Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T21:59:53.044Z Has data issue: false hasContentIssue false

Part IV - Biology of Intelligence

Published online by Cambridge University Press:  13 December 2019

Robert J. Sternberg
Affiliation:
Cornell University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Akins, C., & Zentall, T. R. (1996). Evidence for true imitative learning in Japanese quail. Journal of Comparative Psychology, 110, 316320.Google Scholar
Aronson, E., & Mills, J. (1959). The effect of severity of initiation on liking for a group. Journal of Abnormal and Social Psychology, 59, 177181.Google Scholar
Babb, S. J., & Crystal, J. D. (2006). Episodic-like memory in the rat. Current Biology, 16, 13171321.CrossRefGoogle ScholarPubMed
Bartal, I. B.-A., Decety, J., & Mason, P. (2011). Helping a cagemate in need: Empathy and pro-social behavior in rats. Science, 334, 14271430.Google Scholar
Bitterman, M. E. (1975). The comparative analysis of learning. Science, 188, 699709.CrossRefGoogle ScholarPubMed
Bitterman, M. E., & Mackintosh, N. J. (1969). Habit reversal and probability learning: Rats, birds, and fish. In Gilbert, R. M. & Sutherland, N. S. (Eds.), Animal discrimination learning (pp. 163185). New York: Academic Press.Google Scholar
Boesch, C., & Boesch, H. (1990). Tools use and tool making in wild chimpanzees. Folia Primatologica, 54, 8699.Google Scholar
Boysen, S. T., & Berntson, G. G. (1989). Numerical competence in a chimpanzee (Pan troglodytes). Journal of Comparative Psychology, 103, 2331.Google Scholar
Call, J. (2001). Object permanence in orangutans (Pongo pygmaeus), chimpanzees (Pan troglodytes), and children (Homo sapiens). Journal of Comparative Psychology, 115, 159171.Google Scholar
Cammaerts, M. C., & Cammaerts, R. (2015). Are ants (Hymenoptera, Formicidae) capable of self recognition? Journal of Sciences, 5, 521532.Google Scholar
Capaldi, E. J. (1993). Animal number abilities: Implications for a hierarchical approach to instrumental learning. In Boysen, S. T. & Capaldi, E. J. (Eds.), The development of numerical competence (pp. 191209). Hillsdale, NJ: Erlbaum.Google Scholar
Capaldi, E. J., & Miller, D. J. (1988). Counting in rats: Its functional significance and the independent cognitive processes that constitute it. Journal of Experimental Psychology: Animal Behavior Processes, 14, 317.Google Scholar
Case, J. P., & Zentall, T. R. (2018). Suboptimal choice in pigeons: Does the predictive value of the conditioned reinforcer alone determine choice? Animal Cognition, 22, 8187.Google Scholar
Chapuis, N., & Varlet, C. (1987). Short cuts by dogs in natural surroundings. Quarterly Journal of Experimental Psychology, 39, 4964.Google Scholar
Clayton, N. S., & Dickinson, A. (1999). Scrub jays (Aphelocoma coerulescens) remember the relative time of caching as well as the location and content of their caches. Journal of Comparative Psychology, 113, 403416.Google Scholar
Clement, T. S., Feltus, J., Kaiser, D. H., & Zentall, T. R. (2000). “Work ethic” in pigeons: Reward value is directly related to the effort or time required to obtain the reward. Psychonomic Bulletin and Review, 7, 100106.Google Scholar
Collette, T. S., & Graham, P. (2004). Animal navigation: Path integration, visual landmarks and cognitive maps. Current Biology, 14, 475477.CrossRefGoogle Scholar
Couvillon, P. A., & Bitterman, M. E. (1992). A conventional conditioning analysis of “transitive inference” in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 18, 308310.Google Scholar
Custance, D. M., Whiten, A., & Bard, K. A. (1995). Can young chimpanzees imitate arbitrary actions? Hayes and Hayes (1952) revisited. Behaviour, 132, 837859.CrossRefGoogle Scholar
Dally, J. M., Clayton, N. S., & Emery, N. J. (2008). Social influences on foraging by rooks (Corvus frugilegus). Behaviour, 145, 11011124.Google Scholar
Dally, J. M., Emery, N. J., & Clayton, N. S. (2004). Cache protection strategies by western scrub-jays (Aphelocoma californica): Hiding food in the shade. Proceedings of the Royal Society B: Biological Sciences, 271, S387S390.CrossRefGoogle ScholarPubMed
Dally, J. M., Emery, N. J., & Clayton, N. S. (2005). Cache protection strategies by western scrub-jays (Aphelocoma californica): Implications for social cognition. Animal Behaviour, 70, 12511263.Google Scholar
Davis, H. (1992). Transitive inference in rats (Rattus norvegicus). Journal of Comparative Psychology, 106, 342349.CrossRefGoogle ScholarPubMed
Davis, H., & Memmott, J. (1982). Counting behavior in animals: A critical evaluation. Psychological Bulletin, 92, 547571.Google Scholar
Dawkins, R. (1976). The selfish gene. New York: Oxford University Press.Google Scholar
Dawson, B. V., & Foss, B. M. (1965). Observational learning in budgerigars. Animal Behaviour, 13, 470474.Google Scholar
Dennett, D. C. (1983). Intentional systems in cognitive ecology: The “panglossian paradigm” defended. Behavioral and Brain Sciences, 6, 343355.Google Scholar
Dorrance, B. R., Kaiser, D. H., & Zentall, T. R. (2000). Event duration discrimination by pigeons: The choose-short effect may result from retention-test novelty. Animal Learning and Behavior, 28, 344353.CrossRefGoogle Scholar
Edwards, C. A., Jagielo, J. A., Zentall, T. R., & Hogan, D. E. (1982). Acquired equivalence and distinctiveness in matching-to-sample by pigeons: Mediation by reinforcer-specific expectancies. Journal of Experimental Psychology: Animal Behavior Processes, 8, 244259.Google Scholar
Fersen, L. V., Wynne, C. D. L., Delius, J. D., & Staddon, J. E. R. (1991). Transitive inference formation in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 17, 334341.Google Scholar
Festinger, L (1957). A theory of cognitive dissonance. Stanford: Stanford University Press.Google Scholar
Foerder, P., Galloway, M., Barthel, T., Moore, D. E. III, & Reiss, D. (2011). Insightful problem solving in an Asian elephant. PLoS One, 6(8), e23251. https://doi.org/10.1371/journal.pone.0023251Google Scholar
Frye, D. (1993). Causes and precursors of children’s theory of mind. In Hay, D. F. & Angold, A. (Eds.), Precursors and causes of development and psychopathology. Chichester, UK: Wiley.Google Scholar
Gagnon, S., & Doré, F. Y. (1992). Search behavior in various breeds of adult dogs (Canis familiaris): Object permanence and olfactory cues. Journal of Comparative Psychology, 106, 5868.Google Scholar
Galef, B. G. Jr. (1988). Imitation in animals: History, definition, and interpretation of data from the psychological laboratory. In Zentall, T. R. & Galef, B. G. Jr. (Eds.), Social learning: Psychological and biological perspectives (pp. 328). Hillsdale, NJ: Erlbaum.Google Scholar
Galef, B. G. Jr., & Whiskin, E. E. (1998). Determinants of the longevity of socially learned food preferences of Norway rats. Animal Behaviour, 55, 967975.Google Scholar
Galizio, A., Doughty, A. H., Williams, D. C., & Saunders, K. J. (2017). Understanding behavior under nonverbal transitive-inference procedures: Stimulus-control-topography analyses. Behavioural Processes, 140, 202215.CrossRefGoogle ScholarPubMed
Gallup, G. G. (1970). Chimpanzees self-recognition, Science, 167, 8687.Google Scholar
Gallup, G. G., & Suarez, S. D. (1991). Social responding to mirrors in rhesus monkeys: Effects of temporary mirror removal. Journal of Comparative Psychology, 105, 376379.Google Scholar
Garcia, J., & Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning. Psychonomic Science, 4, 123124.CrossRefGoogle Scholar
Gardner, R. A., & Gardner, B. T. (1969). Teaching sign language to a chimpanzee. Science, 165, 664672.Google Scholar
Gillan, D. J. (1981). Reasoning in the chimpanzee: II. Transitive inference. Journal of Experimental Psychology: Animal Behavior Processes, 7, 150164.Google Scholar
Gillan, D. J., Premack, D., & Woodruff, G. (1981). Reasoning in the chimpanzee: I. Analogical reasoning. Journal of Experimental Psychology: Animal Behavior Processes, 7, 117.Google Scholar
Grant, D. S. (1981). Stimulus control of information processing in pigeon short-term memory. Learning and Motivation, 12, 1939.CrossRefGoogle Scholar
Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone. Nature445, 429432.Google Scholar
Hackenberg, T. D. (2017). To free or not to free: Determinants of social release in rats. Paper presented at the meeting of the Society for the Quantitative Analysis of Behavior, Denver, CO, May 25.Google Scholar
Hall, K. R. L., & Schaller, G. B. (1964). Tool-using behavior of the California sea otter. Journal of Mammalogy, 45, 287298.CrossRefGoogle Scholar
Hare, B., Call, J., & Tomasello, M. (2001). Do chimpanzees know what conspecifics know? Animal Behaviour, 61, 139151.Google Scholar
Harlow, H. F. (1949). The formation of learning sets. Psychological Review, 56, 5165.Google Scholar
Hayes, S. C. (1983). When more is less: Quantity versus quality of publications in the evaluation of vitae. American Psychologist, 38, 13981400.CrossRefGoogle Scholar
Hayes, K. J., & Hayes, C. (1952). Imitation in a home-raised chimpanzee. Journal of Comparative and Physiological Psychology, 45, 450459.Google Scholar
Herman, L. M. (2002). Vocal, social, and self-imitation by bottlenosed dolphins. In Dautenhahn, K. & Nehaniv, C. (Eds.), Imitation in animals and artifacts (pp. 63108). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Herman, L. M., Pack, A. A., & Morrel-Samuels, P. (1993). Representational and conceptual skills of dolphins. In Roitblat, H. L., Herman, L. M., & Nachtigall, P. E. (Eds.), Language and communication: Comparative perspectives (pp. 403442). Hillsdale, NJ: Erlbaum.Google Scholar
Herrnstein, R. J., & deVilliers, P. A. (1980). Fish as a natural category for people and pigeons. Psychology of Learning and Motivation, 14, 5995.Google Scholar
Herrnstein, R. J., & Loveland, D. H. (1964). Complex visual concept in the pigeon. Science, 146, 549551.Google Scholar
Herrnstein, R. J., Loveland, D. H., & Cable, C. (1976). Natural concepts in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 2, 285301.Google Scholar
Heyes, C. M. (1998). Theory of mind in nonhuman primates. Behavioral and Brain Sciences, 21, 101134.Google Scholar
Heyes, C. M., & Dawson, G. R. (1990). A demonstration of observational learning in rats using a bidirectional control. Quarterly Journal of Experimental Psychology, 42B, 5971.Google Scholar
Honig, W. K., & Thompson, R. K. R. (1982). Retrospective and prospective processing in animal working memory. In Bower, G. (Ed.), The psychology of learning and motivation (vol. 16, pp. 239283). Orlando, FL: Academic Press.Google Scholar
HornerV., & WhitenA. (2005). Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens). Animal Cognition8164181.Google Scholar
Hsee, C. K. (1998). Less is better: When low-value options are valued more highly than high-value options. Journal of Behavioral Decision Making, 11, 107121.Google Scholar
Hull, C. L. (1943). Principles of behavior. New York: Appleton-Century-Crofts.Google Scholar
Kacelnik, A., & Marsh, B. (2002). Cost can increase preference in starlings. Animal Behaviour, 63, 245250.Google Scholar
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263291.CrossRefGoogle Scholar
Kelly, R., & Grant, D. S. (2001). A differential outcomes effect using biologically neutral outcomes in delayed matching-to-sample with pigeons. Quarterly Journal of Experimental Psychology, 54B, 6979.Google Scholar
Kralik, J. D., Xu, E. R., Knight, E. J., Khan, S. A., & Levine, J. W. (2012). When less is more: Evolutionary origins of the affect heuristic. PLoS One, 7, e46240. https://doi.org/10.1371/ journal.pone.0046240Google Scholar
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science354, 110114.Google Scholar
Krützen, M., Kreicker, S., MacLeod, C. D., Learmonth, J., Kopps, A. M., Walsham, P., et al. (2014). Cultural transmission of tool use by Indo-Pacific bottlenose dolphins (Tursiops sp.) provides access to a novel foraging niche. Proceedings of the Royal Society B: Biological Sciences 281, 20140374.Google Scholar
Kuan, L.-A., & Colwill, R. (1997). Demonstration of a socially transmitted taste aversion in the rat. Psychonomic Bulletin and Review, 4, 374377.Google Scholar
Laland, K. N., & Galef, B. G. Jr. (Eds.) (2009). The question of animal culture. London: Harvard University Press.Google Scholar
Lazareva, O. F., & Wasserman, E. A. (2006). Effect of stimulus orderability and reinforcement history on transitive responding in pigeons. Behavioural Processes, 72, 161172.CrossRefGoogle ScholarPubMed
Lipp, H.-P., Vyssotski, A. L., Wolfer, D. P., Renaudineau, S., Savini, M., Tröster, G., et al. (2004). Pigeon homing along highways and exits. Current Biology, 14, 12391249.Google Scholar
Mackintosh, N. J. (1969). Comparative studies of reversal and probability learning: Rats, birds, and fish. In Gilbert, R. M. & Sutherland, N. S. (Eds.), Animal discrimination learning (pp. 137162). New York: Academic Press.Google Scholar
Magalhães, P., & White, K. G. (2013). Sunk cost and work ethic effects reflect suboptimal choice between different work requirements. Behavioural Processes, 94, 5559.Google Scholar
Mann, J., & Sargeant, B. (2003). Like mother, like calf: the ontogeny of foraging traditions in wild Indian ocean bottlenose dolphins (Tursiops sp.). In Fragaszy, D. & Perry, S. (Eds.), The biology of traditions (pp. 236266). Cambridge, UK: Cambridge University Press.Google Scholar
Maron, J. L. (1982). Shell-dropping behavior of western gulls (Larus occidentalis). The Auk, 99, 565569.Google Scholar
McGonigle, B. O., & Chalmers, M. (1977). Are monkeys logical? Nature, 267, 694696.Google Scholar
McGrew, W. C. (1992). Chimpanzee material culture: Implications for human evolution. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
McGrew, W. C., & Tutin, C. E. G. (1978). Evidence for a social custom in wild chimpanzees? Man, 13, 234251.Google Scholar
Meyer, D. R. (1971). Habits and concepts of monkeys. In Jarrard, L. E. (Ed.), Cognitive processes of nonhuman primates (pp. 83102). New York: Academic Press.Google Scholar
Miller, H. C., Friedrich, A. M., Narkavic, R. J., & Zentall, T. R. (2009). A differential outcomes effect using hedonically-nondifferential outcomes with delayed matching-to-sample by pigeons. Learning and Behavior, 37, 161166.Google Scholar
Miller, H. C., Gipson, C. D., Vaughan, A., Rayburn-Reeves, R., & Zentall, T. R. (2009). Object permanence in dogs: Invisible displacement in a rotation task. Psychonomic Bulletin and Review, 16, 150155.Google Scholar
Mitchell, R. W. (1997). A comparison of the self-awareness and kinesthetic-visual matching theories of self-recognition: Autistic children and others. New York Academy of Sciences, 818, 3962.Google Scholar
Moore, B. R. (1992). Avian movement imitation and a new form of mimicry: Tracing the evolution of a complex form of learning. Behaviour, 122, 231263.Google Scholar
Morgan, C. L. (1894). An introduction to comparative psychology. London: Scott.Google Scholar
Naqshbandi, M., & Roberts, W. A. (2006). Anticipation of future events in squirrel monkeys (Saimiri sciureus) and rats (Rattus norvegicus): Tests of the Bischof-Kohler hypothesis. Journal of Comparative Psychology, 120, 345357.Google Scholar
Natale, F., Antinucci, F., Spinozzi, F., & Poti’, P. (1986). Stage 6 object permanence in nonhuman primate cognition: A comparison between gorilla (Gorilla gorilla) and Japanese macaque (Macaca fuscata). Journal of Comparative Psychology, 100, 335339.Google Scholar
Navarro, A. D., & Fantino, E. (2005). The sunk cost effect in pigeons and humans. Journal of the Experimental Analysis of Behavior, 83, 113.Google Scholar
Nguyen, N. H., Klein, E. D., & Zentall, T. R. (2005). Imitation of two-action sequences by pigeons. Psychonomic Bulletin and Review, 12, 514518.CrossRefGoogle ScholarPubMed
Nielsen, M., & Haun, D. (2016). Why developmental psychology is incomplete without comparative and crosscultural perspectives. Philosophical Transactions of the Royal Society: B, 371, 20150071.Google Scholar
OverH., & CarpenterM. (2012). Putting the social into social learning: Explaining both selectivity and fidelity in children’s copying behaviorJournal of Comparative Psychology126, 182–192.Google Scholar
Patterson, F. G. (1978). The gestures of a gorilla: Language acquisition in another pongid. Brain and Language, 5, 7297.Google Scholar
Pattison, K. F., & Zentall, T. R. (2014). Suboptimal choice by dogs: When less is better than more. Animal Cognition, 17, 10191022.Google Scholar
Pattison, K. F., Zentall, T. R., & Watanabe, S. (2012). Sunk cost: Pigeons (Columba livia) too show bias to complete a task rather than shift to another. Journal of Comparative Psychology, 126, 19.Google Scholar
Pepperberg, I. M. (1987). Interspecies communication: A tool for assessing conceptual abilities in an African grey parrot. In Green-berg, G. & Tobach, E. (Eds.), Language, cognition, and consciousness: Integrative levels (pp. 3156). Hillsdale, NJ: Erlbaum.Google Scholar
Peterson, G. B. (1984). How expectancies guide behavior. In Roitblat, H. L., Bever, T. G., & Terrace, H. S. (Eds.), Animal cognition (pp. 135148). Hillsdale, NJ: Erlbaum.Google Scholar
Peterson, G. B., Wheeler, R. L., & Trapold, M. A. (1980). Enhancement of pigeons’ conditional discrimination performance by expectancies of reinforcement and nonreinforcement. Animal Learning and Behavior, 8, 2230.Google Scholar
Piaget, J. (1951). Play, dreams, and imitation in childhood. New York: W. W. Norton.Google Scholar
Piaget, J. (1952). The child’s concept of number. New York: W. W. Norton.Google Scholar
Piaget, J. (1954). The construction of reality in the child. New York: Basic Books.Google Scholar
Plotnik, J. M., de Waal, F. B. M., & Reiss, D. (2006). Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences, 103, 1705317057.Google Scholar
Povinelli, D. J., Nelson, K. E., & Boysen, S. T. (1990). Inferences about guessing and knowing by chimpanzees. Journal of Comparative Psychology, 104, 203210.Google Scholar
Premack, D. (1976). Intelligence in ape and man. Hillsdale, NJ: Erlbaum.Google Scholar
Prior, H., Schwatz, A., & Güntürkün, O. (2008). Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS Biology, 6(8), e202. https://doi.org/10.1371/journal. pbio.0060202Google Scholar
Raby, C. R., Alexis, D. M., Dickinson, A., & Clayton, N. S. (2007). Empirical evaluation of mental time travel. Behavioral Brain Sciences, 30, 330331.Google Scholar
Rajala, A. Z., Reininger, K. R., Lancaster, K. M., & Populin, L. C. (2010). Rhesus monkeys (Macaca mulatta) do recognize themselves in the mirror: Implications for the evolution of self-recognition. PLoS One, 5(9), e12865. https://doi.org/10.1371/journal.pone.0012865Google Scholar
Reiss, D., & Marino, L. (2001). Self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proceedings of the National Academy of Sciences, 98, 59375942.Google Scholar
Riley, D. A. (1968). Discrimination learning. Boston: Allyn & Bacon.Google Scholar
Ristau, C. A. (1991). Aspects of the cognitive ethology of an injury-feigning bird, the piping plover. In Ristau, C. (Ed.), Comparative ethology: The minds of other animals (pp. 7989). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Rizzolatti, G., Fadiga, L, GalleseV., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131141.Google Scholar
Roberts, W. A. (2002). Are animals stuck in time? Psychological Bulletin, 128, 473489.Google Scholar
Roberts, W. A., & Grant, D. S. (1976). Studies of short-term memory in the pigeon using the delayed matching-to-sample procedure. In Medin, D. L., Roberts, W. A., & Davis, R. T. (Eds.), Processes of animal memory (pp. 79112). Hillsdale, NJ: Erlbaum.Google Scholar
Roper, K. L., Kaiser, D. H., & Zentall, T. R. (1995). Directed forgetting in pigeons: The role of alternative memories in the effectiveness of forget cues. Animal Learning and Behavior, 23, 280285.Google Scholar
Roper, K. L., & Zentall, T. R. (1993). Directed forgetting in animals. Psychological Bulletin, 113, 513532.Google Scholar
Rumbaugh, D. M. (Ed.) (1977). Language learning by a chimpanzee: The Lana project. New York: Academic Press.Google Scholar
Rutte, C., & Taborsky, M. (2008). The influence of social experience on cooperative behaviour of rats (Rattus norvegicus): Direct vs generalised reciprocityBehavioral Ecology and Sociobiology, 62(4), 499505.Google Scholar
Savage-Rumbaugh, E. S. (1984). Acquisition of functional symbol use in apes and children. In Roitblat, H. L., Bever, T. G., & Terrace, H. S. (Eds.), Animal cognition (pp. 291310). Hillsdale, NJ: Erlbaum.Google Scholar
Schaik, C. P. van (2012). Animal culture: Chimpanzee conformity? Current Biology, 22, R402R404.Google Scholar
Sherburne, L. M., Zentall, T. R., & Kaiser, D. H. (1998). Timing in pigeons: The choose-short effect may result from “confusion” between delay and intertrial intervals. Psychonomic Bulletin and Review, 5, 516522.CrossRefGoogle Scholar
Singer, R. A., Abroms, B. D., & Zentall, T. R. (2007). Formation of a simple cognitive map by rats. International Journal of Comparative Psychology, 19, 417425.Google Scholar
Singer, R. A., & Zentall, T. R. (2007). Pigeons learn to answer the question “Where did you just peck?” and can report peck location when unexpectedly asked. Learning and Behavior, 35, 184189.Google Scholar
Skinner, B. F. (1962). Two “synthetic social relations.” Journal of the Experimental Analysis of Behavior, 5, 531533.Google Scholar
Slotnick, B. M., & Katz, H. M. (1974). Olfactory learning-set formation in rats. Science, 185, 796798.Google Scholar
Smith, A. P., & Zentall, T. R. (2016). Suboptimal choice in pigeons: Choice is primarily based on the value of the conditioned reinforcer rather than overall reinforcement rate. Journal of Experimental Psychology: Animal Behavior Processes, 42, 212220.Google Scholar
Southgate, V., Senju, A., & Csibra, G. (2007). Action anticipation through attribution of false belief by 2-year-olds. Psychological Science, 18, 587592.Google Scholar
Spence, K. W. (1937). The differential response in animals to stimuli varying within a single dimension. Psychological Review, 44, 430444.Google Scholar
Stagner, J. P., & Zentall, T. R. (2010). Suboptimal choice behavior by pigeons. Psychonomic Bulletin and Review, 17, 412416.Google Scholar
Steirn, J. N., Weaver, J. E., & Zentall, T. R. (1995). Transitive inference in pigeons: Simplified procedures and a test of value transfer theory. Animal Learning and Behavior, 23, 7682.Google Scholar
Suddendorf, T., & Corballis, M. C. (1997). Mental time travel and the evolution of the human mind. Genetic, Social, and General Psychology Monographs 123, 133167.Google Scholar
Tan, L., & Hackenberg, T. D. (2016). Functional analysis of mutual behavior in laboratory rats (Rattus norvegicus). Journal of Comparative Psychology, 130, 1223.Google Scholar
Tolman, E. C. (1932). Purposive behavior in animals and men. New York: Century.Google Scholar
Topal, J., Byrne, R. W., Miklosi, A., & Csanyi, V. (2006). Reproducing human actions and action sequences: “Do as I do!” in a dog. Animal Cognition, 9, 355367.Google Scholar
Trapold, M. A. (1970). Are expectancies based on different reinforcing events discriminably different? Learning and Motivation, 1, 129140.Google Scholar
Triana, E., & Pasnak, R. (1981). Object permanence in cats and dogs. Animal Learning and Behavior, 9, 135139.Google Scholar
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. & Donaldson, W. (Eds.), Organization of memory (pp. 382403). New York: Academic Press.Google Scholar
Urcuioli, P. J., Zentall, T. R., Jackson-Smith, P., & Steirn, J. N. (1989). Evidence for common coding in many-to-one matching: Retention, intertrial interference, and transfer. Journal of Experimental Psychology: Animal Behavior Processes, 15, 264273.Google Scholar
Wasserman, E. A., DeVolder, C. L., & Coppage, D. J. (1992). Non-similarity based conceptualization in pigeons via secondary or mediated generalization. Psychological Science, 6, 374379.Google Scholar
Weaver, J. E., Steirn, J. N., & Zentall, T. R. (1997). Transitive inference in pigeons: Control for differential value transfer. Psychonomic Bulletin and Review, 4, 113117.Google Scholar
WeirA. A. S.ChappellJ., & Kacelnik, A. (2002). Shaping of hooks in New Caledonian crowsScience, 297, 981.Google Scholar
Whiten, A., & Ham, R. (1992). On the nature and evolution of imitation in the animal kingdom: Reappraisal of a century of research. Advances in the Study of Behavior, 21, 239283.Google Scholar
Williams, D. A., Butler, M. M., & Overmier, J. B. (1990). Expectancies of reinforcer location and quality as cues for a conditional discrimination in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 16, 313.Google Scholar
Woodruff, G., & Premack, D. (1979). Intentional communication in the chimpanzee: The development of deception. Cognition, 7, 333362.Google Scholar
Woodruff, G., Premack, D., & Kennel, K. (1978). Conservation of liquid and solid quantity by the chimpanzee. Science, 202, 991994.Google Scholar
Zentall, T. R. (1993). Animal cognition: An approach to the study of animal behavior. In Zentall, T. R. (Ed.), Animal cognition: A tribute to Donald A. Riley (pp. 315). Hillsdale, NJ: Erlbaum.Google Scholar
Zentall, T. R. (1996). An analysis of imitative learning in animals. In Heyes, C. M. & Galef, B. G., Jr. (Eds.), Social learning and tradition in animals (pp. 221243). New York: Academic Press.Google Scholar
Zentall, T. R. (1997). Animal memory: The role of instructions. Learning and Motivation, 28, 248267.Google Scholar
Zentall, T. R. (1998). Symbolic representation in pigeons: Emergent stimulus relations in conditional discrimination learning. Animal Learning and Behavior, 26, 363377.Google Scholar
Zentall, T. R. (2016). Reciprocal altruism in rats: Why does it occur? Learning and Behavior, 44, 78.Google Scholar
Zentall, T. R., Clement, T. S., Bhatt, R. S., & Allen, J. (2001). Episodic-like memory in pigeons. Psychonomic Bulletin and Review, 8, 685690.Google Scholar
Zentall, T. R., Laude, J. R., Case, J. P., & Daniels, C. W. (2014). Less means more for pigeons but not always. Psychonomic Bulletin and Review, 21, 16231628.Google Scholar
Zentall, T. R., Peng, D., & Miles, L. (in press). Transitive inference in pigeons may result from differential tendencies to reject the test stimuli acquired during training. Animal Cognition.Google Scholar
Zentall, T. R., & Raley, O. L. (2019). Object permanence in the pigeon: Insertion of a delay prior to choice facilitates visible- and invisible-displacement accuracy. Journal of Comparative Psychology, 133, 132139.Google Scholar
Zentall, T. R., & Singer, R. A. (2007). Within-trial contrast: Pigeons prefer conditioned reinforcers that follow a relatively more rather than less aversive event. Journal of the Experimental Analysis of Behavior, 88, 131149.Google Scholar
Zentall, T. R., & Smeets, P. M. (Eds.) (1996). Stimulus class formation in humans and animals. Amsterdam: North Holland.Google Scholar
Zentall, T. R., Sutton, J. E., & Sherburne, L. M. (1996). True imitative learning in pigeons. Psychological Science, 7, 343346.Google Scholar
Zucca, P., Milos, N., & Vallortigara, G. (2007). Piagetian object permanence and its development in Eurasian jays (Garrulus glandarius). Animal Cognition, 10, 243258.Google Scholar

References

Ashton, B. J., Ridley, A. R., Edwards, E. K., & Thornton, A. (2018). Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature, 554(7692), 364367.Google Scholar
Ban, S. D., Boesch, C., Guessan, A. N., Kouakou, E., Goran, N., Tako, A., et al. (2016). Taï chimpanzees change their travel direction for rare feeding trees providing fatty fruits. Animal Behaviour, 118, 135147.Google Scholar
Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences, pnas1711842115.Google Scholar
Barton, R. A., & Venditti, C. (2014). Rapid evolution of the cerebellum in humans and other great apes. Current Biology, 24(20), 24402444.Google Scholar
Bates, L. A., Lee, P. C., Njiraini, N., Poole, J., Sayialel, K., Sayialel, S., et al. (2008). Do elephants show empathy? Journal of Consciousness Studies, 15(10–11), 204225.Google Scholar
Begus, K., Gliga, T., & Southgate, V. (2014). Infants learn what they want to learn: Responding to infant pointing leads to superior learning. PloS One, 9(10), e108817.Google Scholar
Begus, K., Gliga, T., & Southgate, V. (2016). Infants’ preferences for native speakers are associated with an expectation of information. Proceedings of the National Academy of Sciences, 113(44), 1239712402.Google Scholar
Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M., & Holekamp, K. E. (2016). Brain size predicts problem-solving ability in mammalian carnivores. Proceedings of the National Academy of Sciences, 113(9), 25322537.Google Scholar
Bergman, T. J., Beehner, J. C., Cheney, D. L., & Seyfarth, R. M. (2003). Hierarchical classification by rank and kinship in baboons. Science, 302, 12341236.Google Scholar
Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F. (2011). Amygdala volume and social network size in humans. Nature Neuroscience, 14(2), 163164.Google Scholar
Bird, C. D., & Emery, N. J. (2009). Insightful problem solving and creative tool modification by captive nontool-using rooks. Proceedings of the National Academy of Sciences, 106(25), 1037010375.Google Scholar
Boesch, C., & Boesch, H. (1990). Tool use and tool making in wild chimpanzees. Folia Primatol, 54, 8699.Google Scholar
Breuer, T., Ndoundou-Hockemba, M., & Fishlock, V. (2005). First observation of tool use in wild gorillas. PLoS Biology, 3(11), 20412043.Google Scholar
Brothers, L. (1990). The social brain: A project for integrating primate behavior and neurophysiology in a new domain. Concepts in Neuroscience, 1, 2751.Google Scholar
Bugnyar, T. (2002). Observational learning and the raiding of food caches in ravens, Corvus corax: Is it “tactical” deception? Animal Behaviour, 64, 185195.Google Scholar
Bugnyar, T., & Heinrich, B. (2005). Ravens, Corvus corax, differentiate between knowledgeable and ignorant competitors. Proceedings of the Royal Society B: Biological Sciences, 272, 16411646.Google Scholar
Byrne, R. W. (1995). The thinking ape: Evolutionary origins of intelligence. Oxford: Oxford University Press.Google Scholar
Byrne, R. W. (1997). The technical intelligence hypothesis: An additional evolutionary stimulus to intelligence? In Whiten, A. & Byrne, R. W. (Eds.), Machiavellian intelligence II: extensions and evaluations (pp. 289311). Cambridge, UK: Cambridge University Press.Google Scholar
Byrne, R. W. (2001). Clever hands: The food processing skills of mountain gorillas. In Robbins, M., Sicotte, P., & Stewart, K. (Eds.), Mountain gorillas: Three decades of research at Karisoke (pp. 294313). Cambridge, UK: Cambridge University Press.Google Scholar
Byrne, R. W. (2003). Imitation as behaviour parsing. Philosophical Transactions of the Royal Society of London Series B, 358(1431), 529536.Google Scholar
Byrne, R. W. (2016). Evolving insight. Oxford: Oxford University Press.Google Scholar
Byrne, R. W., & Bates, L. A. (2007). Sociality, evolution and cognition. Current Biology, 17(16), R714R723.Google Scholar
Byrne, R. W., & Bates, L. A. (2010). Primate social cognition: uniquely primate, uniquely social, or just unique? Neuron, 65(6), 815830.Google Scholar
Byrne, R. W., Cartmill, E., Genty, E., Graham, K. E., Hobaiter, C., & Tanner, J. (2017). Great ape gestures: Intentional communication with a rich set of innate signals. Animal Cognition, 20(4), 755–769.Google Scholar
Byrne, R. W., & Corp, N. (2004). Neocortex size predicts deception rate in primates. Proceedings of the Royal Society B: Biological Sciences, 271(1549), 16931699.Google Scholar
Byrne, R. W., Corp, N., & Byrne, J. M. (2001). Manual dexterity in the gorilla: Bimanual and digit role differentiation in a natural task. Animal Cognition, 4, 347361.Google Scholar
Byrne, R. W., Hobaiter, C., & Klailova, M. (2011). Local traditions in gorilla manual skill: Evidence for observational learning of behavioral organization. Animal Cognition, 14(5), 683693.Google Scholar
Byrne, R. W., & Whiten, A. (Eds.) (1988). Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes and humans. Oxford: Clarendon Press.Google Scholar
Byrne, R. W., & Whiten, A. (1990). Tactical deception in primates: the 1990 database. Primate Report, 27, 1101.Google Scholar
Byrne, R. W., & Whiten, A. (1991). Computation and mindreading in primate tactical deception. In Whiten, A. (Ed.), Natural theories of mind (pp. 127141). Oxford: Basil Blackwell.Google Scholar
Byrne, R. W., & Whiten, A. (1992). Cognitive evolution in primates: Evidence from tactical deception. Man, 27, 609627.Google Scholar
Call, J., & Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12(5), 187192.Google Scholar
Cartmill, E. A., & Byrne, R. W. (2007). Orangutans modify their gestural signaling according to their audience’s comprehension. Current Biology, 17(15), 13451348.Google Scholar
Cheney, D. L., & Seyfarth, R. M. (1990). How monkeys see the world: Inside the mind of another species. Chicago: University of Chicago Press.Google Scholar
Cheney, D. L., Seyfarth, R. M., & Silk, J. B. (1995). The responses of female baboons (Papio cynocephalus ursinus) to anomalous social interactions: Evidence for causal reasoning? Journal of Comparative Psychology, 109(2), 134141.Google Scholar
Clay, Z., Furuichi, T., & de Waal, F. B. M. M. (2016). Obstacles and catalysts to peaceful coexistence in chimpanzees and bonobos. Behaviour, 153(9–11), 138.Google Scholar
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272278.Google Scholar
Clutton-Brock, T. H., & Harvey, P. H. (1980). Primates, brains and ecology. Journal of Zoology, 190(3), 309323.Google Scholar
Corp, N., & Byrne, R. W. (2002). Leaf processing by wild chimpanzees: Physically defended leaves reveal complex manual skills. Ethology, 108, 673696.CrossRefGoogle Scholar
Correia, S., Dickinson, A., & Clayton, N. (2007). Western scrub-jays anticipate future needs independently of their current motivational state. Current Biology, 17, 856861.Google Scholar
Crockford, C., Wittig, R. M., Mundry, R., & Zuberbühler, K. (2012). Wild chimpanzees inform ignorant group members of danger. Current Biology, 22(2), 142146.Google Scholar
Crockford, C., Wittig, R. M., Seyfarth, R. M., & Cheney, D. L. (2007). Baboons eavesdrop to deduce mating opportunities. Animal Behaviour, 73, 885890.Google Scholar
Crockford, C., Wittig, R. M., & Zuberbühler, K. (2017). Vocalizing in chimpanzees is influenced by social-cognitive processes. Science Advances, 3(11), e1701742.Google Scholar
Dally, J. M., Emery, N. J., & Clayton, N. S. (2004). Cache protection strategies by western scrub-jays (Aphelocoma californica): Hiding food in the shade. Proceedings of the Royal Society B: Biological Sciences, 271, S387S390.Google Scholar
Dally, J. M., Emery, N. J., & Clayton, N. S. (2006). Food-caching western scrub-jays keep track of who was watching when. Science, 312, 16621665.Google Scholar
Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Google Scholar
Dawkins, R., & Wong, Y. (2016). The ancestor’s tale: A pilgrimage to the dawn of life. London: Weidenfeld & Nicholson.Google Scholar
de Waal, F. B. M. (1982). Chimpanzee politics. London: Jonathan Cape.Google Scholar
Deaner, R. O., van Schaik, C. P., & Johnson, V. (2006). Do some taxa have better domain-general cognition than others? A meta-analysis of nonhuman primate studies. Evolutionary Psychology, 4, 149196.Google Scholar
DeCasien, A. R., Williams, S. A., & Higham, J. P. (2017). Primate brain size is predicted by diet but not sociality. Nature Ecology and Evolution, 1(5), 17.Google Scholar
Dunbar, R. I. M. (1991). Functional significance of social grooming in primates. Folia Primatologica, 57, 121131.Google Scholar
Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 20, 469493.Google Scholar
Dunbar, R. I. M. (1995). Neocortex size and group size in primates: A test of the hypothesis. Journal of Human Evolution, 28, 287296.Google Scholar
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178190.Google Scholar
Dunbar, R. I. M. (2012). Bridging the bonding gap: The transition from primates to humans. Philosophical Transactions of the Royal Society B – Biological Sciences, 367(1597), 18371846.Google Scholar
Dunbar, R. I. M., & Shultz, S. (2007). Understanding primate brain evolution. Philosophical Transactions of the Royal Society Series B – Biological Sciences, 362, 649658.Google Scholar
Dunbar, R. I. M., & Shultz, S. (2017). Why are there so many explanations for primate brain evolution? Philosophical Transactions of the Royal Society Series B – Biological Sciences, 372, 20160244.Google Scholar
Emery, N. J., & Clayton, N. S. (2001). Effects of experience and social context on prospective caching strategies by scrub jays. Nature, 414, 443446.Google Scholar
Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science, 306(5703), 19031907.Google Scholar
Emery, N. J., Seed, A. M., von Bayern, A. M. P., & Clayton, N. S. (2007). Cognitive adaptations of social bonding in birds. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1480), 489505.Google Scholar
Forss, S. I. F., Willems, E., Call, J., & van Schaik, C. P. (2016). Cognitive differences between orang-utan species: A test of the cultural intelligence hypothesis. Scientific Reports, 6, 112.Google Scholar
Fox, E., Sitompul, A., & van Schaik, C. P. (1999). Intelligent tool use in wild Sumatran orangutans. In Parker, S. T., Miles, H. L., & Mitchell, R. W. (Eds.), The mentality of gorillas and orangutans (pp. 99116). Cambridge, UK: Cambridge University Press.Google Scholar
Fox, K. C. R., Muthukrishna, M., & Shultz, S. (2017). The social and cultural roots of whale and dolphin brains. Nature Ecology and Evolution. https://COMP: Linkdoi.org/10.1038/s41559-017-0335-yGoogle Scholar
Fragaszy, D., Izar, P., Visalberghi, E., Ottoni, E. B., & De Oliveira, M. G. (2004). Wild capuchin monkeys (Cebus libidinosus) use anvils and stone pounding tools. American Journal of Primatology, 64, 359366.Google Scholar
Furuichi, T., Sanz, C., Koops, K., Sakamaki, T., Ryua, H., Tokuyamaa, N., & Morgan, D. (2015). Why do wild bonobos not use tools like chimpanzees do? Behaviour, 52 (3–4), 425460.Google Scholar
Genty, E., Breuer, T., Hobaiter, C., & Byrne, R. W. (2009). Gestural communication of the gorilla (Gorilla gorilla): Repertoire, intentionality and possible origins. Animal Cognition, 12(3), 527546.Google Scholar
Goodall, J. (1986). The chimpanzees of Gombe. Cambridge, MA: Belknap Press.Google Scholar
Gruber, T., & Clay, Z. (2016). A comparison between bonobos and chimpanzees: A review and update. Evolutionary Anthropology, 25(5), 239252.Google Scholar
Gruber, T., Singleton, I., & van Schaik, C. (2012). Sumatran orangutans differ in their cultural knowledge but not in their cognitive abilities. Current Biology, 22(23), 22312235.Google Scholar
Gumert, M. D., Kluck, M., & Malaivijitnond, S. (2009). The physical characteristics and usage patterns of stone axe and pounding hammers used by long‐tailed macaques in the Andaman Sea region of Thailand. American Journal of Primatology, 71(7), 594608.Google Scholar
Hare, B., Call, J., & Tomasello, M. (2001). Do chimpanzees know what conspecifics know? Animal Behaviour, 61(1), 139151.Google Scholar
Healy, S. D., & Rowe, C. (2007). A critique of comparative studies of brain size. Proceedings of the Royal Society B: Biological Sciences, 274, 453464.Google Scholar
Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B., Tomasello, M., Hernandez-Lloreda, M. V., et al. (2007). Humans have evolved specialised skills of social cognition: The cultural intelligence hypothesis. Science, 317(5843), 13601366.Google Scholar
Heyes, C. (2018). Cognitive gadgets: The cultural evolution of thinking. Cambridge, MA: Harvard University Press.Google Scholar
Hobaiter, C., & Byrne, R. W. (2011). Serial gesturing by wild chimpanzees: Its nature and function for communication. Animal Cognition, 14(6), 827838.Google Scholar
Hobaiter, C., Byrne, R. W., & Zuberbühler, K. (2017). Wild chimpanzees’ use of single and combined vocal and gestural signals. Behavioral Ecology and Sociobiology, 71(96). https://doi.org/10.1007/s00265-017-2325-1Google Scholar
Hobaiter, C., Poisot, T., Zuberbühler, K., Hoppitt, W., & Gruber, T. (2014). Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees. PLoS Biology, 12(9), e1001960.Google Scholar
Humphrey, N. K. (1976). The social function of intellect. In Bateson, P. P. G. & Hinde, R. A. (Eds.), Growing points in ethology (pp. 303317). Cambridge, UK: Cambridge University Press.Google Scholar
Hunt, G., & Gray, R. (2003). Diversification and cumulative evolution in New Caledonian crow tool manufacture. Proceedings of the Royal Society B: Biological Sciences, 270(1571), 867874.Google Scholar
Janmaat, K. R. L., Ban, S. D., & Boesch, C. (2013). Chimpanzees use long-term spatial memory to monitor large fruit trees and remember feeding experiences across seasons. Animal Behaviour, 86(6), 11831205.Google Scholar
Janmaat, K. R. L., Byrne, R. W., & Zuberbühler, K. (2006). Primates take weather into account when searching for fruits. Current Biology, 16, 12321237.Google Scholar
Janmaat, K. R. L., Polansky, L., Ban, S. D., & Boesch, C. (2014). Wild chimpanzees plan their breakfast time, type, and location. Proceedings of the National Academy of Sciences, 111(46), 1634316348.Google Scholar
Kaminski, J., Call, J., & Tomasello, M. (2008). Chimpanzees know what others know, but not what they believe. Cognition, 109(2), 224234.Google Scholar
Koops, K., Furuichi, T., & Hashimoto, C. (2015). Chimpanzees and bonobos differ in intrinsic motivation for tool use. Scientific Reports, 16(5), 11356.Google Scholar
Koops, K., Visalberghi, E., & van Schaik, C. P. (2014). The ecology of primate material culture. Biology Letters, 10(11), 20140508.Google Scholar
Kotrschal, A., Rogell, B., Bundsen, A., Svensson, B., Zajitschek, S., Brännström, I., et al. (2013). Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Current Biology, 23(2), 168171.Google Scholar
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354(6308), 110114.Google Scholar
Laland, K. N. (2017). Darwin’s unfinished symphony: How culture made the human mind. Princeton: Princeton University Press.Google Scholar
Lock, A. (1980). The guided reinvention of language. London: Academic Press.Google Scholar
Luncz, L. V., Falótico, T., Pascual-Garrido, A., Corat, C., Mosley, H., & Haslam, M. (2016). Wild capuchin monkeys adjust stone tools according to changing nut properties. Scientific Reports, 6, 19.Google Scholar
Mackintosh, N. J. (1983). Conditioning and associative learning. Oxford: Oxford University Press.Google Scholar
MacLean, E. L., Hare, B., Nunn, C. L., Addessi, E., Amici, F., Anderson, R. C., et al. (2014). The evolution of self-control. Proceedings of the National Academy of Sciences, 111(20), E2140E2148.Google Scholar
Mangalam, M., & Fragaszy, D. M. (2015). Wild bearded capuchin monkeys crack nuts dexterously. Current Biology, 25(10), 13341339.Google Scholar
Mason, W. A., & Hollis, J. H. (1962). Communication between young rhesus monkeys. Animal Behaviour, 10(3–4), 211221.Google Scholar
McGrew, W. C. (1989). Why is ape tool use so confusing? In Standen, V. & Foley, R. A. (Eds.), Comparative socioecology: The behavioural ecology of humans and other mammals (pp. 457472). Oxford: Blackwell Scientific.Google Scholar
McGrew, W. C. (1992). Chimpanzee material culture: Implications for human evolution. Cambridge, UK: Cambridge University Press.Google Scholar
Milton, K. (1988). Foraging behaviour and the evolution of primate intelligence. In Byrne, R. W. & Whiten, A. (Eds.), Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes and humans (pp. 285305). Oxford: Clarendon Press.Google Scholar
Morand-Ferron, J. (2017). Why learn? The adaptive value of associative learning in wild populations. Current Opinion in Behavioral Sciences, 16, 7379.Google Scholar
Moura, A. C. de A., & Lee, P. C. (2004).Capuchin stone tool use in Caatinga dry forest. Science, 306(5703), 1909.Google Scholar
Ostojić, L., Shaw, R., Cheke, L., & Clayton, N. (2013). Evidence suggesting that desire-state attribution may govern food sharing in Eurasian jays. Proceedings of the National Academy of Sciences, 110, 41234128.Google Scholar
Ottoni, E. B., & Izar, P. (2008). Capuchin monkey tool use: Overview and implications. Evolutionary Anthropology, 17, 171178.Google Scholar
Passingham, R. E. (1981). Primate specializations in brain and intelligence. Symposia of the Zoological Society of London, 46, 361388.Google Scholar
Platt, M. L., Seyfarth, R. M., & Cheney, D. L. (2016). Adaptations for social cognition in the primate brain. Philosophical Transactions of the Royal Society Series B, 371, 20150096.Google Scholar
Plotnik, J. M., & de Waal, F. B. M. (2014). Asian elephants (Elephas maximus) reassure others in distress. PeerJ, 2, e278.Google Scholar
Povinelli, D. J., Nelson, K. E., & Boysen, S. T. (1992). Comprehension of role reversal in chimpanzees: Evidence of empathy? Animal Behaviour, 43(4), 633640.Google Scholar
Povinelli, D. J., Parks, K. A., & Novak, M. A. (1992). Role reversal by rhesus monkeys, but no evidence of empathy. Animal Behaviour, 44, 269281.Google Scholar
Powell, L. E., Isler, K., & Barton, R. A. (2017). Re-evaluating the link between brain size and behavioural ecology in primates. Proceedings of the Royal Society B: Biological Sciences, 284, 20171765.Google Scholar
Pozzi, L., Hodgson, J. A., Burrell, A. S., Sterner, K. N., Raaum, R. L., & Disotell, T. R. (2014). Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution, 75(1), 165183.CrossRefGoogle ScholarPubMed
Raghanti, M. A., Edler, M. K., Stephenson, A. R., Munger, E. L., Jacobs, B., Hof, P. R., et al. (2018). A neurochemical hypothesis for the origin of hominids. Proceedings of the National Academy of Sciences, 1719666115.Google Scholar
Reader, S. M., Hager, Y., & Laland, K. N. (2011). The evolution of primate general and cultural intelligence. Philosophical Transactions of the Royal Society Series B – Biological Sciences, 366(1567), 10171027.Google Scholar
Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences, 99(7), 44364441.Google Scholar
Roffman, I., Savage-Rumbaugh, S., Rubert-Pugh, E., Ronen, A., & Nevo, E. (2012). Stone tool production and utilization by bonobo-chimpanzees (Pan paniscus). Proceedings of the National Academy of Sciences, 109(36), 1450014503.Google Scholar
Roffman, I., Savage-Rumbaugh, S., Rubert-Pugh, E., Stadler, A., Ronen, A., & Nevo, E. (2015). Preparation and use of varied natural tools for extractive foraging by bonobos (Pan paniscus). American Journal of Physical Anthropology, 158(1), 7891.Google Scholar
Roper, T. J. (1983). Learning as a biological phenomenon. In Halliday, T. R. & Slater, P. J. B. (Eds.), Animal behaviour, vol. 3, Genes, development and learning (pp. 178212). Oxford: Blackwell Scientific.Google Scholar
Rushworth, M. F. S., Mars, R. B., & Sallet, J. (2013). Are there specialized circuits for social cognition and are they unique to humans? Current Opinion in Neurobiology, 23(3), 436442.Google Scholar
Russon, A. E. (1998). The nature and evolution of intelligence in orangutans (Pongo pygmaeus). Primates, 39, 485503.Google Scholar
Sallet, J., Mars, R. B., Noonan, M. P., Andersson, J. L., O’Reilly, J. X., Jbabdi, S., et al. (2011). Social network size affects neural circuits in macaques. Science, 334, 697700.Google Scholar
Sanz, C. M., & Morgan, D. B. (2007). Chimpanzee tool technology in the Goualougo Triangle, Republic of Congo. Journal of Human Evolution, 52, 420433.Google Scholar
Sanz, C., & Morgan, D. (2013). Ecological and social correlates of chimpanzee tool use. Philosophical Transactions of the Royal Society Series B, 368, 20120416.Google Scholar
Savage-Rumbaugh, E. S., & Lewin, R. (1994). Kanzi. The ape at the brink of the human mind. New York: John Wiley.Google Scholar
Savage-Rumbaugh, E. S., Murphy, J., Sevcik, R. A., Brakke, K. E., Williams, S. L., & Rumbaugh, D. M. (1993). Language comprehension in ape and child. Monographs of the Society for Research in Child Development, 58, 1252.Google Scholar
Savage-Rumbaugh, E. S., Shanker, S. G., & Taylor, T. J. (1998). Apes, language and the human mind. New York: Oxford University Press.Google Scholar
Savage-Rumbaugh, E. S., Williams, S. L., Furuichi, T., & Kano, T. (1996). Language perceived: Paniscus branches out. In McGrew, W. C., Marchant, L. F., & Nishida, T. (Eds.), Great ape societies (pp. 173184). Cambridge, UK: Cambridge University Press.Google Scholar
Schel, A. M., Townsend, S. W., Machanda, Z., Zuberbühler, K., & Slocombe, K. E. (2013). Chimpanzee alarm call production meets key criteria for intentionality. PLoS One, 8(10), e76674.Google Scholar
Seed, A. M., Tebbich, S., Emery, N., & Clayton, N. S. (2006). Investigating physical cognition in rooks, Corvus frugilegus. Current Biology, 16, 697701.Google Scholar
Shettleworth, S. J. (2009). The evolution of comparative cognition: Is the snark still a boojum? Behavioural Processes, 80, 210217.Google Scholar
Shultz, S., & Dunbar, R. I. M. (2007). The evolution of the social brain: Anthropoid primates contrast with other vertebrates. Proceedings of the Royal Society B: Biological Sciences, 274(1624), 24292436.Google Scholar
Stokes, E. J., & Byrne, R. W. (2001). Cognitive capacities for behavioural flexibility in wild chimpanzees (Pan troglodytes): The effect of snare injury on complex manual food processing. Animal Cognition, 4, 1128.Google Scholar
Street, S. E., Navarrete, A. F., Reader, S. M., & Laland, K. N. (2017). Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Proceedings of the National Academy of Sciences, 114(30), 79087914.Google Scholar
Taylor, A. H. (2014). Corvid cognition. WIREs Cognitive Science, https://doi.org/10.1002/wcs.1286Google Scholar
Tokuyama, N., & Furuichi, T. (2016). Do friends help each other? Patterns of female coalition formation in wild bonobos at Wamba. Animal Behaviour, 119, 2735.Google Scholar
Tomasello, M. (2014). The ultra-social animal. European Journal of Social Psychology, 44(3), 187194.Google Scholar
Tomasello, M. (2016). The ontogeny of cultural learning. Current Opinion in Psychology, 8, 14.Google Scholar
Tomasello, M., & Call, J. (1997). Primate cognition. Oxford: Oxford University Press.Google Scholar
Tomasello, M., Call, J., & Hare, B. (2003). Chimpanzees understand psychological states – The question is which ones and to what extent. Trends in Cognitive Sciences, 7(4), 153156.Google Scholar
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(5), 675–91; discussion 691735.Google Scholar
Tomasello, M., Kruger, A., & Ratner, H. (1993). Cultural learning. Behavioral and Brain Sciences, 16, 495552.Google Scholar
van de Waal, E., Borgeaud, C., & Whiten, A. (2013). Potent social learning and conformity shape a wild primate’s foraging decisions. Science, 340, 483485.Google Scholar
van de Waal, E., Bshary, R., & Whiten, A. (2014). Wild vervet monkey infants acquire the food-processing variants of their mothers. Animal Behaviour, 90, 4145.Google Scholar
van Leeuwen, E. J. C., Call, J., & Haun, D. B. M. (2014). Human children rely more on social information than chimpanzees do. Biology Letters, 10, 20140487.Google Scholar
van Schaik, C. P. (1983). Why are diurnal primates living in groups? Behaviour, 87, 120147.Google Scholar
van Schaik, C. P., Ancrenaz, M., Borgen, G., Galdikas, B., Knott, C. D., Singleton, I., et al. (2003). Orangutan cultures and the evolution of material culture. Science, 299, 102105.Google Scholar
van Schaik, C. P., & Burkart, J. M. (2011). Social learning and evolution: The cultural intelligence hypothesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1567), 10081016.Google Scholar
van Schaik, C. P., Deaner, R. O., & Merrill, M. Y. (1999). The conditions for tool use in primates: Implications for the evolution of material culture. Journal of Human Evolution, 36(6), 719741.Google Scholar
van Schaik, C. P., Isler, K., & Burkart, J. M. (2012). Explaining brain size variation: From social to cultural brain. Trends in Cognitive Sciences, 16(5), 277284.Google Scholar
Whiten, A., & Byrne, R. W. (1988). Tactical deception in primates. Behavioral and Brain Sciences, 11, 233273.Google Scholar
Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., et al. (1999). Cultures in chimpanzees. Nature, 399(6737), 682685.Google Scholar
Wilson, M. L., Boesch, C., Fruth, B., Furuichi, T., Gilby, I. C., Hashimoto, C., et al. (2014). Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature, 513(7518), 414417.Google Scholar
Wittig, R. M., Crockford, C., Wikberg, E., Seyfarth, R. M., & Cheney, D. L. (2007). Kin-mediated reconciliation substitutes for direct reconciliation in female baboons. Proceedings of the Royal Society B: Biological Sciences, 274, 11091115.Google Scholar

References

Alavash, M., Lim, S. J., Thiel, C., Sehm, B., Deserno, L., & Obleser, J. (2018). Dopaminergic modulation of hemodynamic signal variability and the functional connectome during cognitive performance. Neuroimage, 172, 341356. https://doi.org/10.1016/j.neuroimage.2018.01.048Google Scholar
Barbey, A. K., Colom, R., Paul, E., Forbes, C., Krueger, F., Goldman, D., & Grafman, J. (2014a). Preservation of general intelligence following traumatic brain injury: Contributions of the Met66 brain-derived neurotrophic factor. PLoS One, 9(2). https://doi.org/10.1371/journal.pone.0088733Google Scholar
Barbey, A. K., Colom, R., Paul, E. J., & Grafman, J. (2014b). Architecture of fluid intelligence and working memory revealed by lesion mapping. Brain Structure and Function, 219(2), 485494.Google Scholar
Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain, 135(Pt 4), 11541164. https://doi.org/10.1093/brain/aws021Google Scholar
Basten, U., Hilger, K., & Fiebach, C. J. (2015). Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51, 1027. http://dx.doi.org/10.1016/j.intell.2015.04.009Google Scholar
Basten, U., Stelzel, C., & Fiebach, C. J. (2013). Intelligence is differentially related to neural effort in the task-positive and the task-negative brain network. Intelligence, 41(5), 517528.Google Scholar
Biazoli, C. E. Jr., Salum, G. A., Pan, P. M., Zugman, A., Amaro, E. Jr., Rohde, L. A., et al. (2017). Commentary: Functional connectome fingerprint: Identifying individuals using patterns of brain connectivity. Frontiers in Human Neuroscience, 11, 47. https://doi.org/10.3389/fnhum.2017.00047Google Scholar
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge, UK: Cambridge University Press.Google Scholar
Chalke, F. C., & Ertl, J. (1965). Evoked potentials and intelligence. Life Sciences, 4(13), 13191322.Google Scholar
Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32(26), 89888999. https://doi.org/10.1523/JNEUROSCI.0536-12.2012Google Scholar
Colom, R., Karama, S., Jung, R. E., & Haier, R. J. (2010). Human intelligence and brain networks. Dialogues in Clinical Neuroscience, 12(4), 489501.Google Scholar
Colom, R., & Roman, F. J. (2018). Enhancing intelligence: From the group to the individual. Journal of Intelligence, 6(11). https://doi.org/10.3390/jintelligence6010011Google Scholar
Davis, J. M., Searles, V. B., Anderson, N., Keeney, J., Raznahan, A., Horwood, L. J., et al. (2015). DUF1220 copy number is linearly associated with increased cognitive function as measured by total IQ and mathematical aptitude scores. Human Genetics, 134(1), 6775. https://doi.org/10.1007/s00439-014-1489-2Google Scholar
Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 1321.Google Scholar
Dubois, J., Galdi, P., Paul, L. K., & Adolphs, R. (2018). A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philosophical Transactios of the Royal Society B. https://doi.org/10.1098/rstb.2017.0284Google Scholar
Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology, 30(3), 257303.Google Scholar
Nature (2017). Intelligence test (editorial). 545, 385386.Google Scholar
Ertl, J. P., & Schafer, E. W. (1969). Brain response correlates of psychometric intelligence. Nature, 223(204), 421422.Google Scholar
Euler, M. J., Weisend, M. P., Jung, R. E., Thoma, R. J., & Yeo, R. A. (2015). Reliable activation to novel stimuli predicts higher fluid intelligence. Neuroimage, 114, 311319. https://doi.org/10.1016/j.neuroimage.2015.03.078Google Scholar
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., et al. (2015). Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 16641671. https://doi.org/10.1038/nn.4135Google Scholar
Genc, E., Fraenz, C., Schluter, C., Friedrich, P., Hossiep, R., Voelkle, M. C., et al. (2018). Diffusion markers of dendritic density and arborization in gray matter predict differences in intelligence. Nature Communications, 9(1), 1905. https://doi.org/10.1038/s41467-018-04268-8Google Scholar
Glascher, J., Rudrauf, D., Colom, R., Paul, L. K., Tranel, D., Damasio, H., & Adolphs, R. (2010). Distributed neural system for general intelligence revealed by lesion mapping. Proceedings of the National Academy of Sciences, 107(10), 47054709. https://doi.org/10.1073/Pnas.0910397107Google Scholar
Glascher, J., Tranel, D., Paul, L. K., Rudrauf, D., Rorden, C., Hornaday, A., et al. (2009). Lesion mapping of cognitive abilities linked to intelligence. Neuron, 61(5), 681691. https://doi.org/10.1016/j.neuron.2009.01.026Google Scholar
Goriounova, N., Heyer, D. B., Wilbers, R., Verhoog, M. B., Giugliano, M., Verbist, C., et al. (2018). Large and fast human pyramidal neurons associate with intelligence. eLife, 7, e41714, https://doi.org/10.7554/eLife.41714Google Scholar
Green, S., Blackmon, K., Thesen, T., DuBois, J., Wang, X. Y., Halgren, E., & Devinsky, O. (2018). Parieto-frontal gyrification and working memory in healthy adults. Brain Imaging and Behavior, 12(2), 303308.Google Scholar
Guntupalli, J. S., Feilong, M., & Haxby, J. V. (2018). A computational model of shared fine-scale structure in the human connectome. PLoS Computational Biology, 14(4), e1006120. https://doi.org/10.1371/journal.pcbi.1006120Google Scholar
Haier, R. J. (2009). Neuro-intelligence, neuro-metrics and the next phase of brain imaging studies. Intelligence, 37(2), 121123. https://doi.org/10.1016/j.intell.2008.12.006Google Scholar
Haier, R. J. (2011). Biological basis of intelligence. In Sternberg, R. J. & Kaufman, A. S. (Eds.), Cambridge handbook of intelligence (pp. 351368). Cambridge, UK: Cambridge University Press.Google Scholar
Haier, R. J. (2014). Increased intelligence is a myth (so far). Frontiers in Systems Neuroscience, 8. https://doi.org/10.3389/fnsys.2014.00034Google Scholar
Haier, R. J. (2017). The neuroscience of intelligence. New York: Cambridge University Press.Google Scholar
Haier, R. J. (2018). A view from the brain. In Sternberg, R. J. (Ed.), The nature of human intelligence (pp. 167182). New York: Cambridge University Press.Google Scholar
Haier, R. J. (2019 in press). Biological approaches to intelligence. In Sternberg, R. J. (Ed.), Human intelligence: An introduction (pp. 139173). New York: Cambridge University Press.Google Scholar
Haier, R. J., Karama, S., Leyba, L., & Jung, R. E. (2009). MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Research Notes, 2. https://doi.org/10.1186/1756–0500-2–174Google Scholar
Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., et al. (1988). Cortical glucose metabolic-rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199217.Google Scholar
Hearne, L. J., Mattingley, J. B., & Cocchi, L. (2016). Functional brain networks related to individual differences in human intelligence at rest. Scientific Reports, 6, 32328. https://doi.org/10.1038/srep32328Google Scholar
Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017a). Efficient hubs in the intelligent brain: Nodal efficiency of hub regions in the salience network is associated with general intelligence. Intelligence, 60, 1025. https://doi.org/10.1016/j.intell.2016.11.001Google Scholar
Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017b). Intelligence is associated with the modular structure of intrinsic brain networks. Scientific Reports, 7(1), 16088. https://doi.org/10.1038/s41598-017-15795-7Google Scholar
Hill, W. D., Davies, G., van de Lagemaat, L. N., Christoforou, A., Marioni, R. E., Fernandes, C. P., et al. (2014). Human cognitive ability is influenced by genetic variation in components of postsynaptic signalling complexes assembled by NMDA receptors and MAGUK proteins. Translational Psychiatry, 4, e341. https://doi.org/10.1038/tp.2013.114Google Scholar
Hunt, E. B. (2011). Human intelligence. Cambridge, UK: Cambridge University Press.Google Scholar
Jensen, A. R. (1998). The g factor: The science of mental ability. Westport, CT: Praeger.Google Scholar
Jensen, A. R. (2006). Clocking the mind: Mental chronometry and individual differences. New York: Elsevier.Google Scholar
Johnson, W., te Nijenhuis, J., & Bouchard, T. J. (2008). Still just 1 g: Consistent results from five test batteries. Intelligence, 36(1), 8195.Google Scholar
Jung, R. E., Brooks, W. M., Yeo, R. A., Chiulli, S. J., Weers, D. C., & Sibbitt, W. L. (1999). Biochemical markers of intelligence: A proton MR spectroscopy study of normal human brain. Proceedings of the Royal Society B: Biological Sciences, 266(1426), 13751379.Google Scholar
Jung, R. E., Gasparovic, C., Chavez, R. S., Caprihan, A., Barrow, R., & Yeo, R. A. (2009). Imaging intelligence with proton magnetic resonance spectroscopy. Intelligence, 37(2), 192198.Google Scholar
Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135154; discussion 154187. https://doi.org/10.1017/S0140525X07001185Google Scholar
Jung, R. E., Haier, R. J., Yeo, R. A., Rowland, L. M., Petropoulos, H., Levine, A. S., et al. (2005). Sex differences in N-acetylaspartate correlates of general intelligence: An H-1-MRS study of normal human brain. Neuroimage, 26(3), 965972.Google Scholar
Krapohl, E., Patel, H., Newhouse, S., Curtis, C. J., von Stumm, S., Dale, P. S., et al. (2018). Multi-polygenic score approach to trait prediction. Molecular Psychiatry, 23(5), 13681374. https://doi.org/10.1038/mp.2017.163Google Scholar
Kruschwitz, J. D., Waller, L., Daedelow, L. S., Walter, H., & Veer, I. M. (2018). General, crystallized and fluid intelligence are not associated with functional global network efficiency: A replication study with the human connectome project 1200 data set. Neuroimage. https://doi.org/10.1016/j.neuroimage.2018.01.018Google Scholar
Langer, N., Pedroni, A., Gianotti, L. R., Hanggi, J., Knoch, D., & Jancke, L. (2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33(6), 13931406. https://doi.org/10.1002/hbm.21297Google Scholar
Lashley, K. S. (1964). Brain mechanisms and intelligence. New York: Hafner.Google Scholar
Li, Y., Liu, Y., Li, J., Qin, W., Li, K. C., Yu, C. S., et al. (2009). Brain anatomical network and intelligence. PLoS Computational Biology, 5(5). https://doi.org/10.1371/journal.pcbi.1000395Google Scholar
Liao, X., Vasilakos, A. V., & He, Y. (2017). Small-world human brain networks: Perspectives and challenges. Neuroscience and Biobehavioral Reviews, 77, 286300.Google Scholar
Liu, J., Liao, X., Xia, M., & He, Y. (2018). Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns. Human Brain Mapping, 39(2), 902915. https://doi.org/10.1002/hbm.23890Google Scholar
Neubauer, A. C., & Fink, A. (2003). Fluid intelligence and neural efficiency: Effects of task complexity and sex. Personality and Individual Differences, 35(4), 811827.Google Scholar
Neubauer, A. C., & Fink, A. (2008). Intelligence and neural efficiency: A review and new data. International Journal of Psychophysiology, 69(3), 168169.Google Scholar
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency: Measures of brain activation versus measures of functional connectivity in the brain. Intelligence, 37(2), 223229.Google Scholar
Nikolaidis, A., Baniqued, P. L., Kranz, M. B., Scavuzzo, C. J., Barbey, A. K., Kramer, A. F., et al. (2017). Multivariate associations of fluid intelligence and NAA. Cerebral Cortex, 27(4), 26072616. https://doi.org/10.1093/cercor/bhw070Google Scholar
Paul, E. J., Larsen, R. J., Nikolaidis, A., Ward, N., Hillman, C. H., Cohena, N. J., et al. (2016). Dissociable brain biomarkers of fluid intelligence. Neuroimage, 137, 201211. https://doi.org/10.1016/j.neuroimage.2016.05.037Google Scholar
Plomin, R., & von Stumm, S. (2018). The new genetics of intelligence. Nature Reviews Genetics, 19(3), 148159. https://doi.org/10.1038/nrg.2017.104Google Scholar
Poldrack, R. A. (2015). Is “efficiency” a useful concept in cognitive neuroscience? Developmental Cognitive Neuroscience, 11, 1217. https://doi.org/10.1016/j.dcn.2014.06.001Google Scholar
Ponsoda, V., Martinez, K., Pineda-Pardo, J. A., Abad, F. J., Olea, J., Roman, F. J., et al. (2017). Structural brain connectivity and cognitive ability differences: A multivariate distance matrix regression analysis. Human Brain Mapping, 38(2), 803816. https://doi.org/10.1002/hbm.23419Google Scholar
Rietveld, C. A., Esko, T., Davies, G., Pers, T. H., Turley, P., Benyamin, B., et al. (2014). Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proceedings of the National Academy of Sciences, 111(38), 1379013794. https://doi.org/10.1073/pnas.1404623111Google Scholar
Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., et al. (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 340(6139), 14671471. https://doi.org/10.1126/science.1235488Google Scholar
Roth, B., Becker, N., Romeyke, S., Schafer, S., Domnick, F., & Spinath, F. M. (2015). Intelligence and school grades: A meta-analysis. Intelligence, 53, 118137.Google Scholar
Ryman, S. G., Yeo, R. A., Witkiewitz, K., Vakhtin, A. A., van den Heuvel, M., de Reus, M., et al. (2016). Fronto-parietal gray matter and white matter efficiency differentially predict intelligence in males and females. Human Brain Mapping, 37(11), 40064016. https://doi.org/10.1002/hbm.23291Google Scholar
Santarnecchi, E., Emmendorfer, A., & Pascual-Leone, A. (2017a). Dissecting the parieto-frontal correlates of fluid intelligence: A comprehensive ALE meta-analysis study. Intelligence, 63, 928.Google Scholar
Santarnecchi, E., Emmendorfer, A., Tadayon, S., Rossi, S., Rossi, A., & Pascual-Leone, A. (2017b). Network connectivity correlates of variability in fluid intelligence performance. Intelligence, 65, 3547.Google Scholar
Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A., & Rossi, S. (2014). Efficiency of weak brain connections support general cognitive functioning. Human Brain Mapping, 35(9), 45664582. https://doi.org/10.1002/hbm.22495Google Scholar
Santarnecchi, E., & Rossi, S. (2016). Advances in the neuroscience of intelligence: From brain connectivity to brain perturbation. Spanish Journal of Psychology, 19. https://doi.org/10.1017/sjp.2016.89Google Scholar
Schafer, E. W. (1982). Neural adaptability: A biological determinant of behavioral intelligence. International Journal of Neuroscience, 17(3), 183191.Google Scholar
Selzam, S., Krapohl, E., von Stumm, S., O’Reilly, P. F., Rimfeld, K., Kovas, Y., et al. (2018). Predicting educational achievement from DNA. Molecular Psychiatry, 23(1), 161. https://doi.org/10.1038/mp.2017.203Google Scholar
Shehzad, Z., Kelly, C., Reiss, P. T., Cameron Craddock, R., Emerson, J. W., McMahon, K., et al. (2014). A multivariate distance-based analytic framework for connectome-wide association studies. Neuroimage, 93(Pt. 1), 7494. https://doi.org/10.1016/j.neuroimage.2014.02.024Google Scholar
Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R. I., Krapohl, E., et al. (2017). Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics, 49(7), 11071112. https://doi.org/10.1038/ng.3869Google Scholar
Song, M., Liu, Y., Zhou, Y., Wang, K., Yu, C. S., & Jiang, T. Z. (2009). Default network and intelligence difference. IEEE Transactions on Autonomous Mental Development, 1(2), 101109. https://doi.org/10.1109/tamd.2009.2029312Google Scholar
Thompson, R., Crinella, F. M., & Yu, J. (1990). Brain mechanisms in problem solving and intelligence: A survey of the rat brain. New York: Plenum Press.Google Scholar
Vakhtin, A. A., Ryman, S. G., Flores, R. A., & Jung, R. E. (2014). Functional brain networks contributing to the parieto-frontal integration theory of intelligence. Neuroimage, 103, 349354. https://doi.org/10.1016/j.neuroimage.2014.09.055Google Scholar
Valizadeh, S. A., Liem, F., Merillat, S., Hanggi, J., & Jancke, L. (2018). Identification of individual subjects on the basis of their brain anatomical features. Scientific Reports, 8(1), 5611. https://doi.org/10.1038/s41598-018-23696-6Google Scholar
van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31(44), 1577515786. https://doi.org/10.1523/JNEUROSCI.3539-11.2011Google Scholar
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Pol, H. E. H. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 76197624. https://doi.org/10.1523/jneurosci.1443-09.2009Google Scholar
Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer, H., Leibo, J. Z., et al. (2018). Prefrontal cortex as a meta-reinforcement learning system. Nature Neuroscience, 21, 860868.Google Scholar
Zhao, M., Kong, L., & Qu, H. (2014). A systems biology approach to identify intelligence quotient score-related genomic regions, and pathways relevant to potential therapeutic treatments. Scientific Reports, 4, 4176. https://doi.org/10.1038/srep04176Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×