Published online by Cambridge University Press: 10 December 2009
Introduction
So far, we have obtained hypercyclic vectors either by a direct construction or by a Baire category argument. The aim of this chapter is to provide another way of doing so, using ergodic theory. This will link linear dynamics with measurable dynamics. We first recall some basic definitions from ergodic theory. The classical book of P. Walters [235] is a very readable introduction to that area.
The first important concept is that of invariant measure.
DEFINITION 5.1 Let (X, B, μ) be a probability space. We say that a measurable map T : (X, B, μ) → (X, B, μ) is a measure-preserving transformation, or that μ is T-invariant, if μ(T–1(A)) = μ(A) for all A ∈ B.
Measure-preserving transformations already have some important dynamical properties. In particular, the famous Poincaré recurrence theorem asserts that if T : (X, μ) → (X, μ) is measure-preserving then, for any measurable set A such that μ(A) > 0, almost every point x ∈ A is T-recurrent with respect to A, which means that Tn(x) ∈ A for infinitely many n ∈ N.
Now the central concept in linear dynamics is not recurrence but transitivity.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.