedings of the National Academy of Sciences of the United States of America, 113(35), 97519756.Google Scholar
Downing, A. S., van Nes, E. H., Janse, J. H., et al. (2012). Collapse and reorganization of a food web of Mwanza Gulf, Lake Victoria. Ecological Applications, 22, 229239.Google Scholar
Droser, M. L., Bottjer, D. J., Sheehan, P. M. and McGhee, G. R. (2000). Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology, 28, 675678.Google Scholar
Duarte, C. M., Borja, A., Carstensen, J., Elliott, M., Krause-Jensen, D. and Marbà, N. (2015). Paradigms in the recovery of estuarine and coastal ecosystems. Estuaries and Coasts, 38(4), 12021212.Google Scholar
Dudgeon, S. R., Aronson, R. B., Bruno, J. F. and Precht, W. F. (2010). Phase shifts and stable states on coral reefs. Marine Ecology Progress Series, 413, 201216.Google Scholar
Dulvy, N. K., Freckleton, R. P. and Polunin, N. V. C. (2004). Coral reef cascades and the indirect effects of predator removal by exploitation. Ecology Letters, 7(5), 410416.Google Scholar
Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. and Sodhi, N. S. (2009). The sixth mass coextinction: Are most endangered species parasites and mutualists? Proceedings of the Royal Society B: Biological Sciences, 276(1670), 30373045.Google Scholar
Dunne, J. and Williams, R. (2009). Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 17111723.Google Scholar
Dunne, J., Williams, R. and Martinez, N. (2002a). Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters, 5, 558567.Google Scholar
Dunne, J., Williams, R. and Martinez, N. (2002b). Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 99, 1291712922.Google Scholar
Dwomoh, F. K. and Wimberly, M. C. (2017). Fire regimes and forest resilience: Alternative vegetation states in the West African tropics. Landscape Ecology, 32(9), 18491865.Google Scholar
Ebenman, B. and Jonsson, T. (2005). Using community viability analysis to identify fragile systems and keystone species. Trends in Ecology & Evolution, 20, 568575.Google Scholar
Ebenman, B., Law, R. and Borvall, C. (2004). Community viability analysis: The response of ecological communities to species loss. Ecology, 85, 25912600.Google Scholar
Edmunds, P. J. and Carpenter, R. C. (2001). Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 50675071.Google Scholar
Edwards, D. P., Larsen, T. H., Docherty, T. D. S., et al. (2011). Degraded lands worth protecting: The biological importance of Southeast Asia’s repeatedly logged forests. Proceedings of the Royal Society B: Biological Sciences, 278(1702), 8290.Google Scholar
Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. and Laurance, W. F. (2014). Maintaining ecosystem function and services in logged tropical forests. Trends in Ecology & Evolution, 29, 511520.Google Scholar
Egler, F. E. (1986). ‘Physics envy’ in ecology. Bulletin of the Ecological Society of America, 67(3), 233235.Google Scholar
Ehrlich, P. R. and Ehrlich, A. H. (2013). Can a collapse of global civilization be avoided? Proceedings of the Royal Society B: Biological Sciences, 280, 20122845. http://dx.doi.org/10.1098/rspb.2012.2845.Google Scholar
Ehrlich, P. R. and Mooney, H. A. (1983). Extinction, substitution and the ecosystem services. BioScience, 33, 248254.Google Scholar
Eichhorn, M. P. (2016). Natural Systems: The Organisation of Life. John Wiley & Sons, London.Google Scholar
Eisenhauer, N., Barnes, A. D., Cesarz, S., et al. (2016). Biodiversity-ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. Journal of Vegetation Science, 27(5), 10611070.Google Scholar
Elliott, M., Burdon, D., Hemingway, K. L. and Apitz, S. E. (2007). Estuarine, coastal and marine ecosystem restoration: Confusing management and science – A revision of concepts. Estuarine, Coastal and Shelf Science, 74(3), 349366.Google Scholar
Ellis, E. C., Kaplan, J. O., Fuller, D. Q., Vavrus, S., Klein Goldewijk, K. and Verburg, P. H. (2013). Used planet: A global history. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 79787985.Google Scholar
Elser, M. M., Elser, J. J. and Carpenter, S. R. (1986). Paul and Peter Lakes: A liming experiment revisited. The American Midland Naturalist, 116(2), 282295.Google Scholar
Eltahir, E. A. and Bras, R. L. (1994). Precipitation recycling in the Amazon basin. Quarterly Journal of the Royal Meteorological Society, 120, 861880.Google Scholar
Equihua Zamora, M., Espinosa, M., Gershenson, C., et al. (2019). Ecosystem antifragility: Beyond integrity and resilience. PeerJ Preprints, 7, e27813v1 https://doi.org/10.7287/peerj.preprints.27813v1.Google Scholar
Erbaugh, J. T. and Oldekop, J. A. (2018). Forest landscape restoration for livelihoods and well-being. Current Opinion in Environmental Sustainability, 32, 7683.Google Scholar
Erwin, D. H. (2001). Lessons from the past: Biotic recoveries from mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 8, 53995403.Google Scholar
Essington, T. E., Beaudreau, A. H. and Wiedenmann, J. (2006). Fishing through marine food webs. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 31713175.Google Scholar
Estes, J. A., Terborgh, J., Brashares, J. S., et al. (2011). Trophic downgrading of planet Earth. Science, 333(6040), 301306.Google Scholar
Evans, P. M., Newton, A. C., Cantarello, E., et al. (2017). Thresholds of biodiversity and ecosystem function in a forest ecosystem undergoing dieback. Scientific Reports, 7, art6775. https://doi.org/10.1038/s41598-017-06082-6.Google Scholar
Evans, P. M., Newton, A. C., Cantarello, E., et al. (2019). Testing the relative sensitivity of 102 ecological variables as indicators of woodland condition in the New Forest, UK. Ecological Indicators, 107, 105575.Google Scholar
Ewald, J., Wheatley, C. J., Aebsicher, N. J., et al. (2015). Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years. Global Change Biology, 21, 39313950.Google Scholar
Fa, J. E., Peres, C. A. and Meeuwig, J. (2002). Bushmeat exploitation in tropical forests: An intercontinental comparison. Conservation Biology, 16, 232237.Google Scholar
Fahrig, L. (2017). Ecological responses to habitat fragmentation per se. Annual Review of Ecology, Evolution, and Systematics, 48(1), 123.Google Scholar
Fahrig, L., Arroyo-Rodríguez, V., Bennett, J. R., et al. (2019). Is habitat fragmentation bad for biodiversity? Biological Conservation, 230, 179186.Google Scholar
Fan, J., Shen, S., Erwin, D. H., et al. (2020). A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367(6475), 272277.Google Scholar
Fan, M., Li, Y. and Li, W. (2015). Solving one problem by creating a bigger one: The consequences of ecological resettlement for grassland restoration and poverty alleviation in Northwestern China. Land Use Policy, 42, 124130.Google Scholar
FAO. (2018). The State of World Fisheries and Aquaculture. Meeting the Sustainable Development Goals. Food and Agriculture Organisation of the United Nations, Rome.Google Scholar
Farquharson, L. M., Romanovsky, V. E., Cable, W. L., Walker, D. A., Kokelj, S. V. and Nicolsky, D. (2019). Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophysical Research Letters, 46, 66816689.Google Scholar
Fauth, J. E. (1997). Working toward operational definitions in ecology: Putting the system back into ecosystem. Bulletin of the Ecological Society of America, 78, 295297.Google Scholar
Favier, C., Aleman, J., Bremond, L., Dubois, M. A., Freycon, V. and Yangakola, J.-M. (2012). Abrupt shifts in African savanna tree cover along a climatic gradient. Global Ecology and Biogeography, 21, 787797.Google Scholar
Field, D. J., Bercovici, A., Berv, J. S., et al. (2018). Early evolution of modern birds structured by global forest collapse at the End-Cretaceous mass extinction. Current Biology, 28(11), 18251831.Google Scholar
Filotas, E., Parrott, L., Burton, P. J., et al. (2014). Viewing forests through the lens of complex systems science. Ecosphere, 5, 123.Google Scholar
Fisher, R., O’Leary, R. A., Low-Choy, S., et al. (2015). Species richness on coral reefs and the pursuit of convergent global estimates. Current Biology, 25(4), 500505.Google Scholar
Fitzsimmons, A. K. (1996). Stop the parade. BioScience, 46(2), 7879.Google Scholar
Flannery, T. F. (1990). Pleistocene faunal loss: Implications of the aftershock for Australia’s past and future. Archaeology in Oceania, 25, 4555.Google Scholar
Flannery, T. F. (1994). The Future Eaters. An Ecological History of the Australasian Lands and People. Reed New Holland, Sydney.Google Scholar
Fleming, P. J. S. (2019). They might be right, but Beschta et al. (2018) give no strong evidence that “trophic cascades shape recovery of young aspen in Yellowstone National Park”: A fundamental critique of methods. Forest Ecology and Management, 454, 117283.Google Scholar
Fletcher, M.-S., Wood, S. W. and Haberle, S. G. (2014). A fire-driven shift from forest to non-forest: Evidence for alternative stable states? Ecology, 95(9), 25042513.Google Scholar
Fletcher, R. J., Didham, R. K., Banks-Leite, C., et al. (2018). Is habitat fragmentation good for biodiversity? Biological Conservation, 226, 915.Google Scholar
Fletcher, R., Dressler, W. H., Anderson, Z. R. and Büscher, B. (2019). Natural capital must be defended: Green growth as neoliberal biopolitics. The Journal of Peasant Studies, 46(5), 10681095.Google Scholar
Folke, C., Carpenter, S. R., Walker, B., et al. (2004). Regime shifts, resilience and biodiversity in ecosystem management. Annual Review of Ecology and Systematics, 35, 557581.Google Scholar
Folke, C., Carpenter, S. R., Walker, B., Scheffer, M., Chapin, T. and Rockström, J. (2010). Resilience thinking: Integrating resilience, adaptability and transformability. Ecology and Society, 15(4), 20. www.ecologyandsociety.org/vol15/iss4/art20/.Google Scholar
Ford, E. D. (2000). Scientific Method for Ecological Research. Cambridge University Press, Cambridge.Google Scholar
Fordham, D. A., Brook, B. W., Hoskin, C. J., Pressey, R. L., VanDerWal, J. and Williams, S. E. (2016). Extinction debt from climate change for frogs in the wet tropics. Biology Letters, 12(10), 20160236.Google Scholar
Forsyth, D. M., Wilmshurst, J. M., Allen, R. B. and Coomes, D. A. (2010). Impacts of introduced deer and extinct moa on New Zealand ecosystems. New Zealand Journal of Ecology, 34(1), 4865.Google Scholar
Fortuna, M. A., Krishna, A. and Bascompte, J. (2013). Habitat loss and the disassembly of mutalistic networks. Oikos, 122(6), 938942.Google Scholar
Fox, J. (2011). Zombie ideas in ecology. Oikos Blog, June 17. https://oikosjournal.wordpress.com/2011/06/17/zombie-ideas-in-ecology/Google Scholar
Fox, R. (2012). The decline of moths in Great Britain: A review of possible causes. Insect Conservation and Diversity, 6(1), 519.Google Scholar
Fraiser, M. L. and Bottjer, D. J. (2007). When bivalves took over the world. Paleobiology, 33(3), 397413.Google Scholar
Frank, K. T., Petrie, B., Choi, J. S. and Leggett, W. C. (2005). Trophic cascades in a formerly cod-dominated ecosystem. Science, 308, 16211623.Google Scholar
Frank, K. T., Petrie, B. and Shackell, N. L. (2007). The ups and downs of trophic control in continental shelf ecosystems. Trends in Ecology & Evolution, 22(5), 236242.Google Scholar
Frank, K. T., Petrie, B., Fisher, J. A. D. and Leggett, W. C. (2011). Transient dynamics of an altered large marine ecosystem. Nature, 477, 8691.Google Scholar
Franklin, J. F. (1993). Preserving biodiversity: Species, ecosystems, or landscapes? Ecological Applications, 3, 202205.Google Scholar
Frederiksen, M., Wanless, S., Harris, M. P., Rothery, P. and Wilson, L. J. (2004). The role of industrial fisheries and oceanographic change in the decline of North Sea black-legged kittiwakes. Journal of Applied Ecology, 41, 11291139.Google Scholar
Frelich, L. E. and Reich, P. B. (1995). Spatial patterns and succession in a Minnesota southern-boreal forest. Ecological Monographs, 65, 325346.Google Scholar
Frelich, L. E. and Reich, P. B. (1999). Neighborhood effects, disturbance severity, and community stability in forests. Ecosystems, 2, 151166.Google Scholar
Friedel, M. H. (1991). Range condition assessment and the concept of thresholds – A viewpoint. Journal of Range Management, 44, 422426.Google Scholar
Fu, R., Yin, L., Li, W., et al. (2013). Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 1811018115.Google Scholar
Fukami, T. and Nakajima, M. (2011). Community assembly: Alternative stable states or alternative transient states? Ecology Letters, 14, 973984.Google Scholar
Fuller, R. J., Gregory, R. D., Gibbons, D. W., et al. (1995). Population declines and range contractions among lowland farmland birds in Britain. Conservation Biology, 9, 14251441.Google Scholar
Future Earth. (2020). Our Future on Earth 2020. www.futureearth.org/publications/our-future-on-earth (accessed on 7 February 2020).Google Scholar
Fyfe, R. M., Twiddle, C., Sugita, S., et al. (2013). The Holocene vegetation cover of Britain and Ireland: Overcoming problems of scale and discerning patterns of openness. Quaternary Science Reviews, 73, 132148.Google Scholar
Gale, G. (2003). Prehistoric Dorset. The History Press, Cheltenham.Google Scholar
Galetti, M. (2004). Parks of the Pleistocene: Recreating the cerrado and the Pantanal with megafauna. Natureza e Conservação, 2(1), 93100.Google Scholar
Galetti, M. and Dirzo, R. (2013). Ecological and evolutionary consequences of living in a defaunated world. Biological Conservation, 163, 16.Google Scholar
Galetti, M., Guevara, R., Côrtes, M. C., et al. (2013). Functional extinction of birds drives rapid evolutionary changes in seed size. Science, 340, 10861090.Google Scholar
Gallardo, B. and Aldridge, D. C. (2013). Evaluating the combined threat of climate change and biological invasions on endangered species. Biological Conservation, 160, 225233.Google Scholar
Gallardo, B., Clavero, M., Sánchez, M. I. and Vilà, M. (2015). Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology, 22(1), 151163.Google Scholar
Game, E. T., Meijaard, E., Sheil, D. and McDonald‐Madden, E. (2014). Conservation in a wicked complex world; challenges and solutions. Conservation Letters, 7, 271277.Google Scholar
Gamfeldt, L., Lefcheck, J. S., Byrnes, J. E. K., Cardinale, B. J., Duffy, J. E. and Griffin, J. N. (2015). Marine biodiversity and ecosystem functioning: What’s known and what’s next? Oikos, 124(3), 252265.Google Scholar
Gann, G. D., McDonald, T., Walder, B., et al. (2019). International Principles and Standards for the Practice of Ecological Restoration, 2nd edition. Society for Ecological Restoration, Washington, DC.Google Scholar
Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. and Schepaschenko, D. G. (2015). Boreal forest health and global change. Science, 349(6250), 819822.Google Scholar
Geddes, B., Wright, J. and Frantz, E. (2018). How Dictatorships Work. Power, Personalization and Collapse. Cambridge University Press, Cambridge.Google Scholar
Genkai-Kato, M., Vadeboncoeur, Y., Liboriussen, L. and Jeppesen, E. (2012). Benthic–planktonic coupling, regime shifts, and whole‐lake primary production in shallow lakes. Ecology, 93, 619631.Google Scholar
Geist, J. (2011). Integrative freshwater ecology and biodiversity conservation. Ecological Indicators, 11(6), 15071516.Google Scholar
Geist, J. and Hawkins, S. J. (2016). Habitat recovery and restoration in aquatic ecosystems: Current progress and future challenges. Aquatic Conservation: Marine and Freshwater Ecosystems, 26(5), 942962.Google Scholar
Ghazoul, J. and Chazdon, R. (2017). Degradation and recovery in changing forest landscapes: A multiscale conceptual framework. Annual Review of Environment and Resources, 42, 161188.Google Scholar
Ghazoul, J., Burivalova, Z., Garcia-Ulloa, J. and King, L. A. (2015). Conceptualizing forest degradation. Trends in Ecology & Evolution, 30(10), 622632.Google Scholar
Gibson, L., Lee, T. M., Koh, L. P., et al. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478, 378381.Google Scholar
Gibson, L., Lynam, A. J., Bradshaw, C. J. A., et al. (2013). Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science, 341(6153), 15081510.Google Scholar
Gill, J. L. (2014). Ecological impacts of the late Quaternary megaherbivore extinctions. New Phytologist, 201(4), 11631169.Google Scholar
Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. and Pratchett, M. S. (2013). Recovery of an isolated coral reef system following severe disturbance. Science, 340, 6971.Google Scholar
Ginzburg, L. R. and Jensen, C. X. J. (2004). Rules of thumb for judging ecological theories. Trends in Ecology & Evolution, 19(3), 121126.Google Scholar
Glasby, T. M. and Underwood, A. J. (1996). Sampling to differentiate between pulse and press perturbations. Environmental Monitoring and Assessment, 42, 241252.Google Scholar
Glenn-Lewin, D. C. and van der Maarel, E. (1992). Patterns and processes of vegetation dynamics. In: Glenn-Lewin, D. C., Peet, R. K. and Veblen, T. T. (eds.), Plant Succession. Theory and Prediction. Chapman & Hall, London, pp. 1159.Google Scholar
Goldberg, A., Mychajliw, A. M. and Hadly, E. A. (2016). Post-invasion demography of prehistoric humans in South America. Nature, 532, 232235.Google Scholar
Goldschmidt, T., Witte, F. and Wanink, J. (1993). Cascading effects of the introduced Nile Perch on the detritivorous/ phytoplantivorous species in the sublittoral areas of Lake Victoria. Conservation Biology, 7(3), 686700.Google Scholar
Goldstein, J. H., Pejchar, L and Daily, G. C. (2008). Using return-on-investment to guide restoration: A case study from Hawaii. Conservation Letters, 1, 236243.Google Scholar
Goldstone, J. A. (2001). Toward a fourth generation of revolutionary theory. Annual Review of Political Science, 4, 139187.Google Scholar
Golley, F. B. (1993). The History of the Ecosystem Concept in Ecology. Yale University Press, New Haven, CT.Google Scholar
Good, P., Jones, C., Lowe, J., Betts, R., Booth, B. and Huntingford, C. (2011). Quantifying environmental drivers of future tropical forest extent. Journal of Climate, 24(5), 13371349.Google Scholar
Götzenberger, L., de Bello, F., Bråthen, K. A., et al. (2012). Ecological assembly rules in plant communities – Approaches, patterns and prospects. Biological Reviews, 87, 111127.Google Scholar
Graham, N. A. J., Nash, K. L. and Kool, J. T. (2011). Coral reef recovery dynamics in a changing world. Coral Reefs, 30, 283295.Google Scholar
Graham, N. A. J., Bellwood, D. R., Cinner, J. E., Hughes, T. P., Norström, A. V. and Nyström, M. (2013). Managing resilience to reverse phase shifts in coral reefs. Frontiers in Ecology and the Environment, 11, 541548.Google Scholar
Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. and Wilson, S. K. (2015). Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature, 518, 9497.Google Scholar
Grant, M. J., Hughes, P. D. M. and Barber, K. E. (2014). Climatic influence upon early to mid-Holocene fire regimes within temperate woodlands: A multi-proxy reconstruction from the New Forest, southern England. Journal of Quaternary Science, 29(2), 175188.Google Scholar
Grayson, D. K. (2001). The archaeological record of human impacts on animal populations. Journal of World Prehistory, 15, 168.Google Scholar
Greaver, T. L., Sullivan, T. J., Herrick, J. D., et al. (2012). Ecological effects of nitrogen and sulfur air pollution in the US: What do we know? Frontiers in Ecology and the Environment, 10, 365372.Google Scholar
Gregory, R., Failing, L., Harstone, M., Long, G., McDaniels, T. and Ohlson, D. (2012). Structured Decision Making: A Practical Guide to Environmental Management Choices. Wiley-Blackwell, Chichester.Google Scholar
Griffin, J., O’Gorman, E., Emmerson, M., et al. (2009). Biodiversity and the stability of ecosystem functioning. In: Naeem, S., Bunker, D. E., Hector, A., Loreau, M. and Perrings, C. (eds.), Biodiversity, Ecosystem Functioning and Human Wellbeing: An Ecological and Economic Perspective. Oxford University Press, Oxford, pp. 7893.Google Scholar
Grill, G., Lehner, B., Thieme, M., et al. (2019). Mapping the world’s free-flowing rivers. Nature, 569, 215221.Google Scholar
Grimm, V. and Calabrese, J. M. (2011). What is resilience? A short introduction. In: Deffuant, G. and Gilbert, N. (eds.), Viability and Resilience of Complex Systems. Concepts, Methods and Case Studies from Ecology and Society.. Kluwer Academic Publishers, Dordrecht, pp. 316.Google Scholar
Grimm, V. and Wissel, C. (1997). Babel, or the ecological stability discussions: An inventory and analysis of terminology and a guide for avoiding confusion. Oecologia, 109, 323334.Google Scholar
Grimm, N. B., Pickett, S. T. A., Hale, R. L. and Cadenasso, M. L. (2017). Does the ecological concept of disturbance have utility in urban social–ecological–technological systems? Ecosystem Health and Sustainability, 3(1), e01255. https://doi.org/10.1002/ehs2.1255.Google Scholar
Griscom, B. W., Adams, J., Ellis, P. W., et al. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114(44), 1164511650.Google Scholar
Griscom, H. P. and Ashton, M. S. (2011). Restoration of dry tropical forests in Central America: A review of pattern and process. Forest Ecology and Management, 261, 15641579.Google Scholar
Groffman, P. M., Baron, J. S., Blett, T., et al. (2006). Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems, 9(1), 113.Google Scholar
Gsell, A. S., Scharfenberger, U., Özkundakci, D., et al. (2016). Evaluating early warning indicators of critical transitions in natural aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 113, 80898095.Google Scholar
Gurevitch, J., Koricheva, J., Nakagawa, S. and Stewart, G. (2018). Meta-analysis and the science of research synthesis. Nature, 555, 175182.Google Scholar
Guerra-Doce, E. J. (2015). The origins of inebriation: Archaeological evidence of the consumption of fermented beverages and drugs in Prehistoric Eurasia. Journal of Archaeological Method and Theory, 22, 751782.Google Scholar
Guimarães, J., Paulo, R., Galetti, M. and Jordano, P. (2008). Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. PLoS One, 3, 113.Google Scholar
Gunderson, L. H. (2000). Ecological resilience – In theory and application. Annual Review of Ecology and Systematics, 31, 425439.Google Scholar
Gunderson, L. H. (2007). Ecology: A different route to recovery for coral reefs. Current Biology, 17(1), 2728.Google Scholar
Guo, Q. and Ren, H. (2014). Productivity as related to diversity and age in planted versus natural forests. Global Ecology and Biogeography, 23(12), 14611471.Google Scholar
Haddad, N. M., Brudvig, L. A., Clobert, J., et al. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1(2), e1500052.Google Scholar
Haeussler, S., Canham, C. and Coates, K. (2013). Complexity in temperate forest dynamics. In: Messier, C., Puettmann, K. J. and Coates, K. (eds.), Managing Forests as Complex Adaptive Systems. Building Resilience to the Challenge of Global Change. Earthscan / Routledge, London and New York, pp. 6078.Google Scholar
Hagstrom, G. I. and Levin, S. A. (2017). Marine ecosystems as Complex Adaptive Systems: Emergent patterns, critical transitions, and public goods. Ecosystems, 20(3), 458476.Google Scholar
Haller, B. C. (2014). Theoretical and empirical perspectives in ecology and evolution: A survey. BioScience, 64(10), 907916.Google Scholar
Hallmann, C. A., Sorg, M., Jongejans, E., et al. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One, 12(10), e0185809.Google Scholar
Halme, P., Allen, K. A., Auniņš, A., et al. (2013). Challenges of ecological restoration: Lessons from forests in northern Europe. Biological Conservation, 167, 248256.Google Scholar
Hampton, S. E., Strasser, C. A., Tewksbury, J. J., et al. (2013). Big data and the future of ecology. Frontiers in Ecology and the Environment, 11, 156162.Google Scholar
Hanan, N. P., Tredennick, A. T., Prihodko, L., Bucini, G. and Dohn, J. (2014). Analysis of stable states in global savannas. Global Ecology and Biogeography, 23, 259263.Google Scholar
Hansen, M. C., Potapov, P. V., Moore, R., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850853.Google Scholar
Hansson, S. O. (2006). Falsificationism falsified. Foundations of Science, 11, 275286.Google Scholar
Harris, N., Petersen, R., Davis, C. and Payne, O. (2016). Global Forest Watch and the Forest Resources Assessment, Explained in 5 Graphics. World Resources Institute. https://blog.globalforestwatch.org/data-and-research/global-forest-watch-and-the-forest-resources-assessment-explained-in-5-graphics-2 (accessed on 2 July 2019).Google Scholar
Harris, R. M. B., Beaumont, L. J., Vance, T. R., et al. (2018). Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 8(7), 579587.Google Scholar
Harrison, P. A., Berry, P. M., Simpson, G., et al. (2014). Linkages between biodiversity attributes and ecosystem services: A systematic review. Ecosystem Services, 9, 191203.Google Scholar
Harrison, R. D., Tan, S., Plotkin, J. B., et al. (2013). Consequences of defaunation for a tropical tree community. Ecology Letters, 16(5), 687694.Google Scholar
Hartvigsen, G., Kinzig, A. and Peterson, G. (1998). Complex adaptive systems: Use and analysis of complex adaptive systems in ecosystem science: Overview of special section. Ecosystems, 1(5), 427430.Google Scholar
Hastings, A. and Wysham, D. B. (2010). Regime shifts in ecological systems can occur with no warning. Ecology Letters, 13(4), 464472.Google Scholar
Hastings, A., McCann, K. S. and de Ruiter, P. C. (2016). Introduction to the special issue: Theory of food webs. Theoretical Ecology, 9, 1.Google Scholar
Haysom, K. A., Jones, G., Merrett, D. and Racey, P. A. (2010). Bats. In: Maclean, N. (ed.), Silent Summer: The State of Wildlife in Britain and Ireland. Cambridge University Press, Cambridge, pp. 259280.Google Scholar
Hebert, P. D. N., Cywinska, A., Ball, S. L. and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B: Biological Sciences, 270(1512), 313 LP-321.Google Scholar
Heffernan, J. B., Soranno, P. A., Angilletta, M. J., et al. (2014). Macrosystems ecology: Understanding ecological patterns and processes at continental scales. Frontiers in Ecology and the Environment, 12(1), 514.Google Scholar
Heino, J., Virkkala, R. and Toivonen, H. (2009). Climate change and freshwater biodiversity: Detected patterns, future trends and adaptations in northern regions. Biological Reviews, 84, 3954.Google Scholar
Heithaus, M. R., Frid, A., Wirsing, A. J. and Worm, B. (2008). Predicting ecological consequences of marine top predator declines. Trends in Ecology & Evolution, 23(4), 202210.Google Scholar
Helfield, J. M. and Naiman, R. J. (2006). Keystone interactions: Salmon and bear in riparian forests of Alaska. Ecosystems, 9, 167180.Google Scholar
Henderson, K. A., Bauch, C. T. and Anand, M. (2016). Alternative stable states and the sustainability of forests, grasslands, and agriculture. Proceedings of the National Academy of Sciences of the United States of America, 113(51), 1455214559.Google Scholar
Henehan, M. J., Ridgwell, A., Thomas, E., et al. (2019). Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proceedings of the National Academy of Sciences of the United States of America, 116(45), 2250022504.Google Scholar
Henke, S. E. and Bryant, F. C. (1999). Effects of coyote removal on the faunal community in western Texas. Journal of Wildlife Management, 63(4), 10661081.Google Scholar
Hettelingh, J. P., Sverdrup, H. and Zhao, D. (1995). Deriving critical loads for Asia. Water, Air, and Soil Pollution, 85(4), 25652570.Google Scholar
Higgins, P. A. T., Mastrandrea, M. D. and Schneider, S. H. (2002). Dynamics of climate and ecosystem coupling: Abrupt changes and multiple equilibria. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 647655.Google Scholar
Higgs, E. S., Harris, J. A., Heger, T., Hobbs, R. J., Murphy, S. D. and Suding, K. N. (2018a). Keep ecological restoration open and flexible. Nature Ecology & Evolution, 2(4), 580.Google Scholar
Higgs, E. S., Harris, J. A., Murphy, S. D., et al. (2018b). On principles and standards in ecological restoration. Restoration Ecology, 26, 399403.Google Scholar
Hilborn, R. (2006). Faith-based fisheries. Fisheries, 31, 554555.Google Scholar
Hilborn, R. and Ludwig, D. (1993). The limits of applied ecological research. Ecological Applications, 3, 550552.Google Scholar
Hilderbrand, G., Hanley, T., Robbins, C., et al. (1999). Role of brown bears (Ursus arctos) in the flow of marine nitrogen into a terrestrial ecosystem. Oecologia, 121, 546550.Google Scholar
Hirota, M., Holmgren, M., van Nes, E. H. and Scheffer, M. (2011). Global resilience of tropical forest and savanna to critical transitions. Science, 334, 232235.Google Scholar
Hobbs, R. J. (2013). Grieving for the past and hoping for the future: Balancing polarizing perspectives in conservation and restoration. Restoration Ecology, 21(2), 145148.Google Scholar
Hobbs, R. J. and Norton, D. A. (1996). Toward a conceptual framework for restoration ecology. Restoration Ecology, 4, 93110.Google Scholar
Hobbs, R. J. and Suding, K. N. (2009). New Models for Ecosystem Dynamics and Restoration. Island Press, Washington, DC.Google Scholar
Hobbs, R. J., Arico, S., Aronson, J., et al. (2006). Novel ecosystems: Theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 15, 17.Google Scholar
Hobbs, R. J., Higgs, E. and Harris, J. A. (2009). Novel ecosystems: Implications for conservation and restoration. Trends in Ecology & Evolution, 24(11), 599605.Google Scholar
Hodder, K. H., Newton, A. C., Cantarello, E. and Perrella, L. (2014). Does landscape-scale conservation management enhance the provision of ecosystem services? International Journal of Biodiversity Science, Ecosystem Services and Management, 10(1), 7183.Google Scholar
Hoffmann, W. A., Geiger, E. L., Gotsch, S. G., et al. (2012). Ecological thresholds at the savanna‐forest boundary: How plant traits, resources and fire govern the distribution of tropical biomes. Ecology Letters, 15, 759768.Google Scholar
Hofmanová, Z., Kreutzer, S., Hellenthal, G., et al. (2016). Early farmers from across Europe directly descended from Neolithic Aegeans. Proceedings of the National Academy of Sciences of the United States of America, 113(25), 68866891.Google Scholar
Holdaway, R. N., Holdaway, R. N., Allentoft, M. E., et al. (2014). An extremely low-density human population exterminated New Zealand moa. Nature Communications, 5(1), 5436.Google Scholar
Holl, K. D. (1998). Effects of above and below ground competition of shrubs and grass on Calophyllum brasiliense seedling growth in abandoned tropical pasture. Forest Ecology and Management, 109, 187195.Google Scholar
Holl, K. D. (2017). Restoring tropical forests from the bottom up. Science, 355(6324), 455456.Google Scholar
Holl, K. D., Loik, M. E., Lin, E. H. V. and Samuels, I. A. (2000). Tropical montane forest restoration in Costa Rica: Overcoming barriers to dispersal and establishment. Restoration Ecology, 8, 339349.Google Scholar
Holland, S. M. and Patzkowsky, M. E. (2015). The stratigraphy of mass extinction. Palaeontology, 58(5), 903924.Google Scholar
Holling, C. (1978). The spruce-budworm/forest-management problem. In: Holling, C. (ed.), Adaptive Environmental Assessment and Management. International Series on Applied Systems Analysis. John Wiley & Sons, New York, pp. 143182.Google Scholar
Holtgrieve, G. W., Schindler, D. E. and Jewett, P. K. (2009). Large predators and biogeochemical hotspots: Brown bear (Ursus arctos) predation on salmon alters nitrogen cycling in riparian soils. Ecological Research, 24(5), 11251135.Google Scholar
Hooper, D. U., Chapin, F. S., Ewel, J. J., et al. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75, 335.Google Scholar
Hooper, D. U., Adair, E. C., Cardinale, B. J., et al. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105108.Google Scholar
Hope, G., Kershaw, A. P., Kaars, S., et al. (2004). History of vegetation and habitat change in the Austral-Asian region. Quaternary International, 118–119, 103126.Google Scholar
Horan, R. D., Fenichel, E. P., Drury, K. L. S. and Lodge, D. M. (2011). Managing ecological thresholds in coupled environmental–human systems. Proceedings of the National Academy of Sciences of the United States of America, 108(18), 73337338.Google Scholar
Hsieh, C., Glaser, S. M., Lucas, A. J. and Sugihara, G. (2005). Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature, 435(7040), 336340.Google Scholar
Huang, C., Zhou, Z., Peng, C., Teng, M. and Wang, P. (2018). How is biodiversity changing in response to ecological restoration in terrestrial ecosystems? A meta-analysis in China. Science of the Total Environment, 650, 19.Google Scholar
Huang, J.-P., Kraichak, E., Leavitt, S. D., Nelsen, M. P. and Lumbsch, H. T. (2019). Accelerated diversifications in three diverse families of morphologically complex lichen-forming fungi link to major historical events. Scientific Reports, 9(1), 8518.Google Scholar
Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.Google Scholar
Huggett, A. J. (2005). The concept and utility of the “ecological thresholds” in biodiversity conservation. Biological Conservation, 124, 301310.Google Scholar
Hughes, T. P. (1994). Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science, 265, 15471551.Google Scholar
Hughes, T. P., Bellwood, D. R., Folke, C., Steneck, R. S. and Wilson, J. (2005). New paradigms for supporting the resilience of marine ecosystems. Trends in Ecology & Evolution, 20(7), 380386.Google Scholar
Hughes, T. P., Carpenter, S., Rockström, J., Scheffer, M. and Walker, B. (2013). Multiscale regime shifts and planetary boundaries. Trends in Ecology & Evolution, 28(7), 389395.Google Scholar
Hughes, T. P., Barnes, M. L., Bellwood, D. R., et al. (2017a). Coral reefs in the Anthropocene. Nature, 546, 8290.Google Scholar
Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., et al. (2017b). Global warming and recurrent mass bleaching of corals. Nature, 543, 373378.Google Scholar
Hughes, T. P., Anderson, K. D., Connolly, S. R., et al. (2018a). Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 359(6371), 8083.Google Scholar
Hughes, T. P., Kerry, J. T., Baird, A. H., et al. (2018b). Global warming transforms coral reef assemblages. Nature, 556(7702), 492496.Google Scholar
Hull, P. (2015). Life in the aftermath of mass extinctions. Current Biology, 25(19), R941R952.Google Scholar
Hull, V., Tuanmu, M.-N. and Liu, J. (2015). Synthesis of human-nature feedbacks. Ecology and Society, 20(3), 17. http://dx.doi.org/10.5751/ES-07404-200317.Google Scholar
Humphries, P. and Baldwin, D. S. (2003). Drought and aquatic ecosystems: An introduction. Freshwater Biology, 48, 11411146.Google Scholar
Hunter, M. L., Bean, M. J., Lindenmayer, D. B., et al. (2009). Thresholds and the mismatch between environmental laws and ecosystems. Conservation Biology, 23, 10531055.Google Scholar
Huntingford, C., Zelazowski, P., Galbraith, D., et al. (2013). Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience, 6, 268273.Google Scholar
Hutchings, J. A. and Reynolds, J. D. (2004). Marine fish population collapses: Consequences for recovery and extinction risk. BioScience, 54(4), 297309.Google Scholar
Ibáñez, J. J., González-Urquijo, J., Teira-Mayolini, L. C. and Lazuén, T. (2018). The emergence of the Neolithic in the Near East: A protracted and multi-regional model. Quaternary International, 470, 226252.Google Scholar
Ibelings, B. W., Portielje, R., Lammens, E. H. R. R., et al. (2007). Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems, 10(1), 416.Google Scholar
Ibisch, P. L., Hoffmann, M. T., Kreft, S., et al. (2016). A global map of roadless areas and their conservation status. Science, 354(6318), 14231427.Google Scholar
Iftekhar, M. S., Polyakov, M., Ansell, D., Gibson, F. and Kay, G. M. (2016). How economics can further the success of ecological restoration. Conservation Biology, 31(2), 261268.Google Scholar
Ingrisch, J. and Bahn, M. (2018). Towards a comparable quantification of resilience. Trends in Ecology & Evolution, 33, 251259.Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2018). An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways. IPCC, Geneva, Switzerland. www.ipcc.ch/sr15/.Google Scholar
IPBES. (2018). The IPBES Assessment Report on Land Degradation and Restoration, ed. Montanarella, L., Scholes, R. and Brainich, A.. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany.Google Scholar
IPBES. (2019). Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, ed. Brondizio, E. S., Settele, J., Díaz, S. and Ngo, H. T.. IPBES Secretariat, Bonn, Germany. https://ipbes.net/global-assessment-report-biodiversity-ecosystem-services (accessed on 18 December 2019).Google Scholar
Isbell, F. I., Polley, H. W. and Wilsey, B. J. (2009). Biodiversity, productivity and the temporal stability of productivity: Patterns and processes. Ecology Letters, 12, 443451.Google Scholar
Isbell, F., Calcagno, V., Hector, A., et al. (2011). High plant diversity is needed to maintain ecosystem services. Nature, 477(7363), 199202.Google Scholar
IUCN (World Conservation Union). (2001). IUCN Red List Categories and Criteria: Version 3.1. IUCN Species Survival Commission, IUCN, Gland, Switzerland and Cambridge. www.iucnredlist.org/technical-documents/categories-and-criteria (accessed on November 2017).Google Scholar
IUCN (2012). IUCN Red List Categories and Criteria: Version 3.1, 2nd edition. IUCN, Gland, Switzerland and Cambridge.Google Scholar
IUCN (2016). An Introduction to the IUCN Red List of Ecosystems: The Categories and Criteria for Assessing Risks to Ecosystems. IUCN, Gland, Switzerland.Google Scholar
IUCN (World Conservation Union). (2019). Red List of Ecosystems. www.iucn.org/theme/ecosystem-management/our-work/red-list-ecosystems (accessed 11 December 2019).Google Scholar
Ives, A. R. (2007). Diversity and stability in ecological communities. In: May, R. M. and McLean, A. R. (eds.), Theoretical Ecology. Principles and Applications. Oxford University Press, Oxford, pp. 98110.Google Scholar
Jablonski, D. (1994). Extinctions in the fossil record. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 344(1307), 1117.Google Scholar
Jablonski, D. (2005). Mass extinctions and macroevolution. Paleobiology, 31(2), 192210.Google Scholar
Jackson, J. B. (2008). Colloquium paper: Ecological extinction and evolution in the brave new ocean. Proceedings of the National Academy of Sciences of the United States of America, 105 Suppl. 1, 1145811465.Google Scholar
Jackson, J. B. C., Kirby, M. X., Berger, W. H., et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629637.Google Scholar
Jackson, M. C., Loewen, C. J., Vinebrooke, R. D. and Chimimba, C. T. (2016). Net effects of multiple stressors in freshwater ecosystems: A meta‐analysis. Global Change Biology, 22, 180189.Google Scholar
Jackson, S. T. and Blois, J. L. (2015). Community ecology in a changing environment: Perspectives from the Quaternary. Proceedings of the National Academy of Sciences of the United States of America, 112(16), 49154921.Google Scholar
Jansson, R., Nilsson, C. and Malmqvist, B. (2007). Restoring freshwater ecosystems in riverine landscapes: The roles of connectivity and recovery processes. Freshwater Biology, 52(4), 589596.Google Scholar
Janzen, D. H. and Hallwachs, W. (2019). Perspective: Where might be many tropical insects? Biological Conservation, 233, 102108.Google Scholar
Janzen, D. H. and Martin, P. S. (1982). Neotropical anachronisms: The fruit the Gomphotheres ate. Science, 215, 1927.Google Scholar
Jasinski, J. P. P. and Payette, S. (2005). The creation of alternative stable states in the southern Boreal forest, Québec, Canada. Ecological Monographs, 75(4), 561583.Google Scholar
Jeffers, E. S., Whitehouse, N. J., Lister, A., et al. (2018). Plant controls on Late Quaternary whole ecosystem structure and function. Ecology Letters, 21, 814825.Google Scholar
Jentsch, A. and White, P. (2019). A theory of pulse dynamics and disturbance in ecology. Ecology, 100(7), e02734. https://doi.org/10.1002/ecy.2734.Google Scholar
Jeppesen, E., Søndergaard, M., Jensen, J. P., et al. (2005). Lake responses to reduced nutrient loading – An analysis of contemporary long-term data from 35 case studies. Freshwater Biology, 50(10), 17471771.Google Scholar
Jia, S., Wang, X., Yuan, Z., et al. (2018). Global signal of top-down control of terrestrial plant communities by herbivores. Proceedings of the National Academy of Sciences of the United States of America, 115(24), 62376242.Google Scholar
Jiang, J., Huang, Z.-G., Seager, T. P., et al. (2018). Predicting tipping points in mutualistic networks through dimension reduction. Proceedings of the National Academy of Sciences of the United States of America, 115(4), E639E647.Google Scholar
Jiang, J., Hastings, A. and Lai, Y.-C. (2019). Harnessing tipping points in complex ecological networks. Journal of the Royal Society Interface, 16(158), 20190345.Google Scholar
Johns, K. A., Osborne, K. O. and Logan, M. (2014). Contrasting rates of coral recovery and reassembly in coral communities on the Great Barrier Reef. Coral Reefs, 33, 553563.Google Scholar
Johnson, C. J. (2013). Identifying ecological thresholds for regulating human activity: Effective conservation or wishful thinking? Biological Conservation, 168, 5765.Google Scholar
Johnson, C. N. (2009). Ecological consequences of Late Quaternary extinctions of megafauna. Proceedings of the Royal Society B: Biological Sciences, 276, 25092519.Google Scholar
Johnson, C. N., Alroy, J., Beeton, N. J., et al. (2016a). What caused extinction of the Pleistocene megafauna of Sahul? Proceedings of the Royal Society B: Biological Sciences, 283(1824), 20152399.Google Scholar
Johnson, C. N., Rule, S., Haberle, S. G., Kershaw, A. P., McKenzie, G. M. and Brook, B. W. (2016b). Geographic variation in the ecological effects of extinction of Australia’s Pleistocene megafauna. Ecography, 39, 109116.Google Scholar
Jones, C. G. and Lawton, J. H. (Eds.) (1995). Linking Species and Ecosystems. Chapman & Hall, New York. 387 pp.Google Scholar
Jones, H. P. and Schmitz, O. J. (2009). Rapid recovery of damaged ecosystems. PLoS One, 4(5), e5653.Google Scholar
Jonsson, T., Berg, S., Emmerson, M. and Pimenov, A. (2015). The context dependency of species keystone status during food web disassembly. Food Webs, 5, 110.Google Scholar
Jorge, M. L. S. P., Galetti, M., Ribeiro, M. C. and Ferraz, K. M. P. M. B. (2013). Mammal defaunation as surrogate of trophic cascades in a biodiversity hotspot. Biological Conservation, 163, 4957.Google Scholar
Jørgensen, S. E., Fath, B., Bastianoni, S., et al. (2007). A New Ecology – The Systems Perspective. Elsevier Publishers, Amsterdam.Google Scholar
Kaiser, J. (2000). Rift over biodiversity divides ecologists. Science, 289, 12821283.Google Scholar
Kandziora, M., Burkhard, B. and Müller, F. (2013). Interactions of ecosystem properties, ecosystem integrity and ecosystem service indicators – A theoretical matrix exercise. Ecological Indicators, 28, 5478.Google Scholar
Kaneryd, L., Borrvall, C., Berg, S., et al. (2012). Species-rich ecosystems are vulnerable to cascading extinctions in an increasingly variable world. Ecology and Evolution, 2, 858874.Google Scholar
Kaplan, J. O., Krumhardt, K. M. and Zimmermann, N. (2009). The prehistoric and preindustrial deforestation of Europe. Quaternary Science Reviews, 28(27–28), 30163034.Google Scholar
Karabanov, E., Williams, D., Kuzmin, M., et al. (2004). Ecological collapse of Lake Baikal and Lake Hovsgol ecosystems during the Last Glacial and consequences for aquatic species diversity. Palaeogeography, Palaeoclimatology, Palaeoecology, 209(1–4), 227243.Google Scholar
Kareiva, P. and Marvier, M. (2012). What is conservation science? BioScience, 62(11), 962969.Google Scholar
Kauffman, M. J., Brodie, J. F. and Jules, E. S. (2013). Are wolves saving Yellowstone’s aspen? A landscape-level test of a behaviorally mediated trophic cascade: Reply. Ecology, 94(6), 14251431.Google Scholar
Keddy, P. A. (1992). Assembly and response rules: Two goals for predictive community ecology. Journal of Vegetation Science, 3, 157165.Google Scholar
Keeler, B. L., Chaplin-Kramer, R., Guerry, A. D., et al. (2017). Society is ready for a new kind of science – Is academia? BioScience, 67(7), 591592.Google Scholar
Kéfi, S., Rietkerk, M., Alados, C. L., et al. (2007). Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature, 449, 213217.Google Scholar
Kéfi, S., Guttal, V., Brock, W. A., et al. (2014). Early warning signals of ecological transitions: Methods for spatial patterns. PLoS One, 9, e92097.Google Scholar
Keith, D. A., Rodríguez, J. P., Rodríguez-Clark, K. M., et al. (2013). Scientific foundations for an IUCN Red List of Ecosystems. PLoS One, 8(5), e62111.Google Scholar
Keith, D. A., Rodríguez, J. P., Brooks, T. M., et al. (2015). The IUCN Red List of Ecosystems: Motivations, challenges, and applications. Conservation Letters, 8, 214226.Google Scholar
Keith, S. A., Newton, A. C., Herbert, R. J. H., Morecroft, M. D. and Bealey, C. E. (2009a). Non-analogous community formation in response to climate change. Journal of Nature Conservation, 17, 228235.Google Scholar
Keith, S. A., Newton, A. C., Morecroft, M. D., Bealey, C. E. and Bullock, J. M. (2009b). Taxonomic homogenisation of woodland plant communities over seventy years. Proceedings of the Royal Society B: Biological Sciences, 276(1672), 35393544.Google Scholar
Keith, S. A., Newton, A. C., Morecroft, M. D., Golicher, D. J. and Bullock, J. M. (2011). Woodland metacommunity structure remains unchanged during biodiversity loss in English woodlands. Oikos, 120(2), 302331.Google Scholar
Keith, S. A., Baird, A. H., Hobbs, J.-P. A., et al. (2018). Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nature Climate Change, 8(11), 986991.Google Scholar
Kidd, L. R., Bekessy, S. A. and Garrard, G. E. (2019). Neither hope nor fear: Empirical evidence should drive biodiversity conservation strategies. Trends in Ecology & Evolution, 34(4), 278282.Google Scholar
King, D. A., Claeys, P., Gulick, S. P. S., Morgan, J. V. and Collins, G. S. (2017). Chicxulub and the exploration of large peak-ring impact craters through scientific drilling. GSA Today, 27(10), 48.Google Scholar
Kirby, K. J. (2004). A model of a natural wooded landscape in Britain driven by large-herbivore activity. Forestry, 77, 405420.Google Scholar
Kirch, P. V. (1997). Microcosmic histories: Island perspectives on “global” change. American Anthropologist, 99(1), 3042.Google Scholar
Kirch, P. V. (2005). Archaeology and global change: The Holocene record. Annual Review of Environment and Resources, 30(1), 409440.Google Scholar
Kirchhoff, T., Brand, F. S., Hoheisel, D. and Grimm, V. (2010). The one-sidedness and cultural bias of the resilience approach. GAIA, 19(1), 2532.Google Scholar
Kirchner, J. W. and Weil, A. (2000). Delayed biological recovery from extinctions throughout the fossil record. Nature, 404, 177180.Google Scholar
Kitzberger, T., Raffaele, E., Heinemann, K. and Mazzarino, M. J. (2005). Effects of fire severity in a north Patagonian subalpine forest. Journal of Vegetation Science, 16, 512.Google Scholar
Kitzberger, T., Aráoz, E., Gowda, J. H., et al. (2012). Decreases in fire spread probability with forest age promotes alternative community states, reduced resilience to climate variability and large fire regime shifts. Ecosystems, 15, 97112.Google Scholar
Kitzberger, T., Perry, G. L. W., Paritsis, J., et al. (2016). Fire–vegetation feedbacks and alternative states: Common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand. New Zealand Journal of Botany, 54(2), 247272.Google Scholar
Klein, N. (2020). On Fire. The Burning Case for a Green New Deal. Penguin Books, London.Google Scholar
Knight, A. T. (2013). Reframing the theory of hope in conservation science. Conservation Letters, 6(6), 389390.Google Scholar
Knoll, A. H. (1984). Patterns of extinction in the fossil record of vascular plants. In: Nitecki, M. H. (ed.), Extinctions. Chicago University Press, Chicago, pp. 2168.Google Scholar
Knowlton, N. (2004). Multiple “stable” states and the conservation of marine ecosystems. Progress in Oceanography, 60(2), 387396.Google Scholar
Knowlton, N. (2008). Coral reefs. Current Biology, 18, R18R21.Google Scholar
Knowlton, N. (2017). Doom and gloom won’t save the world. Nature, 544, 271.Google Scholar
Knox, K. J. E. and Clarke, P. J. (2012). Fire severity, feedback effects and resilience to alternative community states in forest assemblages. Forest Ecology and Management, 265, 4754.Google Scholar
Koch, P. L. and Barnosky, A. D. (2006). Late Quaternary extinctions: State of the debate. Annual Review of Ecology, Evolution, and Systematics, 37(1), 215250.Google Scholar
Kolasa, J. (2011). Theory makes ecology evolve. In: Scheiner, S. M. and Willig, M. R. (eds.), The Theory of Ecology. The University of Chicago Press, Chicago, IL, pp. 2149.Google Scholar
Kolding, J., van Zwieten, P., Mkumbo, O., Silsbe, G. and Hecky, R. (2008). Are the Lake Victoria fisheries threatened by exploitation or eutrophication? Towards an ecosystem-based approach to management. In: Bianchi, G. and Skjoldal, H. R. (eds.), The Ecosystem Approach to Fisheries. CABI Publishing, Wallingford, pp. 309350.Google Scholar
Komonen, A., Halme, P. and Kotiaho, J. S. (2019). Alarmist by bad design: Strongly popularized unsubstantiated claims undermine credibility of conservation science. Rethinking Ecology, 4, 1719.Google Scholar
Kosten, S., Vernooij, M., van Nes, E. H., Sagrario, M. Á. G., Clevers, J. G. P. W. and Scheffer, M. (2012). Bimodal transparency as an indicator for alternative states in South American lakes. Freshwater Biology, 57, 11911201.Google Scholar
Kuffner, I. B., Walters, L. J., Becerro, M. A., et al. (2006). Inhibition of coral recruitment by macroalgae and cynobacteria. Marine Ecology Progress Series, 323, 107117.Google Scholar
Kumar, S. S., Hanan, N. P., Prihodko, L., et al. (2019). Alternative vegetation states in tropical forests and savannas: The search for consistent signals in diverse remote sensing data. Remote Sensing, 11, 815. https://doi.org/10.3390/rs11070815.Google Scholar
Kump, L. R., Pavlov, A. and Arthur, M. A. (2005). Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, 33(5), 397400.Google Scholar
Kurten, E. L. (2013). Cascading effects of contemporaneous defaunation on tropical forest communities. Biological Conservation, 163, 2232.Google Scholar
Kurz, W. A., Dymond, C. C., Stinson, G., et al. (2008). Mountain pine beetle and forest carbon feedback to climate change. Nature, 452(7190), 987990.Google Scholar
Ladle, R. J., Jepson, P., Araújo, M. B. and Whittaker, R. J. (2004). Dangers of crying wolf over risk of extinctions. Nature, 428, 799.Google Scholar
Lafferty, K. D. and Hopkins, S. R. (2018). Unique parasite aDNA in moa coprolites from New Zealand suggests mass parasite extinctions followed human-induced megafauna extinctions. Proceedings of the National Academy of Sciences of the United States of America, 115(7), 14111413.Google Scholar
Lake, P. S. (2003). Ecological effects of perturbation by drought in flowing waters. Freshwater Biology, 48, 11611172.Google Scholar
Lake, P. S., Bond, N. and Reich, P. (2007). Linking ecological theory with stream restoration. Freshwater Biology, 52(4), 597615.Google Scholar
Lamb, D., Erskine, P. D. and Parrotta, J. A. (2005). Restoration of degraded tropical forest landscapes. Science, 310, 16281632.Google Scholar
Larson, B. M. H. (2005). The war of the roses: Demilitarizing invasion biology. Frontiers in Ecology and the Environment, 3, 495500.Google Scholar
Larson, B. M. H. (2011). Metaphors for Environmental Sustainability. Redefining Our Relationship with Nature. Yale University Press, New Haven, CT, and London.Google Scholar
Larson, B. M. H. (2014). The metaphorical links between ecology, ethics, and society In: Rozzi, R., Pickett, S. T. A., Callicott, B., Palmer, C. and Armesto, J. (eds.), Linking Ecology and Ethics for a Changing World: Values, Philosophy, and Action. New York: Springer, pp. 137145.Google Scholar
Laundré, J. W., Hernandez, L. and Altendorf, K. B. (2001). Wolves, elk, and bison: Reestablishing the “landscape of fear” in Yellowstone National Park, USA. Canadian Journal of Zoology, 79, 14011409.Google Scholar
Laurance, W. F., Delamônica, P., Laurance, S. G., Vasconcelos, H. L. and Lovejoy, T. E. (2000). Rainforest fragmentation kills big trees. Nature, 404(6780), 836.Google Scholar
Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L., et al. (2002). Ecosystem decay of Amazonian forest fragments: A 22‐Year investigation. Conservation Biology, 16, 605618.Google Scholar
Laurance, W. F., Camargo, J. L. C., Luizão, R. C. C., et al. (2011). The fate of Amazonian forest fragments: A 32-year investigation. Biological Conservation, 144(1), 5667.Google Scholar
Laurance, W. F., Carolina Useche, D., Rendeiro, J., et al. (2012). Averting biodiversity collapse in tropical forest protected areas. Nature, 489(7415), 290294.Google Scholar
Lawler, A. (2010). Collapse? What collapse? Societal change revisited. Science, 330, 907909.Google Scholar
Leadley, P., Proença, V., Fernández-Manjarrés, J., et al. (2014). Interacting regional-scale regime shifts for biodiversity and ecosystem services. BioScience, 64(8), 665679.Google Scholar
Leather, S. R. (2016). Insects in flight: Whatever happened to the splatometer? https://simonleather.wordpress.com/2016/12/05/insects-in-flight-whatever-happened-to-the-splatometer/.Google Scholar
Leather, S. R. (2018). ‘Ecological Armageddon’ – More evidence for the drastic decline in insect numbers. Annals of Applied Biology, 172, 13.Google Scholar
Ledlie, M. H., Graham, N. A. J., Bythell, J. C., et al. (2007). Phase shifts and the role of herbivory in the resilience of coral reefs. Coral Reefs, 26, 641653.Google Scholar
Lee, W. G., Wood, J. R. and Rogers, G. M. (2010). Legacy of avian-dominated plant/herbivore systems in New Zealand. New Zealand Journal of Ecology, 34, 2847.Google Scholar
Legg, C. J. and Nagy, L. (2006). Why most conservation monitoring is, but need not be, a waste of time. Journal of Environmental Management, 78, 194199.Google Scholar
Lehmann, C. E. R., Anderson, T. M., Sankaran, M., et al. (2014). Savanna vegetation-fire-climate relationships differ among continents. Science, 343(6170), 548552.Google Scholar
Lenton, T. M., Held, H., Kriegler, E., et al. (2008). Tipping elements in Earth’s climate system. Proceedings of the National Academy of Sciences of the United States of America, 105, 17861793.Google Scholar
Levin, S. A. (1998). Ecosystems and the biosphere as complex adaptive systems. Ecosystems, 1(5), 431436.Google Scholar
Levin, S. A. (1999). Fragile Dominion: Complexity and the Commons. Perseus Books, Reading, MA.Google Scholar
Levine, N. M., Zhang, K., Longo, M., et al. (2016). Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 793797.Google Scholar
Lewis, S. L. (2012). We must set planetary boundaries wisely. Nature, 485, 417.Google Scholar
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. and Koch, A. (2019). Restoring natural forests is the best way to remove atmospheric carbon. Nature, 568(7750), 2528.Google Scholar
Lewontin, R. C. (1969). The meaning of stability. In: Woodwell, G. M. and Smith, H. H. (eds.), Diversity and Stability in Ecological Systems. Brookhaven Symposium of Biology, vol. 22, pp. 1323.Google Scholar
Liao, C., Luo, Y., Fang, C. and Li, B. (2010). Ecosystem carbon stock influenced by plantation practice: Implications for planting forests as a measure of climate change mitigation. PLoS One, 5(5), e10867. https://doi.org/10.1371/journal.pone.0010867.Google Scholar
Lindegren, M., Dakos, V., Gröger, J. P., et al. (2012). Early detection of ecosystem regime shifts: A multiple method evaluation for management application. PLoS One, 7(7), e38410.Google Scholar
Lindenmayer, D. B. and Laurance, W. F. (2016a). The unique challenges of conserving large old trees. Trends in Ecology & Evolution, 31(6), 416418.Google Scholar
Lindenmayer, D. B. and Laurance, W. F. (2016b). The ecology, distribution, conservation and management of large old trees. Biological Reviews, 92(3), 14341458.Google Scholar
Lindenmayer, D. B. and Sato, C. (2018). Hidden collapse is driven by fire and logging in a socioecological forest ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 115(20), 51815186.Google Scholar
Lindenmayer, D. B., Likens, G. E., Krebs, C. J. and Hobbs, R. J. (2010). Improved probability of detection of ecological ‘surprises’. Proceedings of the National Academy of Sciences of the United States of America, 107(51), 2195721962.Google Scholar
Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. and Banks, S. C. (2011). Newly discovered landscape traps produce regime shifts in wet forests. Proceedings of the National Academy of Sciences of the United States of America, 108, 1588715891.Google Scholar
Lindenmayer, D. B., Messier, C. and Sato, C. (2016). Avoiding ecosystem collapse in managed forest ecosystems. Frontiers in Ecology and the Environment, 14(10), 561568.Google Scholar
Lipson, M., Szécsényi-Nagy, A., Mallick, S., et al. (2017). Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature, 551, 368372.Google Scholar
Lister, B. C. and Garcia, A. (2018). Climate-driven declines in arthropod abundance restructure a rainforest food web. Proceedings of the National Academy of Sciences of the United States of America, 115(44), E10397E10406.Google Scholar
Liu, J., Dietz, T., Carpenter, S. R., et al. (2007). Complexity of coupled human and natural systems. Science, 317, 15131516.Google Scholar
Livni, J. (2019). Investigation of collapse of complex socio-political systems using classical stability theory. Physica A: Statistical Mechanics and Its Applications, 524, 553562.Google Scholar
Lizundia-Loiola, J., Pettinari, M. L. and Chuvieco, E. (2020). Temporal anomalies in burned area trends: Satellite estimations of the Amazonian 2019 Fire Crisis. Remote Sensing, 12(1), 151.Google Scholar
Lloyd, J. and Veenendaal, E. M. (2016). Are fire mediated feedbacks burning out of control? Biogeosciences Discussions. https://doi.org/10.5194/bg-2015-660.Google Scholar
Loehle, C. (1989). Catastrophe theory in ecology: A critical review and an example of the butterfly catastrophe. Ecological Modelling, 49(1), 125152.Google Scholar
Loeser, M. R. R., Sisk, T. D. and Crews, T. E. (2007). Impact of grazing intensity during drought in an Arizona grassland. Conservation Biology, 21, 8797.Google Scholar
Looy, C. V., Brugman, W. A., Dilcher, D. L. and Visscher, H. (1999). The delayed resurgence of equatorial forests after the Permian-Triassic ecologic crisis. Proceedings of the National Academy of Sciences of the United States of America, 96, 1385713862.Google Scholar
Loreau, M. (2010a). Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 4960.Google Scholar
Loreau, M. (2010b). From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis. Princeton University Press, Princeton, NJ.Google Scholar
Lortie, C. J. and Bonte, D. (2016). Zen and the art of ecological synthesis. Oikos, 125, 285287.Google Scholar
Lotka, A. J. (1956). Elements of Mathematical Biology. Dover Publications, New York.Google Scholar
Lotze, H. K. and Worm, B. (2009). Historical baselines for large marine animals. Trends in Ecology & Evolution, 24, 254262.Google Scholar
Lotze, H. K., Lenihan, H. S., Bourque, R. H., et al. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312, 18061809.Google Scholar
Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. and Airoldi, L. (2011). Recovery of marine animal populations and ecosystems. Trends in Ecology & Evolution, 26(11), 595605.Google Scholar
Louppe, D., Oattara, N. K. and Coulibaly, A. (1995). The effects of brush fires on vegetation: The Aubreville fire plots after 60 years. Commonwealth Forestry Review, 74, 288292.Google Scholar
Lovejoy, T. E. and Nobre, C. (2018). Amazon tipping point. Science Advances, 4, eaat2340.Google Scholar
Lovelock, J. E. and Margulis, L. (1974). Atmospheric homeostasis by and for the biosphere: The Gaia hypothesis. Tellus Series A, Stockholm International Meteorological Institute, 26(1–2), 210.Google Scholar
Lovett, G. M. (2013). Critical issues for critical loads. Proceedings of the National Academy of Sciences of the United States of America, 110(3), 808809.Google Scholar
Lucas, S. G. and Tanner, L. H. (2015). End-Triassic nonmarine biotic events. Journal of Palaeogeography, 4(4), 331348.Google Scholar
Lund, H. G. (2018). Definitions of Forest, Deforestation, Afforestation, and Reforestation. Gainesville, VA: Forest Information Services. https://doi.org/10.13140/RG.2.1.2364.9760.Google Scholar
Lurgi, M., Montoya, D. and Montoya, J. M. (2016). The effects of space and diversity of interaction types on the stability of complex ecological networks. Theoretical Ecology, 9(1), 313.Google Scholar
Lyson, T. R., Miller, I. M., Bercovici, A. D., et al. (2019). Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science, 366(6468), 977983.Google Scholar
MacDougall, A. S., McCann, K. S., Gellner, G., et al. (2013). Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature, 494, 8689.Google Scholar
Mace, G. M., Collar, N. J., Gaston, K. J., et al. (2008). Quantification of extinction risk: IUCN’s system for classifying threatened species. Conservation Biology, 22, 14241442.Google Scholar
Mace, G. M., Norris, K. and Fitter, A. H. (2012). Biodiversity and ecosystem services: A multilayered relationship. Trends in Ecology & Evolution, 27(1), 1926.Google Scholar
Mace, G. M., Reyers, B., Alkemade, R., et al. (2014). Approaches to defining a planetary boundary for biodiversity. Global Environmental Change, 28, 289297.Google Scholar
Macgregor, C. J., Williams, J. H., Bell, J. R. and Thomas, C. D. (2019). Moth biomass increases and decreases over 50 years in Britain. Nature Ecology & Evolution, 3, 16451649. https://doi.org/10.1038/s41559-019-1028-6.Google Scholar
Macias-Fauria, M., Forbes, B. C., Zetterberg, P. and Kumpula, T. (2012). Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nature Climate Change, 2(8), 613618.Google Scholar
MacNeil, M. A., Graham, N. A. J., Cinner, J. E., et al. (2015). Recovery potential of the world’s coral reef fishes. Nature, 520(7547), 341344.Google Scholar
Maes, J., Paracchini, M. L., Zulian, G., Dunbar, M. B. and Alkemade, R. (2012). Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biological Conservation, 155, 112.Google Scholar
Maestre, F. T., Quero, J. L., Gotelli, N. J., et al. (2012). Plant species richness and ecosystem multifunctionality in global drylands. Science, 335(6065), 214218.Google Scholar
Magrach, A., Laurance, W. F., Larrinaga, A. R. and Santamaria, L. (2014). Meta-analysis of the effects of forest fragmentation on interspecific interactions. Conservation Biology, 28(5), 13421348.Google Scholar
Mahootian, F. and Eastman, T. E. (2009). Complementary frameworks of scientific inquiry: Hypothetico-deductive, hypothetico-inductive, and observational-inductive. World Futures, 65(1), 6175.Google Scholar
Maldonado, G. and Poole, C. (1999). Editorial. Annals of Epidemiology, 9(1), 1718.Google Scholar
Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W. and Nobre, C. A. (2008). Climate change, deforestation, and the fate of the Amazon. Science, 319(5860), 169172.Google Scholar
Malhi, Y., Aragão, L. E. O. C., Galbraith, D., et al. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 2061020615.Google Scholar
Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. and Zelazowski, P. (2014). Tropical forests in the Anthropocene. Annual Review of Environment and Resources, 39, 125159.Google Scholar
Malhi, Y., Doughty, C. E., Galetti, M., Smith, F. A., Svenning, J. C. and Terborgh, J. W. (2016). Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 113, 838846.Google Scholar
Maller, C., Townsend, M., Pryor, A., Brown, P. and St Leger, L. (2006). Healthy nature healthy people: ‘Contact with nature’ as an upstream health promotion intervention for populations. Health Promotion International, 21(1), 4554.Google Scholar
Mann, D. H., Rupp, T. S., Olson, M. A. and Duffy, P. A. (2012). Is Alaska’s Boreal forest now crossing a major ecological threshold? Arctic, Antarctic, and Alpine Research, 44(3), 319331.Google Scholar
Margules, C. R. and Pressey, R. L. (2000). Systematic conservation planning. Nature, 405, 243253.Google Scholar
Mariana Morais, V., Cristina, B.-L., Leandro Reverberi, T., et al. (2019). Predicting the non-linear collapse of plant–frugivore networks due to habitat loss. Ecography, 42(10), 17651776.Google Scholar
Marín, V. H. (1997). General system theory and the ecosystem concept. Bulletin of the Ecological Society of America, 78, 102104.Google Scholar
Maron, M., Mitchell, M. G. E., Runting, R. K., et al. (2017). Towards a threat assessment framework for ecosystem services. Trends in Ecology & Evolution, 32(4), 240248.Google Scholar
Marquet, P. A., Allen, A. P., Brown, J. H., et al. (2014). On theory in ecology. BioScience, 64(8), 701710.Google Scholar
Marsden, S. J., Whiffin, M. and Galetti, M. (2001). Bird diversity and abundance in forest fragments and Eucalyptus plantations around an Atlantic forest reserve, Brazil. Biodiversity and Conservation, 10, 737751.Google Scholar
Marshall, B. E. (2018). Guilty as charged: Nile perch was the cause of the haplochromine decline in Lake Victoria. Canadian Journal of Fisheries and Aquatic Sciences, 75(9), 15421559.Google Scholar
Martin, P. A., Newton, A. C. and Bullock, J. M. (2013). Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proceedings of the Royal Society B: Biological Sciences, 280(1773), 20132236.Google Scholar
Martin, P., Newton, A. C., Evans, P. and Cantarello, E. (2015a). Stand collapse in a temperate forest and its impact on forest structure and biodiversity. Forest Ecology and Management, 358, 130138.Google Scholar
Martin, P. A., Newton, A. C., Pfeifer, M., Khoo, M. and Bullock, J. M. (2015b). Species richness and carbon storage responses to reduced impact logging in tropical forests: A meta-analysis. Forest Ecology and Management, 356, 224233.Google Scholar
Martin, P., Newton, A. C., Cantarello, E. and Evans, P. M. (2017). Analysis of ecological thresholds in a temperate forest undergoing dieback. PLoS One, 12(12), e0189578. https://doi.org/10.1371/journal.pone.0189578.Google Scholar
Martin, P. S. (1984). Prehistoric overkill: The global model. In: Martin, P. S. and Klein, R. G. (eds.), Quaternary Extinctions: A Prehistoric Revolution. University of Arizona Press, Tucson, pp. 354403.Google Scholar
Masood, E. (2018). The battle for the soul of biodiversity. Nature, 560(7719), 423425.Google Scholar
Matthews, B., Narwani, A., Hausch, S., et al. (2011). Toward an integration of evolutionary biology and ecosystem science. Ecology Letters, 14, 690701.Google Scholar
Matthews, J. H. and Boltz, F. (2012). The shifting boundaries of sustainability science: Are we doomed yet? PLoS Biology, 10, e1001344.Google Scholar
Matthews, J. W., Spyreas, G. and Endress, A. G. (2009). Trajectories of vegetation-based indicators used to assess wetland restoration progress. Ecological Applications, 19, 20932107.Google Scholar
Matusick, G., Ruthrof, K. X., Brouwers, N. C., et al. (2013). Sudden forest canopy collapse corresponding with extreme drought and heat in a Mediterranean-type eucalypt forest in southwestern Australia. European Journal of Forest Research, 132, 497510.Google Scholar
Maureaud, A., Gascuel, D., Colléter, M., et al. (2017). Global change in the trophic functioning of marine food webs. PLoS One, 12(8), e0182826.Google Scholar
Maurer, B. A. (2000). Ecology needs theory as well as practice. Nature, 408, 768.Google Scholar
Maxwell, P. S., Eklöf, J. S., van Katwijk, M. M., et al. (2017). The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems – A review. Biological Reviews, 92(3), 15211538.Google Scholar
Maxwell, S., Fuller, R., Brooks, T., et al. (2016). Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536, 143145.Google Scholar
May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261, 459–67.Google Scholar
May, R. M. (1977). Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature, 269, 471477.Google Scholar
McAfee, D., Doubleday, Z. A., Geiger, N. and Connell, S. D. (2019). Everyone loves a success story: Optimism inspires conservation engagement. BioScience, 69(4), 274281.Google Scholar
McAnany, P. A. and Yoffee, N. (eds.) (2010a). Questioning Collapse: Human Resilience, Ecological Vulnerability, and the Aftermath of Empire. Cambridge University Press, Cambridge.Google Scholar
McAnany, P. A. and Yoffee, N. (2010b). Questioning how different societies respond to crises. Nature, 464, 977.Google Scholar
McCann, K. S. (2000). The diversity–stability debate. Nature, 405(6783), 228233.Google Scholar
McCook, L. J. (1999). Macroalgae, nutrients and phase shifts on coral reefs: Scientific issues and management consequences for the Great Barrier Reef. Coral Reefs, 18(4), 357367.Google Scholar
McCrackin, M. L., Jones, H. P., Jones, P. C. and Moreno‐Mateos, D. (2017). Recovery of lakes and coastal marine ecosystems from eutrophication: A global meta‐analysis. Limnology and Oceanography, 62, 507518.Google Scholar
McDonald-Madden, E., Sabbadin, R., Game, E. T., Baxter, P. W. J., Chadès, I. and Possingham, H. P. (2016). Using food-web theory to conserve ecosystems. Nature Communications, 7, 10245, 18.Google Scholar
McDowell, N. G., Michaletz, S. T., Bennett, K. E., et al. (2018). Predicting chronic climate-driven disturbances and their mitigation. Trends in Ecology & Evolution, 33(1), 1527.Google Scholar
McElwain, J. C. and Punyasena, S. W. (2007). Mass extinction events and the plant fossil record. Trends in Ecology & Evolution, 22(10), 548557.Google Scholar
McGhee, G. R. (1988). The Late Devonian extinction event: Evidence for abrupt ecosystem collapse. Paleobiology, 14(3), 250257.Google Scholar
McGhee, G. R., Sheehan, P. M., Bottjer, D. J. and Droser, M. L. (2004). Ecological ranking of Phanerozoic biodiversity crises: Ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology, 211(3), 289297.Google Scholar
McGhee, G. R., Clapham, M. E., Sheehan, P. M., Bottjer, D. J. and Droser, M. L. (2013). A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 260270.Google Scholar
McGlone, M. S. and Clarkson, B. D. (1993). Ghost stories: Moa, plant defences and evolution in New Zealand. Tuatara, 32, 121.Google Scholar
McGovern, P., Jalabadze, M., Batiuk, S., et al. (2017). Early Neolithic wine of Georgia in the South Caucasus. Proceedings of the National Academy of Sciences of the United States of America, 114(48), E10309E10318.Google Scholar
McClanahan, T. R. and Muthiga, N. A. (1998). An ecological shift in a remote coral reef atoll of Belize over 25 years. Environmental Conservation, 25, 122130.Google Scholar
McCulloch, M., Fallon, S., Wyndham, T., Hendy, E., Lough, J. and Barnes, D. (2003). Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature, 421(6924), 727730.Google Scholar
McDermott, M., Mahanty, S. and Schreckenberg, K. (2013). Examining equity: A multidimensional framework for assessing equity in payments for ecosystem services. Environmental Science & Policy, 33, 416427.Google Scholar
McDowell, N. G. and Allen, C. D. (2015). Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 5, 669.Google Scholar
McIntyre, P. B., Jones, L. E., Flecker, A. S. and Vanni, M. J. (2007). Fish extinctions alter nutrient recycling in tropical freshwaters. Proceedings of the National Academy of Sciences of the United States of America, 104, 44614466.Google Scholar
McLauchlan, K. K., Williams, J. J., Craine, J. M. and Jeffers, E. S. (2013). Changes in global nitrogen cycling during the Holocene epoch. Nature, 495, 352355.Google Scholar
McManus, J. W. and Polsenberg, J. F. (2004). Coral–algal phase shifts on coral reefs: Ecological and environmental aspects. Progress in Oceanography, 60, 263279.Google Scholar
McNaughton, S. J. (1984). Grazing lawns: Animals in herds, plant form, and coevolution. The American Naturalist, 124(6), 863886.Google Scholar
McWethy, D. B., Whitlock, C., Wilmshurst, J. M., McGlone, M. S. and Li, X. (2009). Rapid deforestation of South Island, New Zealand, by early Polynesian fires. Holocene, 19(6), 883897.Google Scholar
McWethy, D. B., Whitlock, C., Wilmshurst, J. M., et al. (2010). Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. Proceedings of the National Academy of Sciences of the United States of America, 107, 2134321348.Google Scholar
McWethy, D. B., Wilmshurst, J. M., Whitlock, C., Wood, J. R. and McGlone, M. S. (2014). A high-resolution chronology of rapid forest transitions following Polynesian arrival in New Zealand. PLoS One, 9(11), e111328.Google Scholar
Mee, L. D., Friedrich, J. and Gomoiu, M. T. (2005). Restoring the Black Sea in times of uncertainty. Oceanography, 18(2), 100111.Google Scholar
Mehner, T., Diekmann, M., Gonsiorczyk, T., et al. (2008). Rapid recovery from eutrophication of a stratified lake by disruption of internal nutrient load. Ecosystems, 11(7), 11421156.Google Scholar
Meijer, M.-L., de Boos, I., Scheffer, M., Portielje, R. and Hosper, H. (1999). Biomanipulation in shallow lakes in the Netherlands: An evaluation of 18 case studies. Hydrobiologia, 408 /409, 1330.Google Scholar
Meli, P., Holl, K. D., Rey Benayas, J. M., et al. (2017). A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS One, 12(2), e0171368.Google Scholar
Memmott, J., Waser, N. and Price, M. (2004). Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society B: Biological Sciences, 271, 26052611.Google Scholar
Mentis, M. T. (1988). Hypothetico-deductive and inductive approaches in ecology. Functional Ecology, 2, 514.Google Scholar
Messier, C., Puettmann, K. J. and Coates, K. D. (eds.). (2013). Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change. Routledge, Abingdon.Google Scholar
Metcalf, J. L., Turney, C., Barnett, R., et al. (2016). Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Science Advances, 2(6), e1501682.Google Scholar
Middleton, G. D. (2012). Nothing lasts forever: Environmental discourses on the collapse of past societies. Journal of Archaeological Research, 20(3), 257307.Google Scholar
Millennium Ecosystem Assessment. (2005a). Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC. www.millenniumassessment.org/en/index.html.Google Scholar
Millennium Ecosystem Assessment. (2005b). Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington, DC.Google Scholar
Miller, B., Soulé, M. E. and Terborgh, J. (2014). ‘New conservation’ or surrender to development? Animal Conservation, 17, 509515.Google Scholar
Miller, G. H., Magee, J. W., Johnson, B. J., et al. (1999). Pleistocene extinction of Genyornis newtoni: Human impact on Australian megafauna. Science, 283, 205208.Google Scholar
Miller, G. H., Fogel, M. L., Magee, J. W., et al. (2005). Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science, 309, 287290.Google Scholar
Miller, G. H., Fogel, M. L., Magee, J. W. and Gagan, M. K. (2016a). Disentangling the impacts of climate and human colonization on the flora and fauna of the Australian arid zone over the past 100 ka using stable isotopes in avian eggshell. Quaternary Science Reviews, 151, 2757.Google Scholar
Miller, G., Magee, J., Smith, M., et al. (2016b). Human predation contributed to the extinction of the Australian megafaunal bird Genyornis newtoni ~47 ka. Nature Communications, 7, 10496.Google Scholar
Miller, G. S. and Magee, J. W. (1992). Drought in the Australian Outback: Anthropogenic Impacts on Regional Climate. American Geophysical Union, fall meeting, p. 104.Google Scholar
Miller, J. R. and Bestelmeyer, B. T. (2016). What’s wrong with novel ecosystems, really? Restoration Ecology, 24(5), 577582.Google Scholar
Miller-Rushing, A. J., Primack, R. B., Devictor, V., et al. (2019). How does habitat fragmentation affect biodiversity? A controversial question at the core of conservation biology. Biological Conservation, 232, 271273.Google Scholar
Mills, L. S., Soulé, M. E. and Doak, D. F. (1993). The keystone-species concept in ecology and conservation. BioScience, 43(4), 219224.Google Scholar
Mitsch, W. J. and Day, J. W. (2004). Thinking big with whole-ecosystem studies and ecosystem restoration – A legacy of H.T. Odum. Ecological Modelling, 178(1), 133155.Google Scholar
Mittelbach, G. G., Garcia, E. A. and Taniguchi, Y. (2006). Fish reintroductions reveal smooth transitions between lake community states. Ecology, 87, 312318.Google Scholar
Mizukami, T., Kaiho, K. and Oba, M. (2013). Significant changes in land vegetation and oceanic redox across the Cretaceous/Paleogene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 4147.Google Scholar
Mkumbo, O. and Marshall, B. (2014). The Nile perch fishery of Lake Victoria: Current status and management challenges. Fisheries Management and Ecology, 22, 5663.Google Scholar
Moberg, F. and Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological Economics, 29(2), 215233.Google Scholar
Möllmann, C. and Diekmann, R. (2012). Marine ecosystem regime shifts induced by climate and overfishing. Advances in Ecological Research, 47, 303347.Google Scholar
Molyneux, J. (2019). The environmental crisis and the new environmental revolt. Irish Marxist Review, 8(24), 3842.Google Scholar
Monbiot, G. (2013). Feral: Searching for Enchantment on the Frontiers of Rewilding. Penguin Books, London.Google Scholar
Montoya, J. M., Donohue, I. and Pimm, S. L. (2018). Planetary boundaries for biodiversity: Implausible science, pernicious policies. Trends in Ecology & Evolution, 33(2), 7173.Google Scholar
Mooney, S. D., Harrison, S. P., Bartlein, P. J., et al. (2011). Late quaternary fire regimes of Australasia. Quaternary Science Reviews, 30, 2846.Google Scholar
Moore, J. K., Fu, W., Primeau, F., et al. (2018). Sustained climate warming drives declining marine biological productivity. Science, 359, 11391143.Google Scholar
Mora, C., Aburto-Oropeza, O., Ayala Bocos, A., et al. (2011). Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biology, 9(4), e1000606.Google Scholar
Moreno-Mateos, D., Barbier, E. B., Jones, P. C., et al. (2017). Anthropogenic ecosystem disturbance and the recovery debt. Nature Communications, 8(1), 14163.Google Scholar
Mori, A. S. (2011). Ecosystem management based on natural disturbances: Hierarchical context and non-equilibrium paradigm. Journal of Applied Ecology, 48, 280292.Google Scholar
Moritz, M. A., Morais, M. E., Summerell, L. A., Carlson, J. M. and Doyle, J. (2005). Wildfires, complexity, and highly optimized tolerance. Proceedings of the National Academy of Sciences of the United States of America, 102, 1791217917.Google Scholar
Morrison, T. H., Hughes, T. P., Adger, W. N., Brown, K., Barnett, J. and Lemos, M. C. (2019). Save reefs to rescue all ecosystems. Nature, 573(7774), 333336.Google Scholar
Morueta-Holme, N., Engemann, K., Sandoval-Acuña, P., Jonas, J. D., Segnitz, R. M. and Svenning, J.-C. (2015). Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proceedings of the National Academy of Sciences of the United States of America, 112, 1274112745.Google Scholar
Mouchet, M. A., Villéger, S., Mason, N. W. and Mouillot, D. (2010). Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867876.Google Scholar
Mougi, A. and Kondoh, M. (2012). Diversity of interaction types and ecological community stability. Science, 337, 349351.Google Scholar
Mouillot, D., Mason, N. W. H. and Wilson, J. B. (2007). Is the abundance of species determined by their functional traits? A new method with a test using plant communities. Oecologia, 152, 729737.Google Scholar
Mumby, P. J. and Steneck, R. S. (2008). Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends in Ecology & Evolution, 23(10), 555563.Google Scholar
Muradian, R., Arsel, M., Pellegrini, L., et al. (2013), Payments for ecosystem services and the fatal attraction of win‐win solutions. Conservation Letters, 6, 274279.Google Scholar
Murcia, C., Aronson, J., Kattan, G. H., Moreno-Mateos, D., Dixon, K. and Simberloff, D. (2014). A critique of the novel ecosystem concept. Trends in Ecology & Evolution, 29(10), 548553.Google Scholar
Murphy, B. P. and Bowman, D. M. J. S. (2012). What controls the distribution of tropical forest and savanna? Ecology Letters, 15, 748758.Google Scholar
Muscente, A. D., Prabhu, A., Zhong, H., et al. (2018). Quantifying ecological impacts of mass extinctions with network analysis of fossil communities. Proceedings of the National Academy of Sciences of the United States of America, 115(20), 52175222.Google Scholar
Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. and Peterson, C. H. (2007). Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science, 315, 18461850.Google Scholar
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., et al. (2011). Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters, 6(4), 45509.Google Scholar
Myers-Smith, I. H., Trefry, S. A. and Swarbrick, V. J. (2012). Resilience: Easy to use but hard to define. Ideas in Ecology and Evolution, 5, 4453.Google Scholar
Naeem, S. (2008). Advancing realism in biodiversity research. Trends in Ecology & Evolution, 23, 414416.Google Scholar
Naeem, S., Duffy, J. E. and Zavaleta, E. (2012). The functions of biological diversity in an age of extinction. Science, 336(6087), 14011406.Google Scholar
Nagel, E. (1979). Teleology Revisited and Other Essays in the Philosophy and History of Science. Columbia University Press, New York.Google Scholar
Nagelkerken, I. and Munday, P. L. (2016). Animal behaviour shapes the ecological effects of ocean acidification and warming: Moving from individual to community‐level responses. Global Change Biology, 22, 974989.Google Scholar
Nauta, A. L., Heijmans, M. M. P. D., Blok, D., et al. (2014). Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nature Climate Change, 5, 67.Google Scholar
Navarro, L. M. and Pereira, H. M. (2012). Rewilding abandoned landscapes in Europe. Ecosystems, 15, 900912.Google Scholar
Nellemann, C. and Corcoran, E. (eds.). (2010). Dead Planet, Living Planet – Biodiversity and Ecosystem Restoration for Sustainable Development. A Rapid Response Assessment. United Nations Environment Programme, GRID-Arendal, Norway.Google Scholar
Nepstad, D., Carvalho, G., Cristina Barros, A., et al. (2001). Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management, 154(3), 395407.Google Scholar
Nepstad, D. C., Stickler, C. M., Soares-Filho, B. and Merry, F. (2008). Interactions among Amazon land use, forests and climate: Prospects for a near-term forest tipping point. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 17371746.Google Scholar
Neubauer, P., Jensen, O. P., Hutchings, J. A. and Baum, J. K. (2013). Resilience and recovery of overexploited marine populations. Science, 340(6130), 347349.Google Scholar
Newbold, T., Hudson, L. N., Arnell, A. P., et al. (2016). Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science, 353(6296), 288291.Google Scholar
Newton, A. C. (2007a). Forest Ecology and Conservation. A Handbook of Techniques. Oxford University Press, Oxford.Google Scholar
Newton, A. C. (ed.). (2007b). Biodiversity Loss and Conservation in Fragmented Forest Landscapes. The Forests of Montane Mexico and Temperate South America. CABI Publishing, Wallingford.Google Scholar
Newton, A. C. (2016). Biodiversity risks of adopting resilience as a policy goal. Conservation Letters, 9(5), 369376.Google Scholar
Newton, A. C. and Cantarello, E. (2014). An Introduction to the Green Economy. Earthscan, Abingdon.Google Scholar
Newton, A. C. and Cantarello, E. (2015). Restoration of forest resilience: An achievable goal? New Forests, 46, 645668.Google Scholar
Newton, A. C. and Echeverría, C. (2014). Analysis of anthropogenic impacts on forest biodiversity as a contribution to empirical theory. BES Symposium volume. In: Coomes, D. A., Burslem, D. F. R. P. and Simonson, W. D. (eds.), Forests and Global Change. Cambridge University Press, Cambridge, pp. 417446.Google Scholar
Newton, A. C. and Oldfield, S. (2008). Red Listing the world’s tree species: A review of recent progress. Endangered Species Research, 6, 137147.Google Scholar
Newton, A. C., Cantarello, E., Tejedor, N. and Myers, G. (2013a). Dynamics and conservation management of a wooded landscape under high herbivore pressure. International Journal of Biodiversity, 2013, 15. https://doi.org/10.1155/2013/273948.Google Scholar
Newton, A. C., Cantarello, E., Lovegrove, A., Appiah, D. and Perrella, L. (2013b). The influence of grazing animals on tree regeneration and woodland dynamics in the New Forest, England. In: Rotherham, I. (ed.), Trees, Forested Landscapes and Grazing Animals – A European Perspective on Woodlands and Grazed Treescapes. Routledge, Oxford, pp. 163179.Google Scholar
Newton, A. C., Hodder, K., Cantarello, E., et al. (2012a). Cost-benefit analysis of ecological networks assessed through spatial analysis of ecosystem services. Journal of Applied Ecology, 49(3), 571580.Google Scholar
Newton, A. C., Walls, R. M., Golicher, D., Keith, S. A., Diaz, A. and Bullock, J. M. (2012b). Structure, composition and dynamics of a calcareous grassland metacommunity over a seventy year interval. Journal of Ecology, 100(1), 196209.Google Scholar
Newton, A. C., Boscolo, D., Ferreira, P. A., Lopes, L. E. and Evans, P. (2018). Impacts of deforestation on plant-pollinator networks assessed using an agent based model. PLoS One, 13(12), e0209406.Google Scholar
Newton, A. C., Watson, S., Evans, P., et al. (2019). Trends in Natural Capital, Ecosystem Services and Economic Development in Dorset. Bournemouth University, Poole.Google Scholar
Nicol, S., Brazill-Boast, J., Gorrod, E., McSorley, A., Peyrard, N. and Chadès, I. (2019). Quantifying the impact of uncertainty on threat management for biodiversity. Nature Communications, 10(1), 3570. https://doi.org/10.1038/s41467–019-11404-5.Google Scholar
Nijp, J. J., Temme, A. J. A. M., van Voorn, G. A. K., et al. (2019). Spatial early warning signals for impending regime shifts: A practical framework for application in real-world landscapes. Global Change Biology, 25, 19051921.Google Scholar
Nilsson, J. and Grennfelt, P. (1988). Critical Levels for Sulphur and Nitrogen. Copenhagen, Denmark: Nordic Council of Ministers.Google Scholar
Nimmo, D. G., MacNally, R., Cunningham, S. C., Haslem, A. and Bennett, A. F. (2015). Vive la resistance: Reviving resistance for 21st century conservation. Trends in Ecology & Evolution, 30, 516523.Google Scholar
Nobre, C. A. and Borma, L. D. S. (2009). ‘Tipping points’ for the Amazon forest. Current Opinion in Environmental Sustainability, 1(1), 2836.Google Scholar
Nogués-Bravo, D., Simberloff, D., Rahbek, C. and Sanders, N. J. (2016). Rewilding is the new Pandora’s box in conservation. Current Biology, 26(3), R87R91.Google Scholar
Nolan, C., Overpeck, J. T., Allen, J. R. M., et al. (2018). Past and future global transformation of terrestrial ecosystems under climate change. Science, 361(6405), 920923.Google Scholar
Nolan, R. H., Boer, M. M., Collins, L., et al. (2020). Causes and consequences of eastern Australia’s 2019–20 season of mega-fires. Global Change Biology, 26(3), 10391041. https://doi.org/10.1111/gcb.14987.Google Scholar
Norden, N., Chazdon, R. L., Chao, A., Jiang, Y.-H. and Vilchez-Alvarado, B. (2009). Resilience of tropical rain forests: Tree community reassembly in secondary forests. Ecology Letters, 12, 385394.Google Scholar
Norman, K., Inglis, J., Clarkson, C., Faith, J. T., Shulmeister, J. and Harris, D. (2018). An early colonisation pathway into northwest Australia 70-60,000 years ago. Quaternary Science Reviews, 180, 229239.Google Scholar
Norgaard, R. B. (2010). Ecosystem services: From eye-opening metaphor to complexity blinder. Ecological Economics, 69, 12191227.Google Scholar
Noss, R. F. (1996). Ecosystems as conservation targets. Trends in Ecology & Evolution, 11(8), 351.Google Scholar
Noss, R. F., Dobson, A. P., Baldwin, R., et al. (2012). Bolder thinking for conservation. Conservation Biology, 26, 14.Google Scholar
Nowacki, G. J. and Abrams, M. D. (2008). The demise of fire and ‘Mesophication’ of forests in the eastern United States. BioScience, 58, 123138.Google Scholar
Nyström, M., Norström, A. V., Blenckner, T., et al. (2012). Confronting feedbacks of degraded marine ecosystems. Ecosystems, 15, 695710.Google Scholar
O’Connell, J. F. and Allen, J. (2012). The restaurant at the end of the universe: Modelling the colonisation of Sahul. Austral Archaeology, 74, 531.Google Scholar
O’Connor, N. E. and Crowe, T. P. (2005). Biodiversity loss and ecosystem functioning: Distinguishing between number and identity of species. Ecology, 86, 17831796.Google Scholar
Odum, H. T. (1971). Environment, Power, and Society. Wiley, New York.Google Scholar
O’Gorman, E. J. and Emmerson, M. C. (2009). Perturbations to trophic interactions and the stability of complex food webs. Proceedings of the National Academy of Sciences of the United States of America, 106, 1339313398.Google Scholar
Oguz, T. and Gilbert, D. (2007). Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960–2000: Evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations. Deep Sea Research Part I: Oceanographic Research Papers, 54, 220242.Google Scholar
Oguz, T. and Velikova, V. (2010). Abrupt transition of the northwestern Black Sea shelf ecosystem from a eutrophic to an alternative pristine state. Marine Ecology Progress Series, 405, 231242.Google Scholar
Olesen, J., Bascompte, J., Dupont, Y. and Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America, 104, 1989119896.Google Scholar
Oliveras, I. and Malhi, Y. (2016). Many shades of green: The dynamic tropical forest–savannah transition zones. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1703), 20150308.Google Scholar
Oliver, T. H., Heard, M. S., Isaac, N. J. B., et al. (2015). Biodiversity and resilience of ecosystem functions. Trends in Ecology & Evolution, 30(11), 673684.Google Scholar
Ollerton, J., Erenler, H., Edwards, M. and Crockett, R. (2014). Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science, 346(6215), 13601362.Google Scholar
Olsson, L., Jerneck, A., Thoren, H., Persson, J. and O’Byrne, D. (2015). Why resilience is unappealing to social science: Theoretical and empirical investigations of the scientific use of resilience. Science Advances, 1(4). http://dx.doi.org/10.1126/sciadv.1400217.Google Scholar
Owen-Smith, R. N. (1988). Megaherbivores: The Influence of Very Large Body Size on Ecology. Cambridge University Press, Cambridge.Google Scholar
O’Neill, R. V. (1999). Recovery in complex ecosystems. Journal of Aquatic Ecosystem Stress and Recovery, 6, 181187.Google Scholar
O’Neill, R. V. (2001). Is it time to bury the ecosystem concept? (With full military honors, of course!). Ecology, 82(12), 32753284.Google Scholar
O’Neill, R. V., DeAngelis, D. L., Waide, J. B. and Allen, T. F. H. (1986). A Hierarchical Concept of Ecosystems. Monographs in population biology, vol. 23. Princeton University Press, Princeton, NJ. 253 pp.Google Scholar
O’Neill, S. and Nicholson-Cole, S. (2009). ‘Fear won’t do it’: Promoting positive engagement with climate change through visual and iconic representations. Science Communication, 30(3), 355379.Google Scholar
Ormerod, S. J., Dobson, M., Hildrew, A. G. and Townsend, C. R. (2010). Multiple stressors in freshwater ecosystems. Freshwater Biology, 55, 14.Google Scholar
Österblom, H., Hansson, S., Larsson, U., Hjerne, O., Wulff, F., Elmgren, R. and Folke, C. (2007). Human-induced trophic cascades and ecological regime shifts in the Baltic sea. Ecosystems, 10, 877889.Google Scholar
Osuri, A. M., Ratnam, J., Varma, V., et al. (2016). Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nature Communications, 7, 11351.Google Scholar
Pace, M. L. (2001). Prediction and the aquatic sciences. Canadian Journal of Fisheries and Aquatic Sciences, 58, 6372.Google Scholar
Pace, M. L., Carpenter, S. R., Johnson, R. and Kurtzweil, J. (2013). Zooplankton provide early warnings of a regime shift in a whole lake manipulation. Limnology and Oceanography, 58, 525532.Google Scholar
Pace, M. L., Carpenter, S. R. and Cole, J. J. (2015). With and without warning: Managing ecosystems in a changing world. Frontiers in Ecology and the Environment, 13(9), 460467.Google Scholar
Pacifici, M., Foden, W. B., Visconti, P., et al. (2015). Assessing species vulnerability to climate change. Nature Climate Change, 5(3), 215224.Google Scholar
Pacifici, M., Visconti, P., Butchart, S. H. M., Watson, J. E. M., Cassola, F. M. and Rondinini, C. (2017). Species’ traits influenced their response to recent climate change. Nature Climate Change, 7(3), 205208.Google Scholar
Paine, R. T., Tegner, M. J. and Johnson, E. A. (1998). Compounded perturbations yield ecological surprises. Ecosystems, 1, 535545.Google Scholar
Palmer, M. A., Menninger, H. L. and Bernhardt, E. (2010). River restoration, habitat heterogeneity and biodiversity: A failure of theory or practice? Freshwater Biology, 55, 205222.Google Scholar
Paquette, A. and Messier, C. (2010). The role of plantations in managing the world’s forests in the Anthropocene. Frontiers in Ecology and the Environment, 8(1), 2734.Google Scholar
Pardi, M. I. and Smith, F. A. (2016). Biotic responses of canids to the terminal Pleistocene megafauna extinction. Ecography, 39, 141151.Google Scholar
Pardini, R., de Arruda Bueno, A., Gardner, T. A., Prado, P. I. and Metzger, J. P. (2010). Beyond the fragmentation threshold hypothesis: Regime shifts in biodiversity across fragmented landscapes. PLoS One, 5, e13666.Google Scholar
Pardo, L. H., Fenn, M. E., Goodale, C. L., et al. (2011). Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications, 21, 30493082.Google Scholar
Park Williams, A., Allen, C. D., Macalady, A. K., et al. (2012). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3, 292.Google Scholar
Parr, C. L., Gray, E. F. and Bond, W. J. (2012). Cascading biodiversity and functional consequences of a global change-induced biome switch. Diversity and Distributions, 18, 493503.Google Scholar
Parsons, T. R. and Lalli, C. M. (2002). Jellyfish population explosions: Revisiting a hypothesis of possible causes. La Mer (Paris), 40, 111121.Google Scholar
Pascual, M. and Guichard, F. (2005). Criticality and disturbance in spatial ecological systems. Trends in Ecology & Evolution, 20(2), 8895.Google Scholar
Patricola, C. M. and Cook, K. H. (2007). Dynamics of the West African Monsoon under mid-Holocene processional forcing: Regional climate model simulations. Journal of Climate, 20(4), 694716.Google Scholar
Patten, B. C., Straškraba, M. and Jørgensen, S. E. (1997). Ecosystem emerging. 1. Conservation. Ecological Modelling, 96, 221284.Google Scholar
Patten, B. C., Straškraba, M. and Jørgensen, S. E. (2011). Ecosystems emerging. 5: Constraints. Ecological Modelling, 222(16), 29452972.Google Scholar
Pauly, D. (2007). The Sea around Us Project: Documenting and communicating global fisheries impacts on marine ecosystems. AMBIO: A Journal of the Human Environment, 36(4), 290295.Google Scholar
Pauly, D. (2008). Global fisheries: A brief review. Journal of Biological Research – Thessaloniki, 9, 39.Google Scholar
Pauly, D. (2009). Aquacalypse now: The end of fish. The New Republic, 28 September 2009. www.tnr.com/article/environment-energy/aquacalypse-now.Google Scholar
Pauly, D. (2016). On the importance of fisheries catches, with a rationale for their reconstruction. In: Pauly, D. and Zeller, D. (eds.), Global Atlas of Marine Fisheries: A Critical Appraisal of Catches and Ecosystem Impacts. Island Press, Washington, DC, pp. 1118.Google Scholar
Pauly, D. and Zeller, D. (2016). Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature Communications, 7(10244), 19.Google Scholar
Pauly, D., Christensen, V., Dalsgaard, R., Froese, R. and Torres, F. C. (1998). Fishing down marine food webs. Science, 279(5352), 860863.Google Scholar
Pauly, D., Hilborn, R. and Branch, T. A. (2013). Fisheries: Does catch reflect abundance? Nature, 494, 303.Google Scholar
Pausas, J. G. and Dantas, V. de L. (2016). Scale matters: Fire-vegetation feedbacks are needed to explain tropical tree cover at the local scale. Global Ecology and Biogeography, 26(4), 395399.Google Scholar
Pawson, S. M., McCarthy, J. K., Ledgard, N. J. and Didham, R. K. (2010). Density‐dependent impacts of exotic conifer invasion on grassland invertebrate assemblages. Journal of Applied Ecology, 47, 10531062.Google Scholar
Payne, J. L. and Finnegan, S. (2007). The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 104, 1050610511.Google Scholar
Payne, R. J., Dise, N. B., Stevens, C. J. and Gowing, D. J. (2013). Impact of nitrogen deposition at the species level. Proceedings of the National Academy of Sciences of the United States of America, 110(3), 984987.Google Scholar
Peck, J. (2010). Zombie neoliberalism and the ambidextrous state. Theoretical Criminology, 14(1), 104110.Google Scholar
Pedroni, A., Eisenegger, C., Hartmann, M. N., Fischbacher, U. and Knoch, D. (2014). Dopaminergic stimulation increases selfish behavior in the absence of punishment threat. Psychopharmacology, 231(1), 135141.Google Scholar
Peng, C., Ma, Z., Lei, X., et al. (2011). A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change, 1, 467.Google Scholar
Penn, J. L., Deutsch, C., Payne, J. L. and Sperling, E. A. (2018). Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science, 362(6419), eaat1327. https://doi.org/10.1126/science.aat1327.Google Scholar
Pereira, H. M. and Navarro, L. M. (2015). Rewilding European Landscapes. Springer, London.Google Scholar
Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. and Levi, T. (2016). Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America, 113, 892897.Google Scholar
Perring, M. P., Standish, R. J. and Hobbs, R. J. (2013). Incorporating novelty and novel ecosystems into restoration planning and practice in the 21st century. Ecological Processes, 2(1), 18.Google Scholar
Perring, M. P., Standish, R. J., Price, J. N., et al. (2015). Advances in restoration ecology: Rising to the challenges of the coming decades. Ecosphere, 6(8), 131.Google Scholar
Perry, G. and Pianka, E. R. (1997). Animal foraging: Past, present and future. Trends in Ecology & Evolution, 12(9), 360364.Google Scholar
Perry, G. L. W., Wilmshurst, J. M., McGlone, M. S., McWethy, D. B. and Whitlock, C. (2012). Explaining firedriven landscape transformation during the Initial Burning Period of New Zealand’s prehistory. Global Change Biology, 18, 16091621.Google Scholar
Pershing, A. J., Mills, K. E., Record, N. R., et al. (2015). Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659), 20130265. http://doi.org/10.1098/rstb.2013.0265.Google Scholar
Persson, L., de Roos, A. M., Claessen, D., et al. (2003). Gigantic cannibals driving a whole-lake trophic cascade. Proceedings of the National Academy of Sciences of the United States of America, 100, 40354039.Google Scholar
Petchey, O. L., Eklöf, A., Borrvall, C. and Ebenman, B. (2008). Trophically unique species are vulnerable to cascading extinction. The American Naturalist, 171(5), 568579.Google Scholar
Peters, D. P. C., Lugo, A. E., Chapin III, F. S., et al. (2011). Cross-system comparisons elucidate disturbance complexities and generalities. Ecosphere, 2, 126.Google Scholar
Peters, R. H. (1991). A Critique for Ecology. Cambridge University Press, Cambridge.Google Scholar
Peterson, C. H. (1984). Does a rigorous criterion for environmental identity preclude the existence of multiple stable points? The American Naturalist, 124, 127133.Google Scholar
Peterson, G. (2002). Forest dynamics in the Southeastern United States: Managing multiple stable states. In: Gunderson, L. and Pritchard, L. (eds.), Resilience and the Behavior of Large-Scale Ecosystems. Island Press, Washington, DC, pp. 227246.Google Scholar
Peterson, G., Pope, S., de Leo, G. A., et al. (1997). Ecology, ethics, and advocacy. Conservation Ecology, 1(1), 17. www.consecol.org/vol1/iss1/art17/.Google Scholar
Peterson, G., Cumming, G. and Carpenter, S. (2003). Scenario planning: A tool for conservation in an uncertain world. Conservation Biology, 17, 358366.Google Scholar
Peterson, G. D., Harmackova, Z. V., Meacham, M., et al. (2018). Welcoming different perspectives in IPBES: ‘Nature’s contributions to people’ and “Ecosystem services”. Ecology and Society, 23(1), 39. https://doi.org/10.5751/ES-10134-230139.Google Scholar
Petraitis, P. S. (2013). Multiple Stable States in Natural Ecosystems. Oxford University Press, Oxford.Google Scholar
Petraitis, P. S. and Dudgeon, S. R. (2004). Detection of alternative stable states in marine communities. Journal of Experimental Marine Biology and Ecology, 300(1), 343371.Google Scholar
Petraitis, P. S. and Dudgeon, S. R. (2015). Cusps and butterflies: Multiple stable states in marine systems as catastrophes. Marine and Freshwater Research, 67(1), 3746.Google Scholar
Petraitis, P. S. and Hoffman, C. (2010). Multiple stable states and relationship between thresholds in processes and states. Marine Ecology Progress Series, 413, 189200.Google Scholar
Pettitt, P. and Bahn, P. (2015). An alternative chronology for the art of Chauvet cave. Antiquity, 89(345), 542553.Google Scholar
Pfeifer, M., Lefebvre, V., Peres, C. A., et al. (2017). Creation of forest edges has a global impact on forest vertebrates. Nature, 551, 187191.Google Scholar
Phillips, J. D. (2011). Predicting modes of spatial change from state-and-transition models. Ecological Modelling, 222, 475484.Google Scholar
Phillips, N. (2017). Power and inequality in the global political economy. International Affairs, 93(2), 429444.Google Scholar
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., et al. (2009). Drought sensitivity of the Amazon rainforest. Science, 323(5919), 13441347.Google Scholar
Picabia, F. (2007). I Am a Beautiful Monster. Poetry, Prose and Provocation. Massachusetts Institute of Technology, Cambridge.Google Scholar
Pickett, S. T. A. and Cadenasso, M. L. (2002). The ecosystem as a multidimensional concept: Meaning, model, and metaphor. Ecosystems, 5, 110.Google Scholar
Pickett, S. T. A. and White, P. S. (eds.) (1985). The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York.Google Scholar
Pickett, S. T. A., Parker, V. T. and Fiedler, P. L. (1992). The new paradigm in ecology: Implications for conservation above the species level. In: Fiedler, P. L. and Jain, S. K. (eds.), Conservation Biology: The Theory and Practice of Nature Conservation, Preservation and Management. Chapman & Hall, New York, pp. 6588.Google Scholar
Pickett, S. T. A., Kolasa, J. and Jones, C. G. (2007). Ecological Understanding: The Nature of Theory and the Theory of Nature, 2nd edition. Elsevier, Amsterdam/Boston/Heidelberg/London.Google Scholar
Pickett, S. T. A., Meiners, S. J. and Cadenasso, M. L. (2013). Domain and propositions of succession theory. In: Scheiner, S. M. and Willig, M. R. (eds.), The Theory of Ecology. The University of Chicago Press, Chicago, IL, pp. 185216.Google Scholar
Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307, 321326.Google Scholar
Pinsky, M. L. and Byler, D. (2015). Fishing, fast growth and climate variability increase the risk of collapse. Proceedings of the Royal Society B: Biological Sciences, 282, 20151053.Google Scholar
Pinsky, M. L., Jensen, O. P., Ricard, D. and Palumbi, S. R. (2011). Unexpected patterns of fisheries collapse in the world’s oceans. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 83178322.Google Scholar
Pires, M. M., Galetti, M., Donatti, C. I., et al. (2014). Reconstructing past ecological networks: The reconfiguration of seed-dispersal interactions after megafaunal extinction. Oecologia, 175(4), 12471256.Google Scholar
Pires, M. M., Koch, P. L., Fariña, R. A., de Aguiar, M. A. M., dos Reis, S. F. and Guimarães, P. R. (2015). Pleistocene megafaunal interaction networks became more vulnerable after human arrival. Proceedings of the Royal Society B: Biological Sciences, 282(1814), 20151367.Google Scholar
Pires, M. M., Guimarães, P. R., Galetti, M. and Jordano, P. (2018). Pleistocene megafaunal extinctions and the functional loss of long‐distance seed‐dispersal services. Ecography, 41, 153163.Google Scholar
Popper, K. R. (1959). The Logic of Scientific Discovery. Hutchinson, London.Google Scholar
Possingham, H. P., Andelman, S. J., Burgman, M. A., Medellín, R. A., Master, L. L. and Keith, D. A. (2002). Limits to the use of threatened species lists. Trends in Ecology & Evolution, 17(11), 503507.Google Scholar
Post, D. M., Doyle, M. W., Sabo, J. L. and Finlay, J. C. (2007). The problem of boundaries in defining ecosystems: A potential landmine for uniting geomorphology and ecology. Geomorphology, 89(1–2 SPEC. ISS.), 111126.Google Scholar
Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O. and Kunin, W. E. (2010). Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345353.Google Scholar
Poulsen, J. R., Clark, C. J., and Palmer, T. M. (2013). Ecological erosion of an Afrotropical forest and potential consequences for tree recruitment and forest biomass. Biological Conservation, 163, 122130.Google Scholar
Powney, G. D., Carvell, C., Edwards, M., et al. (2019). Widespread losses of pollinating insects in Britain. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08974-9.Google Scholar
Prach, K. and Pyšek, P. (1999). How do species dominating in succession differ from others? Journal of Vegetation Science, 10, 383392.Google Scholar
Prada, F., Caroselli, E., Mengoli, S., et al. (2017). Ocean warming and acidification synergistically increase coral mortality. Scientific Reports, 7, 40842.Google Scholar
Premoli, A. C., Vergara, R. A, Souto, C. P., Lara, A. and Newton, A. C. (2003). Lowland valleys shelter the ancient conifer Fitzroya cupressoides in the Central Depression of southern Chile. Journal of the Royal Society of New Zealand, 33(3), 623631.Google Scholar
Price, T. D. and Bar-Yosef, O. (2011). The origins of agriculture: New data, new ideas. Current Anthropology, 52(4), S163S174.Google Scholar
Proctor, J. D. and Larson, B. M. H. (2005). Ecology, complexity and metaphor. BioScience, 55, 10651068.Google Scholar
Psyphago, Dr. (2013). Scientists conclude: ‘No further research is needed’. https://collectivelyunconscious.wordpress.com/2013/01/16/scientists-conclude-no-further-research-is-needed/ (accessed on 6 February 2020).Google Scholar
Pullin, A. S. and Stewart, G. B. (2006). Guidelines for systematic review in conservation and environmental management. Conservation Biology, 20, 16471656.Google Scholar
Pulsford, S. A., Lindenmayer, D. B. and Driscoll, D. A. (2016). A succession of theories: Purging redundancy from disturbance theory. Biological Reviews, 91, 148167.Google Scholar
Queirós, A. M., Fernandes, J. A., Faulwetter, S., et al. (2015). Scaling up experimental ocean acidification and warming research: From individuals to the ecosystem. Global Change Biology, 21, 130143.Google Scholar
Quince, C., Higgs, P. G. and McKane, A. J. (2005). Deleting species from model food webs. Oikos, 110, 283296.Google Scholar
Rabanus-Wallace, M. T., Wooller, M. J., Zazula, G. D., et al. (2017). Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions. Nature Ecology & Evolution, 1, 125.Google Scholar
Racki, G. (2012). The Alvarez impact theory of mass extinction; limits to its applicability and the ‘great expectations syndrome’. Acta Palaeontologica Polonica, 57(4), 681702.Google Scholar
Radford, J. Q., Bennett, A. F. and Cheers, G. J. (2005). Landscape-level thresholds of habitat cover for woodland-dependent birds. Biological Conservation, 124, 317337.Google Scholar
Raffa, K. F., Aukema, B. H., Bentz, B. J., et al. (2008). Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience, 58, 501517.Google Scholar
Rahel, F. J. and Olden, J. D. (2008). Assessing the effects of climate change on aquatic invasive species. Conservation Biology, 22, 521533.Google Scholar
Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., et al. (2011). Man and the last great wilderness: Human impact on the deep sea. PLoS One, 6(8), e22588e22588.Google Scholar
Rasher, D. B. and Hay, M. E. (2010). Chemically rich seaweeds poison corals when not controlled by herbivores. Proceedings of the National Academy of Sciences of the United States of America, 107, 96839688.Google Scholar
Rasher, D. B., Hoey, A. S. and Hay, M. E. (2017). Cascading predator effects in a Fijian coral reef ecosystem. Scientific Reports, 7(1), 15684.Google Scholar
Ratajczak, Z., Nippert, J. B. and Ocheltree, T. W. (2014). Abrupt transition of mesic grassland to shrubland: Evidence for thresholds, alternative attractors, and regime shifts. Ecology, 95(9), 26332645.Google Scholar
Ratajczak, Z., Carpenter, S. R., Ives, A. R., et al. (2018). Abrupt change in ecological systems: Inference and diagnosis. Trends in Ecology & Evolution, 33(7), 513526.Google Scholar
Raudsepp-Hearne, C., Peterson, G. D., Tengö, M., et al. (2010). Untangling the environmentalist’s paradox: Why is human well-being increasing as ecosystem services degrade? BioScience, 60(8), 576589.Google Scholar
Raymond, C. M., Singh, G. G., Benessaiah, K., et al. (2013). Ecosystem services and beyond: Using multiple metaphors to understand human–environment relationships. BioScience, 63(7), 536546.Google Scholar
REDD Monitor. (2019). NGOs oppose the oil industry’s Natural Climate Solutions and demand that Eni and Shell keep fossil fuels in the ground. https://redd-monitor.org/2019/05/14/ (accessed on 9 January 2020).Google Scholar
Redford, K. H. (1992). The empty forest. BioScience, 42, 412422Google Scholar
Redford, K. H., Amato, G., Baillie, J., et al. (2011). What does it mean to successfully conserve a (vertebrate) species? BioScience, 61, 3948.Google Scholar
Redford, K. H., Hulvey, K. B., Williamson, M. A. and Schwartz, M. W. (2018). Assessment of the conservation measures partnership’s effort to improve conservation outcomes through adaptive management. Conservation Biology, 32, 926937.Google Scholar
Reed, J., van Vianen, J., Barlow, J. and Sunderland, T. (2017). Have integrated landscape approaches reconciled societal and environmental issues in the tropics? Land Use Policy, 63, 481492.Google Scholar
Reeves, J. M., Barrows, T. T., Cohen, T. J., et al. (2013). Climate variability over the last 35,000 years recorded in marine and terrestrial archives in the Australian region: An OZ-INTIMATE compilation. Quaternary Science Review, 74, 2134.Google Scholar
Reich, P. B., Tilman, D., Isbell, F., et al. (2012). Impacts of biodiversity loss escalate through time as redundancy fades. Science, 336, 589593.Google Scholar
Resilience Alliance. (2010). Assessing Resilience in Social-Ecological Systems: Workbook for Practitioners. Version 2.0. www.resalliance.org/3871.php.Google Scholar
Resilience Alliance and Santa Fe Institute. (2004). Thresholds and alternate states in ecological and social-ecological systems. www.resalliance.org/index.php/database (accessed on 6 May 2015).Google Scholar
Revenga, C., Brunner, J., Henninger, N., Kassem, K. and Payne, R. (2000). Pilot Analysis of Global Ecosystems. Freshwater Systems. World Resources Institute, Washington, DC.Google Scholar
Rey Benayas, J. M., Newton, A. C., Diaz, A. and Bullock, J. M. (2009). Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science, 325(5944), 11211124.Google Scholar
Richards, M. A., Alvarez, W., Self, S., et al. (2015). Triggering of the largest Deccan eruptions by the Chicxulub impact. GSA Bulletin, 127 (11–12), 15071520.Google Scholar
Richardson, A. J., Bakun, A., Hays, G. C. and Gibbons, M. J. (2009). The jellyfish joyride: Causes, consequences and management responses to a more gelatinous future. Trends in Ecology & Evolution, 24(6), 312322.Google Scholar
Richardson, S. J., Peltzer, D. A., Allen, R. B., McGlone, M. S. and Parfitt, R. L. (2004). Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia, 139, 267276.Google Scholar
Rickles, D., Hawe, P. and Shiell, A. (2007). A simple guide to chaos and complexity. Journal of Epidemiology and Community Health, 61(11), 933937.Google Scholar
Rigler, F. H. (1982). Recognition of the possible: An advantage of empiricism in ecology. Canadian Journal of Fisheries and Aquatic Sciences, 39, 13231331.Google Scholar
Ripple, W. J., Rooney, T. P. and Beschta, R. L. (2010). Large predators, deer, and trophic cascades in boreal and temperate ecosystems. In: Terborgh, J. and Estes, J. A. (eds.), Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature. Island Press, Washington, DC, pp. 141161.Google Scholar
Ripple, W. J., Estes, J. A., Beschta, R. L., et al. (2014). Status and ecological effects of the world’s largest carnivores. Science, 343, 1241484.Google Scholar
Ripple, W. J., Estes, J. A., Schmitz, O. J., et al. (2016a). What is a trophic cascade? Trends in Ecology & Evolution, 31(11), 842849.Google Scholar
Ripple, W. J., Abernethy, K., Betts, M. G., et al. (2016b). Bushmeat hunting and extinction risk to the world’s mammals. Royal Society Open Science, 3(10), 160498.Google Scholar
Ripple, W. J., Wolf, C., Newsome, T. M., et al. (2017). World Scientists’ Warning to Humanity: A Second Notice. BioScience, 67(12), 10261028.Google Scholar
Roberts, R. G., Flannery, T. F., Ayliffe, L. K., et al. (2001). New ages for the last Australian megafauna: Continent-wide extinction about 46,000 years ago. Science, 292(5523), 18881892.Google Scholar
Robinson, G. S., Burney, L. P. and Burney, D. A. (2005). Landscape paleoecology and megafaunal extinction in southeastern New York state. Ecological Monographs, 75, 295315.Google Scholar
Robinson, R. A. and Sutherland, W. J. (2002). Post‐war changes in arable farming and biodiversity in Great Britain. Journal of Applied Ecology, 39, 157176.Google Scholar
Rocha, J. C., Peterson, G., Bodin, Ö. and Levin, S. (2018). Cascading regime shifts within and across scales. Science, 362(6421), 13791383.Google Scholar
Rockström, J., Steffen, W., Noone, K., et al. (2009a). A safe operating space for humanity. Nature, 461, 472475.Google Scholar
Rockström, J., Steffen, W., Noone, K., et al. (2009b). Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14(2), 32. www.ecologyandsociety.org/vol14/iss2/art32/.Google Scholar
Rockström, J., Richardson, K., Steffen, W. and Mace, G. (2018). Planetary boundaries: Separating fact from fiction. A response to Montoya et al. Trends in Ecology & Evolution, 33(4), 233234.Google Scholar
Rodrigues, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M. and Brooks, T. M. (2006). The value of the IUCN Red List for conservation. Trends in Ecology & Evolution, 21, 7176.Google Scholar
Rodríguez, J. P., Blach, J. K. and Rodríguez-Clark, K. M. (2007). Assessing extinction risk in the absence of species-level data: Quantitative criteria for terrestrial ecosystems. Biodiversity and Conservation, 16, 183209.Google Scholar
Rodríguez, J. P., Rodríguez-Clark, K. M., Baillie, J. E., et al. (2011). Establishing IUCN Red List Criteria for threatened ecosystems. Conservation Biology, 25, 2129.Google Scholar
Rodríguez, J. P., Rodríguez-Clark, K. M., Keith, D. A., et al. (2012). IUCN Red List of Ecosystems. S.A.P.I.E.N.S., 5(2). sapiens.revues.org/1286.Google Scholar
Rodriguez-Cabal, M. A., Barrios-Garcia, M. N., Amico, G. C., Aizen, M. A. and Sanders, N. J. (2013). Node-by-node disassembly of a mutualistic interaction web driven by species introductions. Proceedings of the National Academy of Sciences of the United States of America, 110(41), 1650316507.Google Scholar
Rodriguez Iglesias, R. M. and Kothmann, M. M. (1997). Structure and causes of vegetation change in state and transition model applications. Journal of Range Management, 50, 399408.Google Scholar
Roff, G. and Mumby, P. J. (2012). Global disparity in the resilience of coral reefs. Trends in Ecology & Evolution, 27(7), 404413.Google Scholar
Rogers-Bennett, L. and Catton, C. A. (2019). Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Scientific Reports, 9(1), 15050.Google Scholar
Rolett, B. and Diamond, J. (2004). Environmental predictors of pre-European deforestation on Pacific islands. Nature, 431(7007), 443446.Google Scholar
Romero, G. Q., Gonçalves-Souza, T., Kratina, P., et al. (2018). Global predation pressure redistribution under future climate change. Nature Climate Change, 8(12), 10871091.Google Scholar
Roopnarine, P. D. (2006). Extinction cascades and catastrophe in ancient food webs. Paleobiology, 32(1), 119.Google Scholar
Roopnarine, P. D., Angielczyk, K. D., Wang, S. C. and Hertog, R. (2007). Trophic network models explain instability of Early Triassic terrestrial communities. Proceedings of the Royal Society B: Biological Sciences, 274, 20772086.Google Scholar
Röpke, C. P., Amadio, S., Zuanon, J., et al. (2017). Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon. Scientific Reports, 7, 40170.Google Scholar
Rose, D. C., Sutherland, W. J., Amano, T., et al. (2018). The major barriers to evidence-informed conservation policy and possible solutions. Conservation Letters, 11(5), e12564.Google Scholar
Rosenberg, K. V., Dokter, A. M., Blancher, P. J., et al. (2019). Decline of the North American avifauna. Science, 366(6461), 120124.Google Scholar
Ross, L., Arrow, K., Cialdini, R., et al. (2016). The climate change challenge and barriers to the exercise of foresight intelligence. BioScience, 66(5), 363370.Google Scholar
Rowe, J. S. (1997). Defining the ecosystem. Bulletin of the Ecological Society of America, 78, 9597.Google Scholar
Rowe, J. S. and Barnes, B. V. (1994). Geo-ecosystems and bio-ecosystems. Bulletin of the Ecological Society of America, 75, 4041.Google Scholar
Rubenstein, D. R., Rubenstein, D. I., Sherman, P. W. and Gavin, T. A. (2006). Pleistocene park: Does re-wilding North America represent sound conservation in the 21st century? Biological Conservation, 132, 232238.Google Scholar
Rule, S., Brook, B. W., Haberle, S. G., Turney, C. S. M., Kershaw, A. P. and Johnson, C. N. (2012). The aftermath of megafaunal extinction: Ecosystem transformation in Pleistocene Australia. Science, 335, 14831486.Google Scholar
Rull, V., Cañellas-Boltà, N., Saez, A., et al. (2013). Challenging Easter Island’s collapse: The need for interdisciplinary synergies. Frontiers in Ecology and Evolution, 1(3), 15.Google Scholar
Runyan, C. W., D’Odorico, P. and Lawrence, D. (2012). Physical and biological feedbacks of deforestation. Reviews of Geophysics, 50, RG4006.Google Scholar
Ruppert, J. L. W., Travers, M. J., Smith, L. L., Fortin, M.-J. and Meekan, M. G. (2013). Caught in the middle: Combined impacts of shark removal and coral loss on the fish communities of coral Reefs. PLoS One, 8(9), e74648. https://doi.org/10.1371/journal.pone.0074648.Google Scholar
Sabin, P. (2013). The Bet: Paul Ehrlich, Julian Simon and Our Gamble over the Earth’s Future. Yale University Press, New Haven, CT.Google Scholar
Sahasrabudhe, S. and Motter, A. E. (2011). Rescuing ecosystems from extinction cascades through compensatory perturbations. Nature Communications, 2, 170.Google Scholar
Salafsky, N., Margoluis, R., Redford, K. H. and Robinson, J. G. (2002). Improving the practice of conservation: A conceptual framework and research agenda for conservation science. Conservation Biology, 16, 14691479.Google Scholar
Salafsky, N., Salzer, D., Stattersfield, A. J., et al. (2008). A standard lexicon for biodiversity conservation: Unified classifications of threats and actions. Conservation Biology, 22, 897911.Google Scholar
Saltré, F., Rodríguez-Rey, M., Brook, B. W., et al. (2016). Climate change not to blame for late Quaternary megafauna extinctions in Australia. Nature Communications, 7, 10511.Google Scholar
Saltré, F., Chadoeuf, J., Peters, K. J., et al. (2019). Climate-human interaction associated with southeast Australian megafauna-extinction patterns. Nature Communications, 10, 5311. https://doi.org/10.1038/s41467-019-13277-0.Google Scholar
Salomon, A. K., Gaichas, S. K., Shears, N. T., Smith, J. E., Madin, E. M. P. and Gaines, S. D. (2010). Key features and context-dependence of fishery-induced trophic cascades. Conservation Biology, 24(2), 382394.Google Scholar
Sánchez-Bayo, F. and Wyckhuys, K. A. G. (2019a). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 827.Google Scholar
Sánchez-Bayo, F. and Wyckhuys, K. A. G. (2019b). Response to ‘Global insect decline: Comments on Sánchez-Bayo and Wyckhuys (2019)’. Biological Conservation, 233, 334335.Google Scholar
Sanchirico, J. N., Springborn, M. R., Schwartz, M. W. and Doerr, A. N. (2014). Investment and the policy process in conservation monitoring. Conservation Biology, 28, 361371.Google Scholar
Sandbrook, C., Fisher, J. A., Holmes, G., Luque-Lora, R. and Keane, A. (2019). The global conservation movement is diverse but not divided. Nature Sustainability, 2(4), 316323.Google Scholar
Sand-Jensen, K. (2007). How to write consistently boring scientific literature. Oikos, 116, 723727.Google Scholar
Sandom, C. J., Ejrnaes, R., Hansen, M. D. D. and Svenning, J.-C. (2014a). High herbivore density associated with vegetation diversity in interglacial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 111, 41624167.Google Scholar
Sandom, C., Faurby, S., Sandel, B. and Svenning, J.-C. (2014b). Global late Quaternary megafauna extinctions linked to humans, not climate change. Proceedings of the Royal Society B: Biological Sciences, 281, 20133254.Google Scholar
Säterberg, T., Sellman, S. and Ebenman, B. (2013). High frequency of functional extinctions in ecological networks. Nature, 499, 468470.Google Scholar
Sato, C. F. and Lindenmayer, D. B. (2017). Meeting the global ecosystem collapse challenge. Conservation Letters, 11(1), e12348. https://doi.org/10.1111/conl.12348.Google Scholar
Sayer, J. A., Margules, C., Boedhihartono, A. K., et al. (2016). Measuring the effectiveness of landscape approaches to conservation and development. Sustainability Science, 12(3), 465476.Google Scholar
Scharfenberger, U., Mahdy, A. and Adrian, R. (2013). Threshold-driven shifts in two copepod species: Testing ecological theory with observational data. Limnology and Oceanography, 58(2), 741752.Google Scholar
Scheffer, M. (2009). Critical Transitions in Nature and Society. Princeton University Press, Princeton, NJ.Google Scholar
Scheffer, M. and Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends in Ecology & Evolution, 18(12), 648656.Google Scholar
Scheffer, M., Hosper, S. H., Meijer, M.-L., Moss, B. and Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution, 8, 275279.Google Scholar
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. and Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591596.Google Scholar
Scheffer, M., Carpenter, S. R. and de Young, B. (2005). Cascading effects of overfishing marine systems. Trends in Ecology & Evolution, 20(11), 579581.Google Scholar
Scheffer, M., Bascompte, J., Brock, W. A., et al. (2009). Early-warning signals for critical transitions. Nature, 461, 5359.Google Scholar
Scheffer, M., Carpenter, S. R., Lenton, T. M., et al. (2012). Anticipating critical transitions. Science, 338(6105), 344348.Google Scholar
Scheffer, M., Carpenter, S. R., Dakos, V. and van Nes, E. H. (2015). Generic indicators of ecological resilience: Inferring the chance of a critical transition. Annual Review of Ecology, Evolution, and Systematics, 46, 145167.Google Scholar
Scheffers, B. R., de Meester, L., Bridge, T. C. L., et al. (2016). The broad footprint of climate change from genes to biomes to people. Science, 354(6313), aaf7671.Google Scholar
Scheiner, S. M. (2013). The ecological literature, an idea-free distribution. Ecology Letters, 16, 14211423.Google Scholar
Scheiner, S. M. and Willig, M. R. (2011). A general theory of ecology. In: Scheiner, S. M. and Willig, M. R. (eds.), The Theory of Ecology. The University of Chicago Press, Chicago, IL, pp. 318.Google Scholar
Schmidt, N. M., Reneerkens, J., Christensen, J. H., Olesen, M. and Roslin, T. (2019). An ecosystem-wide reproductive failure with more snow in the Arctic. PLoS Biology, 17(10), e3000392. https://doi.org/10.1371/journal.pbio.3000392.Google Scholar
Schmitz, O. J., Hawlena, D. and Trussell, G. C. (2010). Predator control of ecosystem nutrient dynamics. Ecology Letters, 13, 11991209.Google Scholar
Schloss, C. A., Nuñez, T. A. and Lawler, J. J. (2012). Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proceedings of the National Academy of Sciences of the United States of America, 109, 86068611.Google Scholar
Schoene, B., Eddy, M. P., Samperton, K. M., et al. (2019). U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363(6429), 862866.Google Scholar
Schröder, A. (2009). Inference about complex ecosystem dynamics in ecological research and restoration practice. In: Suding, K. N. and Hobbs, R. J. (eds.), New Models for Ecosystem Dynamics and Restoration. Society for Ecological Restoration International. Island Press, Washington, DC, pp. 5062.Google Scholar
Schröder, A., Persson, L. and de Roos, A. M. (2005). Direct experimental evidence for alternative stable states: A review. Oikos, 110, 319.Google Scholar
Schröder, A., Persson, L. and de Roos, A. M. (2012). Complex shifts between food web states in response to whole‐ecosystem manipulations. Oikos, 121, 417427.Google Scholar
Schröter, M., van der Zanden, E. H., van Oudenhoven, A. P., et al. (2014). Ecosystem services as a contested concept: A synthesis of critique and counter‐arguments. Conservation Letters, 7, 514523.Google Scholar
Schubert, J. K. and Bottjer, D. J. (1992). Early Triassic stromatolites as post-mass extinction disaster forms. Geology, 20, 883886.Google Scholar
Schulte, P., Alegret, L, Arenillas, I., et al. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327(5970), 12141218.Google Scholar
Schwartz, M. W., Deiner, K., Forrester, T., et al. (2012). Perspectives on the Open Standards for the practice of conservation. Biological Conservation, 155, 169177.Google Scholar
Schwartz, M. W., Cook, C. N., Pressey, R. L., et al. (2017). Decision support frameworks and tools for conservation. Conservation Letters, 11(2), e12385. https://doi.org/10.1111/conl.12385.Google Scholar
Secretariat of the Convention on Biological Diversity. (2010). Global Biodiversity Outlook 3. Secretariat of the Convention on Biological Diversity, Montréal.Google Scholar
Secretariat of the Convention on Biological Diversity. (2014). Global Biodiversity Outlook 4. Secretariat of the Convention on Biological Diversity, Montréal.Google Scholar
Seekell, D. A., Carpenter, S. R., Cline, T. J. and Pace, M. L. (2012). Conditional heteroskedasticity forecasts regime shift in a whole-ecosystem experiment. Ecosystems, 15, 741747.Google Scholar
Seekell, D. A., Cline, T. J., Carpenter, S. R. and Pace, M. L. (2013). Evidence of alternate attractors from a whole-ecosystem regime shift experiment. Theoretical Ecology, 6, 385394.Google Scholar
Seersholm, F. V, Cole, T. L., Grealy, A., et al. (2018). Subsistence practices, past biodiversity, and anthropogenic impacts revealed by New Zealand-wide ancient DNA survey. Proceedings of the National Academy of Sciences of the United States of America, 115(30), 77717776.Google Scholar
Seidl, R., Thom, D., Kautz, M., et al. (2017). Forest disturbances under climate change. Nature Climate Change, 7, 395.Google Scholar
Sellman, S., Säterberg, T. and Ebenman, B. (2016). Pattern of function extinctions in ecological networks with a variety of interaction types. Theoretical Ecology, 9, 8394.Google Scholar
Sephton, M. A., Visscher, H., Looy, C. V, Verchovsky, A. B. and Watson, J. S. (2009). Chemical constitution of a Permian-Triassic disaster species. Geology, 37(10), 875878.Google Scholar
Settele, J., Scholes, R., Betts, R., et al. (2014). Terrestrial and water systems. In Field, C. B., Barros, V. R., Dokken, D. J., et al. (eds.), Climate Change 2014: Impacts, Adaptation, Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the IPCC. Cambridge University Press, Cambridge, pp. 271359.Google Scholar
Sewell, S. L. (2014). The spatial diffusion of beer from its Sumerian origins to today. In: Patterson, M. and Hoalst-Pullen, N. (eds.), The Geography of Beer. Springer Science and Business Media, Dordrecht, pp. 2329.Google Scholar
Shackelford, N., Starzomski, B. M., Banning, N. C., et al. (2017). Isolation predicts compositional change after discrete disturbances in a global meta-study. Ecography, 40(11), 12561266.Google Scholar
Shanahan, T. M., McKay, N. P., Hughen, K. A., et al. (2015). The time-transgressive termination of the African Humid Period. Nature Geoscience, 8, 140144.Google Scholar
Sheldon, K. S. (2019). Climate change in the tropics: Ecological and evolutionary responses at low latitudes. Annual Review of Ecology, Evolution, and Systematics, 50(1). https://doi.org/10.1146/annurev-ecolsys-110218-025005.Google Scholar
Shortall, C. R., Moore, A., Smith, E., Hall, M. J., Woiwod, I. P., and Harrington, R. (2009). Long-term changes in the abundance of flying insects. Insect Conservation and Diversity, 2, 251260.Google Scholar
Shurin, J. B., Borer, E. T., Seabloom, E. W., et al. (2002). A cross‐ecosystem comparison of the strength of trophic cascades. Ecology Letters, 5, 785791.Google Scholar
Shvidenko, A., Barber, C. V., Persson, R., et al. (2005). Forest and woodland systems. In: Hassan, R., Scholes, R. and Ash, N. (eds.), Ecosystems and Human Well-being: Current State and Trends. Millennium Ecosystem Assessment, vol. 1. Island Press, Washington, DC, pp. 585621.Google Scholar
Silla, F., Fraver, S., Lara, A., Allnutt, T. R. and Newton, A. C. (2002). Regeneration and stand dynamics of Fitzroya cupressoides (Cupressaceae) in the Central Depression of Chile. Forest Ecology and Management, 165, 213224.Google Scholar
Silvério, D. V., Brando, P. M., Balch, J. K., et al. (2013). Testing the Amazon savannization hypothesis: Fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120427.Google Scholar
Simberloff, D. (2006). Invasional meltdown 6 years later: Important phenomenon, unfortunate metaphor, or both? Ecology Letters, 9, 912919.Google Scholar
Simberloff, D. and Von Holle, B. (1999). Positive interactions of nonindigenous species: Invasional meltdown? Biological Invasions, 1, 2132.Google Scholar
Simenstad, C., Reed, D. and Ford, M. (2006). When is restoration not?: Incorporating landscape-scale processes to restore self-sustaining ecosystems in coastal wetland restoration. Ecological Engineering, 26(1), 2739.Google Scholar
Simon, J. L. (1982). Paul Ehrlich saying it is so doesn’t make it so. Social Science Quarterly, 63(2), 381385.Google Scholar
Skeffington, R. A. (1999). The use of critical loads in environmental policy making: A critical appraisal. Environmental Policy Analysis, 33, 245252.Google Scholar
Smith, A. B. (2001). Large-scale heterogeneity of the fossil record: Implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 356(1407), 351367.Google Scholar
Smith, F. A., Hammond, J. I., Balk, M. A., et al. (2016a). Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget. Proceedings of the National Academy of Sciences of the United States of America, 113, 874879.Google Scholar
Smith, F. A., Tomé, C. P., Elliott Smith, E. A., et al. (2016b). Unraveling the consequences of the terminal Pleistocene megafauna extinction on mammal community assembly. Ecography, 39, 223239.Google Scholar
Smith, J. E., Hunter, C. L. and Smith, C. M. (2010). The effects of top-down versus bottom-up control on benthic coral reef community structure. Oecologia, 163, 497507.Google Scholar
Smith, M. D., Knapp, A. K. and Collins, S. L. (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 32793289.Google Scholar
Smith, P., Albanito, F., Bell, M., et al. (2012). Systems approaches in global change and biogeochemistry research. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1586), 311 LP-321.Google Scholar
Snyder-Beattie, A. E., Ord, T. and Bonsall, M. B. (2019). An upper bound for the background rate of human extinction. Scientific Reports, 9(1), 11054.Google Scholar
Sober, E. (2015). Is the scientific method a myth? Perspectives from the history and philosophy of science. MÈTODE Science Studies Journal, 5, 195199.Google Scholar
Society for Ecological Restoration International Science & Policy Working Group. (2004). The SER International Primer on Ecological Restoration. Society for Ecological Restoration, Tucson, AZ.Google Scholar
Soja, A. J., Tchebakova, N. M., French, N. H. F., et al. (2006). Climate-induced boreal forest change: Predictions versus current observations. Global and Planetary Change, 56, 274296.Google Scholar
Solé, R. V. and Montoya, J. M. (2001). Complexity and fragility in ecological networks. Proceedings of the Royal Society B: Biological Sciences, 268, 20392045.Google Scholar
Solé, R. V., Montoya, J. M. and Erwin, D. H. (2002). Recovery after mass extinction: Evolutionary assembly in large-scale biosphere dynamics. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 357(1421), 697707.Google Scholar
Soulé, M. (2013). The ‘New Conservation’. Conservation Biology, 27(5), 895897.Google Scholar
Soulé, M. and Lease, G. (1995). Reinventing Nature? Island Press, Washington, DC.Google Scholar
Sousa, W. P. (1984). The role of disturbance in natural communities. Annual Review of Ecology and Systematics, 15, 353391.Google Scholar
Sousa, W. P. and Connell, J. H. (1985). Further comments on the evidence for multiple stable points in natural communities. The American Naturalist, 125(4), 612615.Google Scholar
Souter, D. W. and Lindén, O. (2000). The health and future of coral reef systems. Ocean and Coastal Management, 43(8), 657688.Google Scholar
Spake, R., Ezard, T., Martin, P., Newton, A. C. and Doncaster, C. P. (2015). A meta-analysis of functional group responses to forest recovery outside of the tropics. Conservation Biology, 29(6), 16951703.Google Scholar
Spears, B. M., Futter, M. N., Jeppesen, E., et al. (2017). Ecological resilience in lakes and the conjunction fallacy. Nature Ecology & Evolution, 1(11), 16161624.Google Scholar
Spiesman, B. J. and Inouye, B. D. (2013). Habitat loss alters the architecture of plant–pollinator interaction networks. Ecology, 94(12), 26882696.Google Scholar
Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. and Marsham, J. H. (2018). The effects of tropical vegetation on rainfall. Annual Review of Environment and Resources, 43, 193218.Google Scholar
Springer, A. M., van Vliet, G. B., Bool, N., et al. (2018). Transhemispheric ecosystem disservices of pink salmon in a Pacific Ocean macrosystem. Proceedings of the National Academy of Sciences of the United States of America, 115, E5038E5045.Google Scholar
Staal, A., van Nes, E. H., Hantson, S., et al. (2018). Resilience of tropical tree cover: The roles of climate, fire, and herbivory. Global Change Biology, 24(11), 50965109. https://doi.org/10.1111/gcb.14408.Google Scholar
Standage, T. (2005). A History of the World in 6 Glasses. Walker and Company, New YorkGoogle Scholar
Standish, R. J., Hobbs, R. J., Mayfield, M. M., et al. (2014). Resilience in ecology: Abstraction, distraction, or where the action is? Biological Conservation, 177, 4351.Google Scholar
Stanley, E. H., Powers, S. M. and Lottig, N. R. (2010). The evolving legacy of disturbance in stream ecology: Concepts, contributions and coming challenges. Journal of the North American Benthological Society, 29(1), 6783.Google Scholar
Staver, A. C. and Bond, W. J. (2014). Is there a “browse trap”? Dynamics of herbivore impacts on trees and grasses in an African savanna. Journal of Ecology, 102(3), 595602.Google Scholar
Staver, A. C. and Hansen, M. C. (2015). Analysis of stable states in global savannas: Is the CART pulling the horse? – a comment. Global Ecology and Biogeography, 24, 985987.Google Scholar
Staver, A. C., Archibald, S. and Levin, S. A. (2011). The global extent and determinants of savanna and forest as alternative biome states. Science, 334(6053), 230232.Google Scholar
Steadman, D. W. (1995). Prehistoric extinctions of Pacific Island birds: Biodiversity meets zooarchaeology. Science, 267, 11231130.Google Scholar
Steffen, W., Richardson, K., Rockström, J., et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 736.Google Scholar
Steffen, W., Rockström, J., Richardson, K., et al. (2018). Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 115(33), 82528259.Google Scholar
Stephens, S. S. and Wagner, M. R. (2007). Forest plantations and biodiversity: A fresh perspective. Journal of Forestry, 105(6), 307313.Google Scholar
Stevenson, P. R. and Guzman-Caro, D. C. (2010). Nutrient transport within and between habitats through seed dispersal processes by woolly monkeys in north-western Amazonia. American Journal of Primatology, 72, 9921003.Google Scholar
Stigall, A. L. (2012). Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction”. GSA Today, 22(1), 49.Google Scholar
Stoeckl, N., Hicks, C. C., Mills, M., et al. (2011). The economic value of ecosystem services in the Great Barrier Reef: Our state of knowledge. Annals of the New York Academy of Sciences, 1219(1), 113133.Google Scholar
Stokstad, E. (2009). Detente in the fisheries war. Science, 324, 170171.Google Scholar
Strayer, D. L. (2010). Alien species in fresh waters: Ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology, 55, 152174.Google Scholar
Strona, G. and Lafferty, K. D. (2016). Environmental change makes robust ecological networks fragile. Nature Communications, 7, 12462.Google Scholar
Stuart, A. J. and Lister, A. M. (2012). Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis in the context of late Quaternary megafaunal extinctions in northern Eurasia. Quaternary Science Reviews, 51, 117.Google Scholar
Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. and Edgar, G. J. (2018). Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature, 560(7716), 9296.Google Scholar
Suding, K. N. (2011). Toward an era of restoration in ecology: Successes, failures, and opportunities ahead. Annual Review of Ecology, Evolution, and Systematics, 42, 465487.Google Scholar
Suding, K. and Gross, K. (2006). The dynamic nature of ecological systems: Multiple states and restoration trajectories. In: Falk, D., Palmer, M. and Zedler, J. (eds.), Foundations of Restoration Ecology. Island Press, Washington, DC, pp. 190209.Google Scholar
Suding, K. N. and Hobbs, R. J. (2009). Models of ecosystem dynamics as frameworks for restoration ecology. In: Suding, K. N. and Hobbs, R. J. (eds.), New Models for Ecosystem Dynamics and Restoration. Society for Ecological Restoration International. Island Press, Washington, DC, pp. 321.Google Scholar
Suding, K. N., Gross, K. L. and Houseman, G. R. (2004). Alternative states and positive feedbacks in restoration ecology. Trends in Ecology & Evolution, 19(1), 4653.Google Scholar
Suding, K., Higgs, E., Palmer, M., et al. (2015). Committing to ecological restoration. Science, 348, 638640.Google Scholar
Suich, H., Howe, C. and Mace, G. (2015). Ecosystem services and poverty alleviation: A review of the empirical links. Ecosystem Services, 12, 137147.Google Scholar
Sutherland, J. P. (1990). Perturbations, resistance, and alternative views of the existence of multiple stable points in nature. The American Naturalist, 136, 270275.Google Scholar
Sutherland, W. J. (2000). The Conservation Handbook. Research, Management and Policy. Blackwell Science, Oxford.Google Scholar
Sutherland, W. J., Pullin, A. S., Dolman, P. M. and Knight, T. M. (2004). The need for evidence-based conservation. Trends in Ecology & Evolution, 19, 305308.Google Scholar
Sutherland, W. J., Freckleton, R. P., Godfray, H. C. J., et al. (2013). Identification of 100 fundamental ecological questions. Journal of Ecology, 101, 5867.Google Scholar
Suweis, S., Simini, F., Banavar, J. R. and Maritan, A. (2013). Emergence of structural and dynamical properties of ecological mutualistic networks. Nature, 500, 449452.Google Scholar
Swann, A. L. S., Fung, I. Y., Liu, Y. and Chiang, J. C. H. (2014). Remote vegetation feedbacks and the mid-Holocene Green Sahara. Journal of Climate, 27(13), 48574870.Google Scholar
Swift, T. L. and Hannon, S. J. (2010). Critical thresholds associated with habitat loss: A review of the concepts, evidence, and applications. Biological Reviews, 85, 3553.Google Scholar
Szirmai, A. and Verspagen, B. (2015). Manufacturing and economic growth in developing countries, 1950–2005. Structural Change and Economic Dynamics, 34, 4659.Google Scholar
Szmant, A. M. (2001). Why are coral reefs world-wide becoming overgrown by algae? Algae, algae everywhere, and nowhere a bite to eat! Coral Reefs, 19, 299302.Google Scholar
Tainter, J. A. (2004). Plotting the downfall of society. Nature, 427(6974), 488489.Google Scholar
Tallis, H. and Lubchenko, J.; 238 cosignatories. (2014). A call for inclusive conservation. Nature, 515, 2728.Google Scholar
Tang, S., Pawar, S. and Allesina, S. (2014). Correlation between interaction strengths drives stability in large ecological networks. Ecology Letters, 17, 10941100.Google Scholar
Tanner, T., Lewis, D., Wrathall, D., et al. (2015). Livelihood resilience in the face of climate change. Nature Climate Change, 5, 2326.Google Scholar
Tansley, A. G. (1935). The use and abuse of vegetational concepts and terms. Ecology, 16, 284307.Google Scholar
Taubert, F., Fischer, R., Groeneveld, J., et al. (2018). Global patterns of tropical forest fragmentation. Nature, 554(7693), 519522.Google Scholar
Taylor, J., Vanni, M. J. and Flecker, A. S. (2015). Top-down and bottom-up interactions in freshwater ecosystems: Emerging complexities. In: Hanley, T. and La Pierre, K. (eds.), Trophic Ecology: Bottom-Up and Top-Down Interactions across Aquatic and Terrestrial Systems. Ecological Reviews. Cambridge: Cambridge University Press, pp. 5585.Google Scholar
Taylor, P. (2009). Re-wilding the grazers: Obstacles to the ‘wild’ in wildlife management. British Wildlife, June 2009, 50–55.Google Scholar
Temperton, V. M., Hobbs, R. J., Nuttle, T. and Halle, S. (eds.). (2004). Assembly Rules and Restoration Ecology. Bridging the Gap between Theory and Practice. Society for Ecological Restoration International. Island Press, Washington, DC, and London.Google Scholar
Tennant, J. P., Mannion, P. D., Upchurch, P., Sutton, M. D. and Price, G. D. (2017). Biotic and environmental dynamics through the Late Jurassic–Early Cretaceous transition: Evidence for protracted faunal and ecological turnover. Biological Reviews, 92, 776814.Google Scholar
Tepley, A. J., Veblen, T. T., Perry, G. L. W., et al. (2016). Positive feedbacks to fire-driven deforestation following human colonization of the South Island of New Zealand. Ecosystems, 19(8), 13251344.Google Scholar
Terborgh, J. W. (2015). Toward a trophic theory of species diversity. Proceedings of the National Academy of Sciences of the United States of America, 112(37), 1141511422.Google Scholar
Terborgh, J. and Estes, J. A. (eds.). (2010). Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature. Island Press, Washington, DC.Google Scholar
Terborgh, J., Lopez, L., Nuñez, P., et al. (2001). Ecological meltdown in predator-free forest fragments. Science, 294(5548), 19231926.Google Scholar
Thébault, E. and Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329, 853856.Google Scholar
Thébault, E., Huber, V. and Loreau, M. (2007). Cascading extinctions and ecosystem functioning: Contrasting effects of diversity depending on food web structure. Oikos, 116, 163173.Google Scholar
Thomas, C. D., Moller, H., Plunkett, G. M. and Harris, R. J. (1990). The prevalence of introduced Vespula vulgaris wasps in a New Zealand beech forest community. New Zealand Journal of Ecology, 13(1), 6372.Google Scholar
Thomas, C. D., Jones, T. H. and Hartley, S. E. (2019). ‘Insectageddon’: A call for more robust data and rigorous analyses. Global Change Biology, 25(6), 18911892. https://doi.org/10.1111/gcb.14608.Google Scholar
Thompson, S. L., Govindasamy, B., Mirin, A., et al. (2004). Quantifying the effects of CO2‐fertilized vegetation on future global climate and carbon dynamics. Geophysical Research Letters, 31, L23211.Google Scholar
Thunberg, G. (2019). No One Is Too Small to Make a Difference. Penguin Books, London.Google Scholar
Tickler, D., Meeuwig, J. J., Palomares, M.-L., Pauly, D. and Zeller, D. (2018). Far from home: Distance patterns of global fishing fleets. Science Advances, 4, r3279.Google Scholar
Tilman, D., Reich, P. B. and Knops, J. M. H. (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 441(7093), 629632.Google Scholar
Tilman, D., Isbell, F. and Cowles, J. M. (2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45(1), 471493.Google Scholar
Tilman, D., Clark, M., Williams, D. R., Kimmel, K., Polasky, S. and Packer, C. (2017). Future threats to biodiversity and pathways to their prevention. Nature, 546(7656), 7381.Google Scholar
Touboul, J. D., Staver, A. C. and Levin, S. A. (2018). On the complex dynamics of savanna landscapes. Proceedings of the National Academy of Sciences of the United States of America, 115(7), E1336E1345.Google Scholar
Trueman, C. N., Field, J. H, Dortch, J., Charles, B. and Wroe, S. (2005). Prolonged co-existence of humansand megafauna in Pleistocene Australia. Proceedings of the National Academy of Sciences of the United States of America, 182, 83818385.Google Scholar
Turchin, P. (2010). Political instability may be a contributor in the coming decade. Nature, 463(7281), 608.Google Scholar
Turner, I. M., Tan, H. T. W., Wee, Y. C., et al. (1994). A study of plant species extinction in Singapore: Lessons for the conservation of tropical biodiversity. Conservation Biology, 8, 705712.Google Scholar
Turvey, S. T. and Risley, C. L. (2006). Modelling the extinction of Steller’s sea cow. Biology Letters, 2, 9497.Google Scholar
Twitchett, R. J. (2007). The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 132144.Google Scholar
Twitchett, R. J., Looy, C. V, Morante, R., Visscher, H. and Wignall, P. B. (2001). Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology, 29(4), 351354.Google Scholar
Twitchett, R. J., Krystyn, L., Baud, A., Wheeley, J. R. and Richoz, S. (2004). Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology, 32, 805808.Google Scholar
Tylianakis, J. M., Didham, R. K., Bascompte, J. and Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11(12), 13511363.Google Scholar
Tyukavina, A., Hansen, M. C., Potapov, P. V., Krylov, A. M. and Goetz, S. J. (2015). Pan-tropical hinterland forests: Mapping minimally disturbed forests. Global Ecology and Biogeography, 25(2), 151163.Google Scholar
UNEP. (2012). GEO 5 Global Environment Outlook. United Nations Environment Programme, Nairobi, Kenya.Google Scholar
Urban, M. C. (2019). Projecting biological impacts from climate change like a climate scientist. WIREs Climate Change, 10(4), e585. https://doi.org/10.1002/wcc.585.Google Scholar
Vajda, V., Raine, J. I. and Hollis, C. J. (2001). Indication of global deforestation at the Cretaceous-Tertiary boundary by New Zealand fern spike. Science, 294, 17001702.Google Scholar
Valiente-Banuet, A. and Verdú, M. (2013). Human impacts on multiple ecological networks act synergistically to drive ecosystem collapse. Frontiers in Ecology and the Environment, 11, 408413.Google Scholar
Valiente‐Banuet, A., Aizen, M. A., Alcántara, J. M., et al. (2015). Beyond species loss: The extinction of ecological interactions in a changing world. Functional Ecology, 29, 299307.Google Scholar
Valladares, G., Cagnolo, L. and Salvo, A. (2012). Forest fragmentation leads to food web contraction. Oikos, 121(2), 299305.Google Scholar
Vale, R. D. (2013). The value of asking questions. Molecular Biology of the Cell, 24(6), 680682.Google Scholar
Valone, T. J. and Barber, N. A. (2008). An empirical evaluation of the insurance hypothesis in diversity–stability models. Ecology, 89(2), 522531.Google Scholar
van Altena, C., Hemerik, L. and de Ruiter, P. C. (2016). Food web stability and weighted connectance: The complexity-stability debate revisited. Theoretical Ecology, 9(1), 4958.Google Scholar
van Auken, O. W. (2000). Shrub invasions of North American semiarid grasslands. Annual Review of Ecology and Systematics, 31, 197215.Google Scholar
van de Leemput, I. A., Hughes, T. P., van Nes, E. H. and Scheffer, M. (2016). Multiple feedbacks and the prevalence of alternate stable states. Coral Reefs 35, 857865.Google Scholar
van der Ent, R. J., Savenije, H. H. G., Schaefli, B. and Steele-Dunne, S. C. (2010). Origin and fate of atmospheric moisture over continents. Water Resources Research, 46(9), W09525.Google Scholar
van der Heide, T., van Nes, E. H., Geerling, G. W., Smolders, A. J. P., Bouma, T. J. and van Katwijk, M. M. (2007). Positive feedbacks in seagrass ecosystems: Implications for success in conservation and restoration. Ecosystems, 10, 13111322.Google Scholar
van der Kaars, S., Miller, G. H., Turney, C. S. M., et al. (2017). Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nature Communications, 8, 14142.Google Scholar
Vandermeer, J. (2011). The inevitability of surprise in agroecosystems. Ecological Complexity, 8(4), 377382.Google Scholar
Vandermeer, J., de la Cerda, I. G., Perfecto, I., Boucher, D., Ruiz, J. and Kaufmann, A. (2004). Multiple basins of attraction in a tropical forest: Evidence for nonequilibrium community structure. Ecology, 85, 575579.Google Scholar
van der Putten, W. H., Bardgett, R. D., Bever, J. D., et al. (2013). Plant–soil feedbacks: The past, the present and future challenges. Journal of Ecology, 101, 265276.Google Scholar
van de Schootbrugge, B., Payne, J. L., Tomasovych, A., et al. (2008). Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event. Geochemistry, Geophysics, Geosystems, 9(4). https://doi.org/10.1029/2007GC001914.Google Scholar
van Dover, C. L., Aronson, J., Pendleton, L., et al. (2014). Ecological restoration in the deep sea: Desiderata. Marine Policy, 44, 98106.Google Scholar
van Gerven, L. P. A., Kuiper, J. J., Janse, J. H., et al. (2016). How regime shifts in connected aquatic ecosystems are affected by the typical downstream increase of water flow. Ecosystems, 20, 733744.Google Scholar
van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., et al. (2009). Widespread increase of tree mortality rates in the western United States. Science, 323, 521524.Google Scholar
van Nes, E. H., Hirota, M., Holmgren, M. and Scheffer, M. (2014). Tipping points in tropical tree cover: Linking theory to data. Global Change Biology, 20(3), 10161021.Google Scholar
van Nes, E. H., Arani, B. M., Staal, A., et al. (2016). What do you mean, “tipping point”?. Trends in Ecology & Evolution, 31(12), 902904.Google Scholar
van Nes, E. H., Staal, A., Hantson, S., et al. (2018). Fire forbids fifty‐fifty forest. PLoS One, 18, e0191027.Google Scholar
van Strien, A. J., van Swaay, C. A. M., van Strien-van Liempt, W. T. F. H., Poot, M. J. M. and WallisDeVries, M. F. (2019). Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biological Conservation, 234, 116122.Google Scholar
van Valkenburgh, B., Hayward, M. W., Ripple, W. J., Meloro, C. and Roth, V. L. (2015). The impact of large terrestrial carnivores on Pleistocene ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 113(4), 862867.Google Scholar
Vanni, M. J. (2002). Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics, 33, 341370.Google Scholar
Vanwalleghem, T., Gómez, J. A., Infante Amate, J., et al. (2017). Impact of historical land use and soil management change on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene, 17, 1329.Google Scholar
Veblen, T. T. (2007). Temperate forests of the Southern Andean Region. In: Veblen, T. T., Young, K. R. and Orme, A. R. (eds.), The Physical Geography of South America. Oxford University Press, Oxford, pp. 217231.Google Scholar
Veenendaal, E. M., Torello-Raventos, M., Miranda, H. S., et al. (2018). On the relationship between fire regime and vegetation structure in the tropics. New Phytologist, 218(1), 153166.Google Scholar
Veldman, J. W. (2016). Clarifying the confusion: Old-growth savannahs and tropical ecosystem degradation. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150306.Google Scholar
Veldman, J. W., Buisson, E., Durigan, G., et al. (2015). Toward an old-growth concept for grasslands, savannas, and woodlands. Frontiers in Ecology and the Environment, 13(3), 154162.Google Scholar
Veldman, J. W., Aleman, J. C., Alvarado, S. T., et al. (2019). Comment on ‘The global tree restoration potential’. Science, 366(6463), eaay7976. https://doi.org/10.1126/science.aay7976.Google Scholar
Vellend, M., Baeten, L., Myers-Smith, I. H., et al. (2013). Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences of the United States of America, 110(48), 1945619459.Google Scholar
Vera, F. W. M. (2000). Grazing Ecology and Forest History. CABI Publishing, Wallingford.Google Scholar
Vera, F. W. M. (2009). Large-scale nature development – The Oostvaardersplassen. British Wildlife, June 2009, 28–36.Google Scholar
Verdonschot, P. F. M., Spears, B. M., Feld, C. K., et al. (2013). A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters. Hydrobiologia, 704(1), 453474.Google Scholar
Verdy, A and Amarasekare, P. (2010). Alternative stable states in communities with intraguild predation. Journal of Theoretical Biology, 262(1), 116128.Google Scholar
Veríssimo, D., MacMillan, D. C., Smith, R. J., Crees, J. and Davies, Z. G. (2014). Has climate change taken prominence over biodiversity conservation? BioScience, 64(7), 625629.Google Scholar
Vermeij, G. J. (2004). Ecological avalanches and the two kinds of extinction. Evolutionary Ecology Research, 6, 315337.Google Scholar
Veraverbeke, S., Rogers, B. M., Goulden, M. L., et al. (2017). Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 7(7), 529534.Google Scholar
Vetter, D., Rűcker, G. and Storch, I. (2013). Meta-analysis: A need for well-defined usage in ecology and conservation biology. Ecosphere, 4(6), 74.Google Scholar
Vieira, M. C. and Almeida-Neto, M. (2014). A simple stochastic model for complex coextinctions in mutualistic networks: Robustness decreases with connectance. Ecology Letters, 18(2), 144152.Google Scholar
Villnäs, A., Norkko, J., Hietanen, S., Josefson, A. B., Lukkari, K. and Norkko, A. (2013). The role of recurrent disturbances for ecosystem multifunctionality. Ecology, 94, 22752287.Google Scholar
Visscher, H., Sephton, M. A. and Looy, C. V. (2011). Fungal virulence at the time of the end-Permian biosphere crisis? Geology, 39(9), 883886.Google Scholar
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555 561.Google Scholar
Wagner, D. L. (2019). Global insect decline: Comments on Sánchez-Bayo and Wyckhuys (2019). Biological Conservation, 233, 332333.Google Scholar
Wake, D. B. and Vredenburg, V. T. (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences of the United States of America, 105, 1146611473.Google Scholar
Walker, L. R. and del Moral, R. (2003). Primary Succession and Ecosystem Rehabilitation. Cambridge University Press, Cambridge.Google Scholar
Walker, M., Head, M. J., Berkelhammer, M., et al. (2018). Formal ratification of the subdivision of the Holocene Series/ Epoch (Quaternary System/Period): Two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/ subseries. Episodes. Journal of International Geoscience, 41(4), 213223. https://doi.org/10.18814/epiiugs/2018/018016.Google Scholar
Wallace-Wells, D. (2019). The Uninhabitable Earth. Penguin Books, London.Google Scholar
Walther, G.-R. (2010). Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 20192024.Google Scholar
Wang, P., Poe, G. L. and Wolf, S. A. (2017). Payments for ecosystem services and wealth distribution. Ecological Economics, 132, 6368.Google Scholar
Wang, R., Dearing, J. A., Langdon, P. G., et al. (2012). Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature, 492(7429), 419422.Google Scholar
Wang, S. and Loreau, M. (2016). Biodiversity and ecosystem stability across scales in metacommunities. Ecology Letters, 19(5), 510518.Google Scholar
Wardle, D. A. (2016). Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? Journal of Vegetation Science, 27, 646653.Google Scholar
Wardle, D. A. and Zackrisson, O. (2005). Effects of species and functional group loss on island ecosystem properties. Nature, 435, 806810.Google Scholar
Wardle, D. A., Zackrisson, O., Hörnberg, G. and Gallet, C. (1997). Influence of island area on ecosystem properties. Science, 277, 12961299.Google Scholar
Wardle, D. A., Bonner, K. I., Barker, G. M., et al. (1999). Plant removals in perennial grassland: Vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecological Monographs, 69, 535568.Google Scholar
Wardle, D. A., Huston, M. A., Grime, J. P., et al. (2000). Biodiversity and ecosystem function: An issue in ecology. Bulletin of the Ecological Society of America, July 2000, 235–239.Google Scholar
Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H. and Wall, D. H. (2004a). Ecological linkages between aboveground and belowground biota. Science, 304, 16291633.Google Scholar
Wardle, D. A., Walker, L. R., and Bardgett, R. D. (2004b). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science, 305(5683), 509513.Google Scholar
Wardle, D. A., Karl, B. J., Beggs, J. R., et al. (2010). Determining the impact of scale insect honeydew, and invasive wasps and rodents, on the decomposer subsystem in a New Zealand beech forest. Biological Invasions, 12(8), 26192638.Google Scholar
Wardle, D. A., Bardgett, R. D., Callaway, R. M. and van der Putten, W. H. (2011). Terrestrial ecosystem responses to species gains and losses. Science, 332(6035), 12731277.Google Scholar
Wardle, D. A., Jonsson, M., Bansal, S., Bardgett, R. D., Gundale, M. J. and Metcalfe, D. B. (2012). Linking vegetation change, carbon sequestration and biodiversity: Insights from island ecosystems in a long‐term natural experiment. Journal of Ecology, 100, 1630.Google Scholar
Warman, L. and Moles, A. T. (2009). Alternative stable states in Australia’s Wet Tropics: A theoretical framework for the field data and a field-case for the theory. Landscape Ecology, 24, 113.Google Scholar
Warren, R., Price, J., VanDerWal, J., Cornelius, S. and Sohl, H. (2018). The implications of the United Nations Paris agreement on climate change for globally significant biodiversity areas. Climatic Change, 147(3–4), 395409.Google Scholar
Watson, J. E. M., Evans, T., Venter, O., et al. (2018). The exceptional value of intact forest ecosystems. Nature Ecology & Evolution, 2(4), 599610.Google Scholar
Watson, R. (2017). A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Scientific Data, 4, 170039 https://doi.org/10.1038/sdata.2017.39.Google Scholar
Watson, R. and Pauly, D. (2001). Systematic distortions in world fisheries catch trends. Nature, 414, 534536.Google Scholar
Watson, S. C. L. and Newton, A. C. (2018). Dependency of businesses on flows of ecosystem services: A case study from the county of Dorset, UK. Sustainability, 10, 1368.Google Scholar
Watt, A. (1947). Pattern and process in the plant community. Journal of Ecology, 35, 122.Google Scholar
Watt, A. (1955). Bracken versus heather, a study in plant sociology. Journal of Ecology, 43, 490506.Google Scholar
Watt, K. E. F. (1971). Dynamics of populations: A synthesis. In: den Boer, P. J. and Gradwell, G. R. (eds.), Dynamics of Populations: A Synthesis. Centre for Agricultural Publishing and Documentation, Wageningen, Netherlands, pp. 568580.Google Scholar
Wei, H., Shen, J., Schoepfer, S. D., Krystyn, L., Richoz, S. and Algeo, T. J. (2015). Environmental controls on marine ecosystem recovery following mass extinctions, with an example from the Early Triassic. Earth-Science Reviews, 149, 108135.Google Scholar
Webster, J. M., Braga, J. C., Humblet, M., et al. (2018). Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years. Nature Geoscience, 11(6), 426432.Google Scholar
Weed, A. S., Ayres, M. P. and Hicke, J. A. (2013). Consequences of climate change for biotic disturbances in North American forests. Ecological Monographs, 83, 441470.Google Scholar
Weiss, H. and Bradley, R. S. (2001). What drives societal collapse? Science, 291, 609610.Google Scholar
Weisse, M. and Goldman, E. D. (2019). The world lost a Belgium-sized area of primary rainforests last year. World Resources Institute. www.wri.org/blog/2019/04/world-lost-belgium-sized-area-primary-rainforests-last-year (accessed on 2 July 2019).Google Scholar
Weng, W., Luedeke, M. K. B., Zemp, D. C., Lakes, T. and Kropp, J. P. (2018). Aerial and surface rivers: Downwind impacts on water availability from land use changes in Amazonia. Hydrology and Earth System Sciences, 22, 911927.Google Scholar
Westaway, M. C., Olley, J. and Grün, R. (2017). At least 17,000 years of coexistence: Modern humans and megafauna at the Willandra Lakes, South-Eastern Australia. Quaternary Science Reviews, 157, 206211.Google Scholar
Westman, W. E. (1977). How much are nature’s services worth? Science, 197, 960964.Google Scholar
Westoby, M. and Burgman, M. (2006). Climate change as a threatening process. Austral Ecology, 31, 549550.Google Scholar
Westoby, M., Walker, B. and Noy-Meir, I. (1989). Opportunistic management for rangelands not at equilibrium. Journal of Range Management, 42, 266274.Google Scholar
Westwood, A., Reuchlin-Hugenholtz, E. and Keith, D. M. (2014). Re-defining recovery: A generalized framework for assessing species recovery. Biological Conservation, 172, 155162.Google Scholar
Whitehouse, N. J. and Smith, D. (2010). How fragmented was the British Holocene wildwood? Perspectives on the ‘Vera’ grazing debate from the fossil beetle record. Quaternary Science Reviews, 29(3), 539553.Google Scholar
Whiles, M. R., Lips, K. R., Pringle, C. M., et al. (2006). The effects of amphibian population declines on the structure and function of Neo-tropical stream ecosystems. Frontiers in Ecology and the Environment, 4, 2734.Google Scholar
Whiles, M. R., Hall, R. O. Jr., Dodds, W. K., et al. (2013). Disease-driven amphibian declines alter ecosystem processes in a tropical stream. Ecosystems, 16, 146157.Google Scholar
White, P. S. and Pickett, S. T. A. (1985). Natural disturbance and patch dynamics: An introduction. In: Pickett, S. T. A. and White, P. S. (eds.), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York, pp. 313.Google Scholar
Whitt, C. (2017). Dying and drying: The case of Bolivia’s Lake Poopó. NACLA. https://nacla.org/news/2017/06/30/dying-and-drying-case-bolivia%E2%80%99s-lake-poop%C3%B3.Google Scholar
Wicklum, D. and Davies, R. W. (1995). Ecosystem health and integrity? Canadian Journal of Botany, 73(7), 9971000.Google Scholar
Wickramasinghe, L. P., Harris, S., Jones, G. and Vaughan, N. (2003). Bat activity and species richness on organic and conventional farms: Impact of agricultural intensification. Journal of Applied Ecology, 40, 984993.Google Scholar
Wilkinson, C. (2008). Status of Coral Reefs of the World: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Center, Townsville.Google Scholar
Wilkinson, G. M., Carpenter, S. R., Cole, J. J., et al. (2018). Early warning signals precede cyanobacterial blooms in multiple whole-lake experiments. Ecological Monographs, 88(2), 188203.Google Scholar
Willerslev, E., Davison, J., Moora, M., et al. (2014). Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, 506, 4751.Google Scholar
Williams, A. N. (2013). A new population curve for prehistoric Australia. Proceedings of the Royal Society B: Biological Sciences, 280(1761), 20130486.Google Scholar
Williams, J. W. and Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 5, 475482.Google Scholar
Williams, J. W., Shuman, B. N. and Webb, T. (2001). Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America. Ecology, 82, 33463362.Google Scholar
Williams, J. W., Shuman, B. N., Webb, T. I., Bartlein, P. J. and Leduc, P. L. (2004). Late-quaternary vegetation dynamics in North America: Scaling from taxa to biomes. Ecological Monographs, 74, 309334.Google Scholar
Willis, A. J. (1997). The ecosystem: An evolving concept viewed historically. Functional Ecology, 11, 268271.Google Scholar
Wilmshurst, J. M., Anderson, A. J., Higham, T. F. G. and Worthy, T. H. (2008). Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. Proceedings of the National Academy of Sciences of the United States of America, 105(22), 76767680.Google Scholar
Wilson, K., Pressey, B., Newton, A., Burgman, M., Possingham, H. and Weston, C. (2005). Measuring and incorporating vulnerability into conservation planning. Environmental Management, 35(5), 527543.Google Scholar
Wing, S. L. (2004). Mass extinctions in plant evolution. In: Taylor, P. D. (ed.), Extinctions in the History of Life. Cambridge University Press, Cambridge, pp. 6197.Google Scholar
Winnie, J. A. (2012). Predation risk, elk, and aspen: Tests of a behaviorally mediated trophic cascade in the Greater Yellowstone Ecosystem. Ecology, 93, 26002614.Google Scholar
Wintle, B. A., Kujala, H., Whitehead, A., et al. (2019). Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 116(3), 909914.Google Scholar
With, K. A. (1997). The theory of conservation biology. Conservation Biology, 11(6), 14361440.Google Scholar
Woinarski, J. C. Z., Risler, J. and Kean, L. (2004). Response of vegetation and vertebrate fauna to 23 years of fire exclusion in a tropical Eucalyptus open forest, Northern Territory, Australia. Austral Ecology, 29, 156176.Google Scholar
Wookey, P. A., Aerts, R., Bardgett, R. D., et al. (2009). Ecosystem feedbacks and cascade processes: Understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biology, 15(5), 11531172.Google Scholar
Wootton, K. L. and Stouffer, D. B. (2016). Species’ traits and food-web complexity interactively affect a food web’s response to press disturbance. Ecosphere, 7(11), e01518. https://doi.org/10.1002/ecs2.1518.Google Scholar
Worm, B. (2016). Averting a global fisheries disaster. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 48954897.Google Scholar
Worm, B. and Myers, R. A. (2003). Meta-analysis of cod-shrimp interactions reveals top-down control in oceanic food webs. Ecology, 84(1), 162173.Google Scholar
Worm, B. and Paine, R. T. (2016). Humans as a hyperkeystone species. Trends in Ecology & Evolution, 31(8), 600607.Google Scholar
Worm, B., Barbier, E. B., Beaumont, N., et al. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science, 314(5800), 787790.Google Scholar
Worm, B., Hilborn, R., Baum, J. K. and Branch, T. A., et al. (2009). Rebuilding global fisheries. Science, 325, 578585.Google Scholar
Wright, D. K. (2017). Humans as agents in the termination of the African Humid Period. Frontiers in Earth Science, 5, 4. https://doi.org/10.3389/feart.2017.00004.Google Scholar
Wroe, S. (2005). On little lizards and big extinctions. Quaternary Australasia, 23, 812.Google Scholar
Wroe, S., Field, J. H., Archer, M., et al. (2013). Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proceedings of the National Academy of Sciences of the United States of America, 110(22), 87778781.Google Scholar
WRM. (2016). How Does the FAO Forest Definition Harm People and Forests? An Open Letter to the FAO. World Rainforest Movement. https://wrm.org.uy/actions-and-campaigns/how-does-the-fao-forest-definition-harm-people-and-forests-an-open-letter-to-the-fao/.Google Scholar
WWF. (2006). Living Planet Report 2006. WWF International, Gland, Switzerland.Google Scholar
WWF. (2016). Living Planet Report 2016. Risk and resilience in a new era. WWF International, Gland, Switzerland.Google Scholar
Yang, L. H., Bastow, J. L., Spence, K. O. and Wright, A. N. (2008). What can we learn from resource pulses? Ecology, 89, 621–634.Google Scholar
Yeakel, J. D., Pires, M. M., Rudolf, L., et al. (2014). Collapse of an ecological network in Ancient Egypt. Proceedings of the National Academy of Sciences of the United States of America, 111(40), 1447214477.Google Scholar
Yoccoz, N. G., Nichols, J. D. and Boulinier, T. (2001). Monitoring of biological diversity in space and time. Trends in Ecology & Evolution, 16(8), 446453.Google Scholar
Young, M. N. and Leemans, R. (2006). Group report: Future scenarios of human-environment systems. In: Costanza, R., Graumlich, L. J. and Steffen, W. (eds.), Sustainability or Collapse? An Integrated History and Future of People on Earth. The MIT Press, Cambridge, MA and London, pp. 447470.Google Scholar
Zalasiewicz, J., Waters, C. N., Summerhayes, C. P., et al. (2017a). The Working Group on the Anthropocene: Summary of evidence and interim recommendations. Anthropocene, 19, 5560.Google Scholar
Zalasiewicz, J., Waters, C. N., Wolfe, A., et al. (2017b). Making the case for a formal Anthropocene Epoch: An analysis of ongoing critiques. Newsletters on Stratigraphy, 50(2), 205226.Google Scholar
Zeder, M. A. (2011). The origins of agriculture in the Near East. Current Anthropology, 52(S4), S221S235.Google Scholar
Zeller, D., Rossing, P., Harper, S., Persson, L., Booth, S. and Pauly, D. (2011). The Baltic Sea: Estimates of total fisheries removals 1950–2007. Fisheries Research, 108, 356363.Google Scholar
Zemanova, M. A., Perotto-Baldivieso, H. L., Dickins, E. L., Gill, A. B., Leonard, J. P. and Wester, D. B. (2017). Impact of deforestation on habitat connectivity thresholds for large carnivores in tropical forests. Ecological Processes, 6(1), 21.Google Scholar
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J. et al. (2014). On the importance of cascading moisture recycling in South America. Atmospheric Chemistry and Physics, 14(23), 1333713359.Google Scholar
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J. et al. (2017). Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nature Communications, 8, 14681. https://doi.org/10.1038/ncomms14681.Google Scholar
Zerboni, A. and Nicoll, K. (2019). Enhanced zoogeomorphological processes in North Africa in the human-impacted landscapes of the Anthropocene. Geomorphology, 331(15), 2235.Google Scholar
Zhang, K., Almeida Castanho, A. D., Galbraith, D. R., et al. (2015). The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2, and land use. Global Change Biology, 21(7), 25692587.Google Scholar
Zhang, Q., Yang, R., Tang, J., Yang, H., Hu, S. and Chen, X. (2010). Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS One, 5(8), e12380.Google Scholar
Zimov, S. A., Chuprynin, V. I., Oreshko, A. P., Chapin, F. S., Reynolds, J. F. and Chapin, M. C. (1995). Steppe–tundra transition: A herbivore-driven biome shift at the end of the Pleistocene. The American Naturalist, 146, 765794.Google Scholar
Zimov, S. A., Zimov, N. S., Tikhonov, A. N. and Chapin, F. S. (2012). Mammoth steppe: A high-productivity phenomenon. Quaternary Science Reviews, 57, 2645.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Adrian C. Newton, Bournemouth University
  • Book: Ecosystem Collapse and Recovery
  • Online publication: 05 April 2021
  • Chapter DOI: https://doi.org/10.1017/9781108561105.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Adrian C. Newton, Bournemouth University
  • Book: Ecosystem Collapse and Recovery
  • Online publication: 05 April 2021
  • Chapter DOI: https://doi.org/10.1017/9781108561105.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Adrian C. Newton, Bournemouth University
  • Book: Ecosystem Collapse and Recovery
  • Online publication: 05 April 2021
  • Chapter DOI: https://doi.org/10.1017/9781108561105.008
Available formats
×