Published online by Cambridge University Press: 05 October 2015
Purpose. Cubical diagrams have become increasingly important over the last two decades, both as a powerful organizational tool and because of their many applications. They provide the language necessary for the Blakers–Massey Theorems, which unify many classical results; they lie at the heart of calculus of functors, which has many uses in algebraic and geometric topology; and they are intimately related to homotopy (co)limits of diagrams and (co)simplicial spaces. The growing importance of cubical diagrams demands an up-to-date, comprehensive introduction to this subject.
In addition, self-contained, expository accounts of homotopy (co)limits and (co)simplicial spaces do not appear to exist in the literature. Most standard references on these subjects adopt the language of model categories, thereby usually sacrificing concreteness for generality. One of the goals of this book is to provide an introductory treatment to the theory of homotopy (co)limits in the category of topological spaces.
This book makes the case for adding the homotopy limit and colimit of a punctured square (homotopy pullback and homotopy pushout) to the essential toolkit for a homotopy theorist. These elementary constructions unify many basic concepts and endow the category of topological spaces with a sophisticated way to “add” (pushout) and “multiply” (pullback) spaces, and so “do algebra”. Homotopy pullbacks and pushouts lie at the core of much of what we do and they build a foundation for the homotopy theory of cubical diagrams, which in turn provides a concrete introduction to the theory of general homotopy (co)limits and (co)simplicial spaces.
Features. We develop the homotopy theory of cubical diagrams in a gradual way, starting with squares and working up to cubes and beyond. Along the way, we show the reader how to develop competence with these topics with over 300 worked examples. Fully worked proofs are provided for the most part, and the reader will be able to fill in those that are not provided or have only been sketched. Many results in this book are known, but their proofs do not appear to exist. If we were not able to find a proof in the literature, we have indicated that this is the case. The reader will also benefit from an abundance of suggestions for further reading.
Cubical diagrams are an essential concept for stating and understanding the generalized Blakers–Massey Theorems, fundamental results lying at the intersection of stable and unstable homotopy theory.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.