Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T12:56:51.089Z Has data issue: false hasContentIssue false

9 - Body size and biogeography

Published online by Cambridge University Press:  02 December 2009

B. J. Finlay
Affiliation:
Natural Environment Research Council UK
G. F. Esteban
Affiliation:
Natural Environment Research Council UK
Alan G. Hildrew
Affiliation:
Queen Mary University of London
David G. Raffaelli
Affiliation:
University of York
Ronni Edmonds-Brown
Affiliation:
University of Hertfordshire
Get access

Summary

Introduction

June 9th, having received early in the morning some rain-water in a dish … and exposed it to the air about the third story of my house … I did not think I should then perceive any living creatures therein; yet viewing it attentively, I did, with admiration, observe a thousand of them in one drop of water, which were the smallest sort that I had seen hitherto.

(From a letter written in 1676 by Antonie van Leeuwenhoek, who had a passion for designing and building ‘magnifying glasses’.)

Leeuwenhoek was almost certainly the first person to see protozoa and other microfauna, and the first to record their huge population sizes. He could not explain how the microbes got into the ‘dish of rainwater’, and this rather disappointing level of understanding has not changed much in 300 years.

The debate is rather polarized. On one hand are those who draw attention to the possibility that a significant proportion of free-living microbial species may be geographically restricted (examples include Mann & Droop, 1996; Foissner, 1999). On the other hand are those who recognize that this is at odds with the alternative hypothesis that neutral dispersal of small organisms is driven by extraordinarily large numbers of the individuals themselves. Although the probability of an individual microbe being transported over great distance is vanishingly small, a multitude of interacting processes and events, both common and rare (hurricanes, transport in wet fur and feathers, etc., in combination with huge population sizes, are expected to drive large-scale dispersal across all spatial scales.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abebe, E. & Coomans, A. (1995). Fresh-water nematodes of the Galapagos. Hydrobiologia, 299, 1151.CrossRefGoogle Scholar
Balech, E. (1941). Neobursaridium gigas n. gen. n. sp. de ciliado heterotrico. Physis (B. Aires), 19, 29–35.Google Scholar
Bell, G. (2001). Neutral macroecology. Science, 293, 2413–2418.CrossRefGoogle ScholarPubMed
Berninger, U.-G., Finlay, B. J. & Kuuppo-Leinikki, P. (1991). Protozoan control of bacterial abundances in fresh water. Limnology and Oceanography, 36, 139–147.CrossRefGoogle Scholar
Condit, R., Pitman, N., Leigh, E. G. Jr.et al. (2002). Beta-diversity in tropical forest trees. Science, 295, 666–669.CrossRefGoogle ScholarPubMed
Damuth, J. (1981). Population density and body size in mammals. Nature, 290, 699–700.CrossRefGoogle Scholar
Darling, K. F., Wade, C. M., Stewart, I. A.et al. (2000). Molecular evidence for genetic mixing of Arctic and Antarctic planktonic foraminifers. Nature, 405, 43–47.CrossRefGoogle ScholarPubMed
Dragesco, J. (1968). A propos de Neobursaridium gigas Balech, 1941: sténothermie, inclusions, ultrastructure des trichocystes. Protistologica, 4, 157–167.Google Scholar
Dragesco, J. (1970). Ciliés libres du Cameroun. Annals of the Faculty of Science of Yaoundé, (Hors série), 1–141.Google Scholar
Dragesco, J. & Dragesco-Kernéis, A. (1986). Ciliés Libres de l'Afrique Intertropicale. Collection Faune Tropicale no. 26, ORSTOM, Paris.
Esteban, G. F. & Finlay, B. J. (2003). Cryptic freshwater ciliates in a hypersaline lagoon. Protist, 154, 408–411.CrossRefGoogle Scholar
Esteban, G. F. & Finlay, B. J. (2004). Marine ciliates (Protozoa) in central Spain. Ophelia, 58, 13–22.CrossRefGoogle Scholar
Esteban, G. F., Finlay, B. J., Olmo, J. L. & Tyler, P. A. (2000). Ciliated protozoa from a volcanic crater-lake in Victoria, Australia. Journal of Natural History, 34, 159–189.CrossRefGoogle Scholar
Esteban, G. F., Finlay, B. J., Charubhun, N. & Charubhun, B. (2001). On the geographic distribution of Loxodes rex (Protozoa, Ciliophora) and other alleged endemic species of ciliates. Journal of Zoology, London, 255, 139–143.CrossRefGoogle Scholar
Esteban, G. F., Clarke, K. J., Olmo, J. L. & Finlay, B. J. (2006). Soil protozoa – an intensive study of population dynamics and community structure in an upland grassland. Applied Soil Ecology, 33, 137–151.CrossRefGoogle Scholar
Fenchel, T. (1993). There are more small than large species? Oikos, 68, 375–378.CrossRefGoogle Scholar
Fenchel, T. & Finlay, B. J. (2003). Is microbial diversity fundamentally different from biodiversity of larger animals and plants?European Journal of Protistology, 39, 486–490.CrossRefGoogle Scholar
Fenchel, T. & Finlay, B. J. (2004). The ubiquity of small species: patterns of local and global diversity. Bioscience, 54, 777–784.CrossRefGoogle Scholar
Fenchel, T., Esteban, G. F. & Finlay, B. J. (1997). Local versus global diversity of microorganisms: cryptic diversity of ciliated protozoa. Oikos, 80, 220–225.CrossRefGoogle Scholar
Finlay, B. J. (2002). Global dispersal of free-living microbial eukaryote species. Science, 296, 1061–1063.CrossRefGoogle ScholarPubMed
Finlay, B. J. & Clarke, K. J. (1999a). Ubiquitous dispersal of microbial species. Nature, 400, 828.CrossRefGoogle Scholar
Finlay, B. J. & Clarke, K. J. (1999b). Apparent global ubiquity of species in the protist genus Paraphysomonas. Protist, 150, 419–430.CrossRefGoogle Scholar
Finlay, B. J. & Fenchel, T. (2001). Protozoan community structure in a fractal soil environment. Protist, 152, 203–218.CrossRefGoogle Scholar
Finlay, B. J. & Fenchel, T. (2004). Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist, 155, 237–244.CrossRefGoogle ScholarPubMed
Finlay, B. J. & Maberly, S. C. (2000). Microbial Diversity in Priest Pot. Ambleside, UK:Freshwater Biological Association.Google Scholar
Finlay, B. J., Esteban, G. F. & Fenchel, T. (1996a). Global diversity and body size. Nature, 383, 132–133.CrossRefGoogle Scholar
Finlay, B. J., Corliss, J. O., Esteban, G. & Fenchel, T. (1996b). Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. The Quarterly Review of Biology, 71, 221–237.CrossRefGoogle Scholar
Finlay, B. J., Esteban, G. F. & Fenchel, T. (1998). Protozoan diversity: converging estimates of the global number of free-living ciliate species. Protist, 149, 29–37.CrossRefGoogle ScholarPubMed
Finlay, B. J., Esteban, G. F., Olmo, J. L. & Tyler, P. A. (1999). Global distribution of free-living microbial species. Ecography, 22, 138–144.CrossRefGoogle Scholar
Finlay, B. J.Black, H. I. J., Brown, S.et al. (2000). Estimating the growth of the soil protozoan community. Protist, 151, 69–80 (and Corrigendum: Protist, 151, 367).CrossRefGoogle ScholarPubMed
Finlay, B. J., Esteban, G. F., Clarke, K. J. & Olmo, J. L. (2001). Biodiversity of terrestrial protozoa appears homogeneous across local and global spatial scales. Protist, 152, 355–366.CrossRefGoogle ScholarPubMed
Finlay, B. J., Monaghan, E. B. & Maberly, S. C. (2002). Hypothesis: the rate and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist, 153, 261–273.CrossRefGoogle ScholarPubMed
Finlay, B. J., Esteban, G. F. & Fenchel, T. (2004). Protist diversity is different?Protist, 155, 15–22.CrossRefGoogle ScholarPubMed
Foissner, W. (1999). Protist diversity: estimates of the near imponderable. Protist, 150, 363–368.CrossRefGoogle ScholarPubMed
Gajewskaja, N. (1933). Zur Oekologie, Morphologie und Systematik der Infusorien des Baikalsees. Zoologica, 32, 1–298.Google Scholar
Glöckner, F. O.Zaichikov, E., Belkova, N.et al. (2000). Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Applied and Environmental Microbiology, 66, 5053–5065.CrossRefGoogle ScholarPubMed
Goodey, T. (1915). Notes on the remarkable retention of vitality by Protozoa from old stored soils. Annals of Applied Biology, 1, 395–399.CrossRefGoogle Scholar
Green, J. L., Holmes, A. J., Westoby, M.et al. (2004). Spatial scaling of microbial eukaryote diversity. Nature, 432, 747–750.CrossRefGoogle ScholarPubMed
Hagström, Å., Pinhassi, J. & Zweifel, U. L. (2000). Biogeographical diversity among marine bacterioplankton. Aquatic Microbial Ecology, 21, 231–244.CrossRefGoogle Scholar
Hillebrand, H. & Azovsky, A. I. (2001). Body size determines the strength of the latitudinal diversity gradient. Ecography, 24, 251–256.CrossRefGoogle Scholar
Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, J. M. (2004). A taxa-area relationship for bacteria. Nature, 432, 750–753.CrossRefGoogle ScholarPubMed
Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Monographs in Population Ecology, 32, Princeton, NJ: Princeton University Press.Google Scholar
Lawton, J. H. (1998). Small is beautiful, and very strange. Oikos, 81, 3–5.CrossRefGoogle Scholar
Lee, W. J. & Patterson, D. J. (2000). Heterotrophic flagellates (Protista) from marine sediments of Botany Bay, Australia. Journal of Natural History, 34, 483–562.CrossRefGoogle Scholar
Mann, D. G. & Droop, S. J. M. (1996). Biodiversity, biogeography and conservation of diatoms. Hydrobiologia, 336, 19–32.CrossRefGoogle Scholar
Massana, R., DeLong, E. F. & Pedrós-Alió, C. (2000). A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Applied and Environmental Microbiology, 66, 1777–1787.CrossRefGoogle ScholarPubMed
May, R. M. (1988). How many species are there on Earth?Science, 241, 1441–1449.CrossRefGoogle ScholarPubMed
Montresor, M., Lovejoy, C., Orsini, L., Procaccini, G. & Roy, S. (2003). Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biology, 26, 186–194.Google Scholar
Morgan, C. I. & King, P. E. (1976). British Tardigrades Synopses of the British Fauna No. 9. London: Linnean Society of London; and Academic Press.Google Scholar
Nilsson, J. R. (1962). Observations on Neobursaridium gigas Balech, 1941 (Ciliata, Heterotrichida). Journal of Protozoology, 9, 273–276.CrossRefGoogle Scholar
Noguez, A. M., Arita, H. Y., Escalante, A. E.et al. (2005). Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest. Global Ecology and Biogeography, 14, 241–248.CrossRefGoogle Scholar
Nouzarède, M. (1975). Sur un nouveau genre de protozoaires ciliés géants mésopsammiques appartenant à la famille des Geleidae, Kahl. Comptes Rendus de l'Académie des Sciences, Série D., Paris, 280, 625–628.Google Scholar
Potapova, M. G. & Charles, D. F. (2002). Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. Journal of Biogeography, 29, 167–187.CrossRefGoogle Scholar
Schmid, P. E., Tokeshi, M. and Schmid-Araya, J. M. (2000). Relation between population density and body size in stream communities. Science, 289, 1557–1560.CrossRefGoogle ScholarPubMed
Shiel, R. J. & Green, J. D. (1996). Rotifera recorded from New Zealand, 1859–1995, with comments on zoogeography. New Zealand Journal of Zoology, 23, 193–209.CrossRefGoogle Scholar
Soinen, J., Paavola, R. & Muotka, T. (2004). Benthic diatom communities in boreal sreams: community structure in relation to environmental and spatial gradients. Ecography, 27, 330–342.CrossRefGoogle Scholar
Tyler, P. A. (1996). Endemism in freshwater algae. Hydrobiologia, 336, 127–135.CrossRefGoogle Scholar
Wilbert, N. & Kahan, D. (1981). Ciliates of Solar Lake on the Red Sea shore. Archiv für Protistenkunde, 124, 70–95.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×