Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T15:41:51.214Z Has data issue: false hasContentIssue false

14 - Algae in Extreme and Unusual Environments

from Part II - Physiology of Photosynthetic Autotrophs in Present-Day Environments

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access

Summary

Aquatic phototrophs have a remarkable ability to cope with variations in a range of environmental factors, such as light, temperature, pH and salinity. However, some environmental conditions are beyond what are considered the normal limits for growth and can thus be considered as extreme. Focusing on algae and cyanobacteria, we discuss the capacity of extremophilic organisms to cope and even thrive in extremes of temperature ranging from hot springs to snow and ice algae, under extremes of pH and in situations where water is in short supply, such as in biological soil crusts and on man-made surfaces such as buildings and statues. Many of the mechanisms that allow algae to cope with these extremes are common across different situations and involve, for instance, processes to dissipate excess light energy and deal with reactive oxygen species. Algae and cyanobacteria enter symbiotic associations with other organisms, such as lichens and corals. They are also found as intracellular symbionts in plants, other algae and various protists and metazoans. There are looser associations where algae grow on animals such as gastropods, seals and terrestrial animals such as sloths. We also discuss the retention of active chloroplasts by phagotrophs in the process of kleptoplasty.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D. G. & Duggan, P. (2008). Cyanobacteria-bryophyte symbioses. Journal of Experimental Botany 59: 10471058.CrossRefGoogle ScholarPubMed
Albertano, P., Luongo, L. & Grilli Caiola, M. (1991). Influence of different lights of mixed cultures of microalgae from ancient frescoes. International Biodeterioration 27: 2738.CrossRefGoogle Scholar
Arima, H., Horiguchi, N., Takaichi, S. et al. (2011). Molecular, genetic and chemotaxonomic characterization of the terrestrial cyanobacterium Nostoc commune and its neighbouring species. FEMS Microbiology Ecology 79: 3445.CrossRefGoogle Scholar
Baker, J. A., Entsch, B. & McKay, D. B. (2003). The cyanobiont in an Azolla fern is neither Anabaena nor Nostoc. FEMS Microbiology Letters 229: 4347.CrossRefGoogle Scholar
Belnap, J. (2005). CRUSTS | Biological. In Hillel, D. (ed.) Encyclopedia of Soils in the Environment. Elsevier, Amsterdam, pp. 339347. ISBN 9780123485304, https://doi.org/10.1016/B0-12-348530-4/00131-4.CrossRefGoogle Scholar
Belnap, J. & Lange, O. L. (2003). Biological soil crusts: Structure, function, and management. In Baldwin, I. T., Caldwell, , , M. M., Heldmaier, G. et al. (eds.) Ecological Studies Series, Vol. 150. Springer-Verlag, Berlin, p. 503.Google Scholar
Belnap, J., Weber, B. (2013). Biological soil crusts as an integral component of desert environments. Ecological Processes 2: 11. https://doi.org/10.1186/2192-1709-2-11.CrossRefGoogle Scholar
Beraldi-Campesi, H. (2013). Early life on land and the first terrestrial ecosystems. Ecological Processes 2: 1. https://doi.org/10.1186/2192-1709-2-1.CrossRefGoogle Scholar
Bergman, B., Johanson, C. & Söderbock, E. (1992). The Nostoc-Gunnera symbiosis. New Phytologist 122: 379400.CrossRefGoogle ScholarPubMed
Bergman, B., Matveyev, A. & Rasmussen, U. (1996). Chemical signalling in cyanobacterial-plant symbioses. Trends in Plant Science 1: 191197.CrossRefGoogle Scholar
Bergman, B. & Osborne, B. (2002). The Nostoc-Gunnera symbiosis. Biology and Environment: Proceedings of the Royal Irish Academy 102B: 3539.CrossRefGoogle Scholar
Bhattacharya, D., Pelletreau, K. N., Price, D. C. et al. (2013). Genome analysis of Elysia chlorotica egg DNA provides no evidence for horizontal gene transfer into the germ line of this kleptoplastidic mollusc. Molecular Biology and Evolution 30: 18431852.CrossRefGoogle Scholar
Bi, Y.-H., Deng, Z.-Y., Hu, Z.-Y. et al. (2005). Response of Nostoc flagelliforme to salt stress. Acta Hydrobiologica Sinica 29: 125129.CrossRefGoogle Scholar
Björk, M., Axelsson, L. & Beer, S. (2004). Why is Ulva intestinalis the only macroalga inhabiting isolated rockpools along the Swedish Atlantic coast? Marine Ecology Progress Series 284: 109116.CrossRefGoogle Scholar
Brinkhuis, H., Schouten, S., Collinson, M. et al. (2006). Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441: 606609.CrossRefGoogle ScholarPubMed
Büdel, B., Dulić, T., Darienko, T. et al. (2016). Cyanobacteria and algae of biological soil crusts. In: Weber, B., Büdel, B. &. Belnap, J. (eds.) Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, Vol. 226. Springer, Cham, pp. 5580. https://doi.org/10.1007/978-3-319-30214-0_4.CrossRefGoogle Scholar
Büdel, B., Vivas, M. & Lange, O. L. (2013). Lichen species dominance and the resulting photosynthetic behavior of Sonoran Desert soil crust types (Baja California, Mexico). Ecological Processes 2: 6. https://doi.org/10.1186/2192-1709-2-6.CrossRefGoogle Scholar
Bustos-Díaz, E. D., Barona-Gómez, F. & Cibrián-Jaramillo, A. (2019). Cyanobacteria in nitrogen-fixing symbioses. In: Mishra, A. K., Tiwari, D. N. & Rai, A. N. (eds.) Cyanobacteria. Academic Press, London, pp. 2942.CrossRefGoogle Scholar
Castenholz, R. W. (1969). Thermophilic blue-green algae and the thermal environment. Bacteriological Reviews 33: 476504.CrossRefGoogle ScholarPubMed
Chang, A. C. G., Chen, T., Li, N. & Duan, J. (2019). Perspectives on endosymbiosis in coralloid roots: Association of cycads and cyanobacteria. Frontiers in Microbiology 10: 1888. https://doi.org/10.3389/fmicb.2019.01888.CrossRefGoogle ScholarPubMed
Chrismas, N. A. M., Allen, R., Hollingworth, A. C. et al. (2021). Complex photobiont diversity in the marine lichen Lichina pygmaea. Journal of the Marine Biological Association of the United Kingdom 101: 667674.CrossRefGoogle Scholar
Cockell, C. S. & Herrera, A. (2008). Why are some microorganisms boring? Trends in Microbiology 16: 101106.CrossRefGoogle ScholarPubMed
Costa, J. L. & Lindblad, P. (2002). Cyanobacteria in symbiosis with cycads. In: Rai, A. N., Bergman, B. & Rasmussen, U. (eds.) Cyanobacteria in Symbiosis. Springer, Dordrecht, pp. 195205.Google Scholar
Couradeau, E., Roush, D., Guida, B. S. et al. (2017). Diversity and mineral substrate preference in endolithic microbial communities from marine intertidal outcrops (Isla de Mona, Puerto Rico). Biogeosciences 14:311324.CrossRefGoogle Scholar
Czerwik-Marcinkowska, J. & Mrozińska, T. (2011). Algae and cyanobacteria in caves of the Polish Jura. Polish Botanical Journal 56: 203243.Google Scholar
Dasgupta, C. N., Singh, K. V., Nayaka, S. et al. (2020). Molecular phylogeny of a commercially important thermophilic microalga Chlorella sorokiniana LWG002615 and associated bacterium Aquimonas sp. NBRI01 isolated from Jeori thermal spring, Shimla, India. The Nucleus 63: 203210.CrossRefGoogle Scholar
Davey, M. C. (1989). The effect of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biology 10: 2936.CrossRefGoogle Scholar
De Bary, A. (1879). Die erscheinung der symbiose: Vortrag gehalten auf der versammlung deutscher naturforscher und aerzte zu cassel. Trübner.Google Scholar
Dettweiler-Robinson, E., Ponzetti, J. M. & Bakker, J. D. (2013). Long-term changes in biological soil crust cover and composition. Ecological Processes 2: 5.CrossRefGoogle Scholar
Doemel, W. N. & Brock, T. D. (1971). The physiological ecology of Cyanidium caldarium. Microbiology 67: 1732.Google Scholar
Fayolle, S., Moriconi, C., Oursel, B. et al. (2016). Epizoic algae distribution on the carapace and plastron of the European pond turtle (Emys orbicularis, Linnaeus, 1758): A study from the Camargue, France. Cryptogamie Algologie 37: 221232.CrossRefGoogle Scholar
Ford, T. W. (1986). Thermostability of the photosynthetic system of the thermoacidophilic alga Cyanidium caldarium in continuous culture. Journal of Experimental Botany 37: 16981707.CrossRefGoogle Scholar
Foster, R. A. & Zehr, J. P. (2019). Diversity, genomics, and distribution of phytoplankton-cyanobacterium single-cell symbiotic associations. Annual Review of Microbiology 73: 435456.CrossRefGoogle ScholarPubMed
Fujii, M., Takano, Y., Kojima, H. et al. (2010). Microbial community structure, pigment composition, and nitrogen source of red snow in Antarctica. Microbial Ecology 59: 466475.CrossRefGoogle Scholar
Galtier, N. & Lobry, J. R. (1997). Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. Journal of Molecular Evolution 44: 632636.CrossRefGoogle ScholarPubMed
Gao, X. & Zou, D. (2001). Photosynthetic bicarbonate utilization by a terrestrial cyanobacterium, Nostoc flagelliforme (Cyanophyceae). Journal of Phycology 37: 768771.CrossRefGoogle Scholar
Garcia-Meza, J. V., Barranguet, C. & Admiraal, W. (2005). Biofilm formation by algae as a mechanism for surviving on mine tailings. Environmental Toxicology and Chemistry 24: 573581.CrossRefGoogle ScholarPubMed
Garcia-Pichel, F., Ramírez-Reinat, E. & Gao, Q. (2010). Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. Proceedings of the National Academy of Sciences USA. 107: 2174921754.CrossRefGoogle ScholarPubMed
Gehringer, M. M., Pengelly, J. J., Cuddy, W. S. et al. (2010). Host selection of symbiotic cyanobacteria in 31 species of the Australian cycad genus: Macrozamia (Zamiaceae). Molecular Plant Microbe Interactions 23: 811822.CrossRefGoogle ScholarPubMed
Gimmler, H. (2001). Acidophilic and acidotolerant algae. In: Rai, L. C. & Gaur, J. P. (eds.) Algal Adaptation to Environmental Stresses. Springer, Berlin, Heidelberg, pp. 259290.CrossRefGoogle Scholar
Gimmler, H. & Degenhardt, B. (2001). Alkaliphilic and alkali-tolerant algae. In: Rai, L. C. & Gaur, J. P. (eds.) Algal Adaptation to Environmental Stresses. Springer, Berlin, Heidelberg, pp. 291321.CrossRefGoogle Scholar
Gomaa, F., Kosakayan, A., Heger, T. J. et al. (2014). One alga to rule them all: Unrelated mixotrophic testate amobae (Amoebozoa, Rhizaria and stramenopiles) share the same symbiont (Trebouxiophycae). Protist 165: 111126.CrossRefGoogle Scholar
Gordon, B. R. & Leggat, W. (2010). Symbiodinium-invertebrate symbioses and the role of metabolomics. Marine Drugs 8: 25462568.CrossRefGoogle ScholarPubMed
Grant, W. D., Mwatha, W. E. & Jones, B. E. (1990). Alkaliphiles: Ecology, diversity and applications. FEMS Microbiology Reviews 75: 255270.CrossRefGoogle Scholar
Grimm, M., Grube, M., Schiefelbein, U. et al. (2021). The lichens’ microbiota, still a mystery? Frontiers in Microbiology 12: 623839. https://doi.org/10.3389/fmicb.2021.623839.CrossRefGoogle ScholarPubMed
Grobbelaar, J. U. (2000). Lithophytic algae: A major threat to the karst formation of show caves. Journal of Applied Phycology 12: 309315.CrossRefGoogle Scholar
Grobbelaar, N., Scott, W. E., Hattingh, W. et al. (1987). The identification of the coralloid root endophytes of the southern African cycads and the ability of the isolates to fix dinitrogen. South African Journal of Botany 53: 111118.CrossRefGoogle Scholar
Gubernator, B., Bartoszewski, R., Kroliczewski, J. et al. (2008). Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic cyanobacterium Thermosynechococcus elongatus. Photosynthesis Research 95: 101109.CrossRefGoogle ScholarPubMed
Guida, B. S. & Garcia-Pichel, F. (2016). Extreme cellular adaptations and cell differentiation by a cyanobacterium for carbonate excavation. Proceedings of the National Academy of Science USA 113: 57125717.CrossRefGoogle ScholarPubMed
Handa, S., Nakahara, M., Tsubota, H. et al. (2006). Choricystis minor (Trebouxiophyceae, Chlorophyta) as a symbiont of several species of freshwater sponge. Hikobia 14: 265373.Google Scholar
Händeler, K., Grzymbowski, Y. P., Krug, P. J. et al. (2009). Functional chloroplasts in metazoan cells – a unique evolutionary strategy in animal life. Frontiers in Zoology 6: 28.CrossRefGoogle Scholar
Hayes, F. E., Codde, S. & Allen, S. G. (2022). Epizoic cyanobacteria and algae on the pelage of pinnipeds: A literature review and new data for the harbor seal (Phoca vitulina). Pacific Science 76: 6978.CrossRefGoogle Scholar
Hirooka, S. & Miyagishima, S.-Y. (2016). Cultivation of acidophilic algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in media derived from acidic hot springs. Frontiers in Microbiology 7: Article 2022. https://doi.org/10.3389/fmicb.2016.02022.CrossRefGoogle ScholarPubMed
Hoham, R. W. & Remias, D. (2020). Snow and glacial algae: A review. Journal of Phycology 56: 264282.CrossRefGoogle ScholarPubMed
Holzinger, A. & Karsten, U. (2013). Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological, and molecular mechanisms. Frontiers in Plant Science 4: 327. https://doi.org/10.3389/fpls.2013.00327.CrossRefGoogle ScholarPubMed
Honegger, R., Edwards, D. & Axe, L. (2013). The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytologist 197: 264275.CrossRefGoogle ScholarPubMed
Honegger, R. (1996). Morphogenesis. In: Nash, T. H. (ed.) Lichen Biology. Cambridge University Press, Cambridge, UK, pp. 6587.Google Scholar
Hoshina, F., Kobayashi, M., Suzaki, T. et al. (2018). Brandtia ciliaticola gen.et sp. nov. (Chlorellaceae, Trebouxiophyceae), a common symbiotic coccid of various ciliate species. Phycological Research 66: 7681.CrossRefGoogle Scholar
Huang, H., Bai, K. Z., Zhong, Z. P. et al. (2005). Energy transfer from phycobilisomes to photosystems of N. flagelliforme Born. et Filah during the rewetting course and its physiological significance. Journal of Integrative Plant Biology 47: 703708.CrossRefGoogle Scholar
Ionescu, D., Oren, A., Hindiyeh, M. Y. et al. (2007). The thermophilic cyanobacteria of the Zerka Ma’in thermal springs in Jordan. In: Seckbach, J. (ed.) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, Vol. 11. Springer, Dordrecht, pp. 411424.CrossRefGoogle Scholar
Jayanthi, D., Meghana, S. J., Rao, H. G. et al. (2023). Cyanobacterial symbioses with bryophytes. In: Dharmaduirai, D. (ed.) Microbial Symbioses. Function and Molecular Interactions on Host. Academic Press, London, pp. 1527.Google Scholar
Johnson, D. B. (1998). Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiology Ecology 27: 307317.CrossRefGoogle Scholar
Johnson, M. D., Oldach, D., Delwiche, C. F. et al. (2007). Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445: 426428.CrossRefGoogle ScholarPubMed
Johnson, M. D. (2011). The acquisition of phototrophy: Adaptive strategies of hosting endosymbionts and organelles. Photosynthesis Research 107: 117132.CrossRefGoogle ScholarPubMed
Karsten, U. & Holzinger, A. (2014). Green algae in alpine biological soil crust communities: Acclimation strategies against ultraviolet radiation and dehydration. Biodiversity and Conservation 23: 18451858.CrossRefGoogle ScholarPubMed
Karatygin, L. V., Snigirevskaya, N. S. & Vikulin, S. V. (2009). The most ancient terrestrial lichen Winfrenatia reticulata: A new find and new interpretation. Palaeontological Journal 43: 107112.CrossRefGoogle Scholar
Kedem, I., Milvad, Y., Kaplan, A. et al. (2021). Juggling lightning: How Chlorella ohadii handles extreme energy inputs without damage. Photosynthesis Research 147: 329344.CrossRefGoogle ScholarPubMed
Kerney, R., Kim, E., Hangaster, R. P. et al. (2011). Intracellular invasion of green algae in a salamander host. Proceedings of the National Academy of Sciences USA 108: 64976502.CrossRefGoogle Scholar
Kershaw, K. A. (1985). Physiological Ecology of Lichens. Cambridge University Press, Cambridge, UK.Google Scholar
Krzewicka, B., Smykla, J., Galas, J. et al. (2017). Freshwater lichens and habitat zonation of mountain streams. Limnologica 63: 110.CrossRefGoogle Scholar
Lajeunesse, T. C., Parkinson, J. E., Gabrielson, P. J. et al. (2018). Systematic revision of the Symbiodiniaceae highlighting the antiquity and diversity of coral endosymbionts. Current Biology 28: 25702580.CrossRefGoogle ScholarPubMed
Lao, P. J. & Forsdyke, D. R. (2000). Thermophilic bacteria strictly obey Szybalski’s transcription direction rule and politely purine-load RNAs with both adenine and guanine. Genome Research 10: 228236. https://doi.org/10.1101/gr.10.2.228.CrossRefGoogle ScholarPubMed
Larsson, C., Axelsson, L., Ryberg, H. et al. (1997). Photosynthetic carbon utilization by Enteromorpha intestinalis (Chlorophyta) from a Swedish rockpool. European Journal of Phycology 32: 4954.CrossRefGoogle Scholar
Lemoine, Y. & Schoefs, B. (2010). Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynthesis Research 106: 155177.CrossRefGoogle ScholarPubMed
Lenton, T. M. & Daines, S. J. (2017). Matworld – the biogeochemical effects of early life on land. New Phytologist 215: 531537.CrossRefGoogle ScholarPubMed
Letsch, M. R., Muller-Parker, G., Friedl, T. et al. (2009). Elliptochloris marina sp. nov. (Trebouxiophyceae, Chlorophyta), symbiotic green algae of the temperate Pacific sea anemones Anthopleura xanthorammica and A. longatum (Anthozoa, Cnidaria). Journal of Phycology 45: 11271135.CrossRefGoogle Scholar
Leu, J. Y., Lin, T. H., Selvamani, M. J. P. et al. (2013). Characterization of a novel thermophilic cyanobacterial strain from Taian hot springs in Taiwan for high CO2 mitigation and C-phycocyanin extraction. Process Biochemistry 48: 4148.CrossRefGoogle Scholar
Lewin, R. A. & Robinson, P. (1979). The greening of polar bears in zoos. Nature (Lond.) 278: 445447.CrossRefGoogle ScholarPubMed
Lewin, R. A. (1980). Green polar-bears, and other associations of algae with higher vertebrates. Trends in Biochemical Science 5: 34.CrossRefGoogle Scholar
Lewin, R. A., Farnsworth, P. A. & Yamanaka, G. (1981). The algae of green polar bears. Phycologia 20: 303314.CrossRefGoogle Scholar
Liang, Y., Kaczmarek, M. B., Kasprzak, A. K. et al. (2018). Thermosynechococcaceae as a source of thermostable C-phycocyanins: Properties and molecular insights. Algal Research 35: 223235.CrossRefGoogle Scholar
Liu, Y. H., Yu, L., Ke, W. T. et al. (2010). Photosynthetic recovery of Nostoc flagelliforme (Cyanophyceae) upon rehydration after 2 years and 8 years dry storage. Phycologia 49: 429437.CrossRefGoogle Scholar
Ma, S., Han, B., Huss, V. A. et al. (2015). Chlorella thermophila (Trebouxiophyceae, Chlorophyta), a novel thermo-tolerant Chlorella species isolated from an occupied rooftop incubator. Hydrobiologia 760: 8189.CrossRefGoogle Scholar
Maberly, S. C. (1996). Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshwater Biology 35: 579598.CrossRefGoogle Scholar
Macedo, M. F., Miller, A. Z., Dionísio, A. et al. (2009). Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: An overview. Microbiology (Reading) 155: 34763490.CrossRefGoogle ScholarPubMed
Maeda, T., Takahashi, S., Yoshida, T. et al. (2021). Chloroplast acquisition without the gene transfer in kleptoplastidic sea slugs, Plakobrankus ocellatus. eLife 10: e60176.Google Scholar
Malar, C. M., Krüger, M., Krüger, C. et al. (2021). The genome of Geosiphon pyriformis reveals ancestral traits linked to the arbuscular mycorrhizal symbiosis. Current Biology 31: 15701577.CrossRefGoogle Scholar
Mandal, S. & Rath, J. (2013). Algal colonization and its ecophysiology on the fine sculptures of terracotta monuments of Bishnupur, West Bengal, India. International Biodeterioration and Biodegradation 84: 291e299.CrossRefGoogle Scholar
Mann, D. G., Yamada, N., Bolton, J. J. et al. (2023). Nitzschia captivata sp. nov. (Bacillariophyta), the essential prey diatom of the kleptoplastidic dinoflagellate Durinska capensis, compared with N. agnita, N. kuetzungiioides and other species. Phycologia 62: 136151.CrossRefGoogle Scholar
Mansour, J. S. & Anstesia, K. (2021). Eco-evolutionary perspectives on mixoplankton. Frontiers in Marine Science 8: 666180.CrossRefGoogle Scholar
Marsh, J., Nouvet, S., Sanborn, P. et al. (2006). Composition and function of biological crust communities along topographic gradients in grasslands of central interior British Columbia (Chilcotin) and southwestern Yukon (Kluane). Canadian Journal of Botany 84: 713731.CrossRefGoogle Scholar
Maselli, M., Anastis, K., Klemm, K. et al. (2021). Retention of prey genetic material by the kleptoplastidic ciliate Strombidium cf. basimorphum. Frontiers in Microbiology 12: 694508.CrossRefGoogle ScholarPubMed
Mattson, M. D. (1999). Acid lakes and rivers. In: Environmental Geology. Encyclopedia of Earth Science. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4494-1_4.Google Scholar
MeGraw, V. E., Brown, A. R., Boothman, C. et al. (2018). A novel adaptation mechanism underpinning algal colonization of a nuclear fuel storage pond. mBio 9: e02395–17. https://doi.org/10.1128/mBio.02395-17.CrossRefGoogle ScholarPubMed
Mikulic, P. & Beardall, J. (2014). Contrasting toxicity effects of zinc on growth and photosynthesis in a neutrophilic alga (Chlamydomonas reinhardtii) and an extremophilic alga (Cyanidium caldarium). Chemosphere 112: 402411.CrossRefGoogle Scholar
Mikulic, P. & Beardall, J. (2021). Oxidative and anti-oxidative responses to metal toxicity in an extremophilic alga (Cyanidium caldarium) and a neutrophilic alga (Chlamydomonas reinhardtii). Phycologia 60: 513523.CrossRefGoogle Scholar
Mock, T. & Junge, K. (2007). Psychrophilic diatoms. In: Seckbach, J. (ed.) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, Vol. 11. Springer, Dordrecht, pp. 344364.Google Scholar
Mohamed, A. R., Cumbo, V. R., Harii, S. et al. (2018). Deciphering the nature of the coral–Chromera association. ISME Journal 12: 776790.CrossRefGoogle ScholarPubMed
Møller, C. L., Vangsoe, M. T. & Sand-Jensen, K. (2014). Comparative growth and metabolism of gelatinous colonies of three phytoplankton, Nostoc commune, Nostoc pruniforme and Nostoc zetterstedtii, at different temperatures. Freshwater Biology 59: 21832193.CrossRefGoogle Scholar
Morgan-Kiss, R. M., Priscu, J. C., Pocock, T. et al. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews 70: 222–52.CrossRefGoogle ScholarPubMed
Mutalipassi, M., Riccio, G., Mazella, V. et al. (2021). Symbioses of cyanobacteria in marine environments: Ecological insights and biotechnological perspectives. Marine Drugs MDPI 19: 227.CrossRefGoogle ScholarPubMed
Nixdorf, B., Mischke, U. & Lessmann, D. (1998). Chrysophytes and chlamydomonads: Pioneer colonists in extremely acidic mining lakes (pH<3) in Lusatia (Germany). Hydrobiologia 369/370: 315327.CrossRefGoogle Scholar
Novis, P. M. & Harding, J. S. (2007). Extreme acidophiles. In: Seckbach, J. (ed.) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, Vol. 11. Springer, Dordrecht, pp. 443463.CrossRefGoogle Scholar
Nakayama, T., Ikegami, Y., Nakayama, T. et al. (2011). Spheroid bodies in rhopalodiacean diatoms were derived from a single endosymbiotic cyanobacterium. Journal of Plant Research 124: 9397.CrossRefGoogle ScholarPubMed
Nakayama, T., Kamikawak, R., Tanifujik, G. et al. (2014). Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptation to an intracellular lifestyle. Proceedings of the National Academy of Sciences USA 111: 1140711412.CrossRefGoogle Scholar
Nelsen, M. P., Lücking, R., Boyce, C. K. et al. (2020). No support for emergence of lichens prior to the evolution of vascular plants. Geobiology 18: 313.CrossRefGoogle Scholar
Nordstrom, D. K., McCleskey, R. B. & Ball, J. W. (2008). Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid–sulfate waters. Applied Geochemistry 24: 191207.CrossRefGoogle Scholar
Oborník, M. (2020). Photoparasitism as an intermediate state in the evolution of apicomplexan parasites. Trends in Parasitology 36: 727734.CrossRefGoogle Scholar
Osawa, Y. & Tokeshi, M. (2020). Niche relations in a small world: Epizoic algae on an intertidal gastropod. Population Ecology 62: 395407.CrossRefGoogle Scholar
Pauli, J. N., Mendoza, J. E., Steffan, S. A. et al. (2014). A syndrome of mutualism reinforces the lifestyle of a sloth. Proceedings of the Royal Society of London B 281: 20133006. http://dx.doi.org/10.1098/rspb.2013.3006.Google ScholarPubMed
Peters, G. A. (1991). Azolla and other plant-cyanobacteria symbioses: Aspects of form and function. Plant Soil 137: 2536.CrossRefGoogle Scholar
Pistocchi, R., Dao, L. T. H., Mikulic, P. et al. (2019). Metal pollution in water: Toxicity, tolerance and use of algae as a potential remediation solution. In: Hallmann, A. & Rampellotto, P. H. (eds.) Grand Challenges in Algae Biotechnology, Springer, Cham, pp. 471500.CrossRefGoogle Scholar
Qiu, B. S., Zhong, A. H., Zhou, W. B. et al. (2004). Effects of potassium on the photosynthetic recovery of the terrestrial cyanobacterium, Nostoc flagelliforme (Cyanophyceae) during rehydration. Journal of Phycology 40: 323332.CrossRefGoogle Scholar
Quigg, A., Kotabová, E., Jarešová, J. et al. (2012). Photosynthesis in Chromera velia represents a simple system with high efficiency. PLOS ONE 7: e47036. https://doi.org/10.1371/journal.pone.0047036.CrossRefGoogle ScholarPubMed
Rajević, N., Kovačvić, M., Gould, S. B. et al. (2015). Algal endosymbionts in European Hydra strains reflect multiple origins of the zoochlorella symbiosis. Molecular Phylogenetics and Evolution 93: 5562.CrossRefGoogle ScholarPubMed
Raven, J. A. (2002). Evolution of cyanobacterial symbioses. Biology and environment. Proceedings of the Royal Irish Academy 102B: 36.CrossRefGoogle Scholar
Raven, J. A., Suggett, D. J. & Giordano, M. (2020). Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. Journal of Phycology 56: 13771392.CrossRefGoogle ScholarPubMed
Raven, J. A. (2023). Distribution and function of calcium deposits in photosynthetic organisms. In Lüttge, U., Cánovas, F. M., Risueño, M. C., Leuschner, C. & Pretzsch, H. (eds.) Progress in Botany, Vol. 84. Springer, Cham, pp. 293326.Google Scholar
Raven, J. A. & Allen, J. F. (2003). Genomics and chloroplast evolution: What did cyanobacteria do for plants? Genome Biology, 4(3): 209215.CrossRefGoogle ScholarPubMed
Raymond, J. A. & Morgan-Kiss, R. (2013). Separate origins of ice-binding proteins in Antarctic Chlamydomonas species. PLoS One 8. https://doi.org/10.1371/journal.pone.0059186.CrossRefGoogle ScholarPubMed
Raymond, J. A., Morgan-Kiss, R. & Stahl-Rommel, S. (2020). Glycerol as an osmoprotectant in two Antarctic Chlamydomonas species from an ice-covered saline lake and is synthesized by an unusual bidomain enzyme. Frontiers in Plant Science 11: 1259. https://doi.org/10.3389/fpls.2020.01259.CrossRefGoogle ScholarPubMed
Raymond, J. A. & Remias, D. (2019). Ice-binding proteins in a chrysophycean snow alga: Acquisition of an essential gene by horizontal gene transfer. Frontiers in Microbiology 10:2697. https://doi.org/10.3389/fmicb.2019.02697.CrossRefGoogle Scholar
Rehman, M., Varshney, S., Ravi, L. et al. (2023). Cyanobacterial symbioses with angiosperms. In: Dharmaduirai, D. (ed.) Microbial Symbioses. Function and Molecular Interactions on Host. Academic Press, London, pp. 3956.Google Scholar
Rezayian, M., Niknam, V. & Ebrahimzadeh, H. (2019). Oxidative damage and antioxidative system in algae. Toxicology Reports 24: 13091313. https://doi.org/10.1016/j.toxrep.2019.10.001.CrossRefGoogle Scholar
Ritchie, R. J. & Sma-Air, S. (2022). Photosynthesis of an endolithic Chlorococcum alga (Chlorophyta, Chlorococcaceae) from travertine calcium carbonate rocks of a tropical limestone spring. Applied Phycology 3: 115.CrossRefGoogle Scholar
Rivasseau, C., Farhi, E., Compagnon, E. et al. (2016). Coccomyxa actinabiotis sp. nov. (Trebouxiophyceae, Chlorophyta), a new green microalga living in the spent fuel cooling pool of a nuclear reactor. Journal of Phycology 52: 689703.CrossRefGoogle ScholarPubMed
Rothschild, L. J. & Mancinelli, R. L. (2001). Life in extreme environments. Nature 409: 10921101.CrossRefGoogle ScholarPubMed
Roubeix, V., Attia, L., Chavaux, R. et al. (2021). Specificity of diatom communities attached on the carapace of the European pond turtle Emys orbicularis. Advances in Oceanography and Limnology 12: https://doi.org/10.4081/aiol.2021.9119.CrossRefGoogle Scholar
Saini, N., Pal, K., Sujata et al. (2021). Thermophilic algae: A new prospect towards environmental sustainability. Journal of Cleaner Production 324: 129277. https://doi.org/10.1016/j.jclepro.2021.129277.CrossRefGoogle Scholar
Samolov, E., Baumann, K., Büdel, B. et al. (2020). Biodiversity of algae and cyanobacteria in biological soil crusts collected along a climatic gradient in Chile using an integrative approach. Microorganisms. 8: 1047. https://doi.org/10.3390/microorganisms8071047.CrossRefGoogle ScholarPubMed
Sand-Jensen, K. & Jespersen, T. S. (2012). Tolerance of the widespread cyanobacterium Nostoc commune to extreme temperature variations (−269 to 105°C), pH and salt stress. Oecologia 169: 331339.CrossRefGoogle ScholarPubMed
Sato, N. (2020). Complex origins of chloroplast membranes with photosynthetic machineries: Multiple transfers of genes from divergent organisms at different times or a single endosymbiotic event? Journal of Plant Research 133: 1533.CrossRefGoogle ScholarPubMed
Saunders, R. M. K. & Fowler, K. (1993). The supraspecific taxonomy and evolution of the fern genus Azolla (Azollaceae). Plant Systematics and Evolution 184: 175193.CrossRefGoogle Scholar
Satoh, K., Hirai, M., Nishio, J. et al. (2002). Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium. Plant and Cell Physiology 43: 170176.CrossRefGoogle Scholar
Scherer, W. S., Ernst, A., Chen, T.-W. et al. (1984). Rewetting of drought-resistant blue-green algae: Time-course of water uptake and reappearance of respiration, photosynthesis and nitrogen fixation. Oecologia 62: 418423.CrossRefGoogle ScholarPubMed
Schvarcz, C. R., Wilson, S. T., Caffin, M. et al. (2022). Overlooked and widespread pennate diatom-diazotroph symbioses in the sea. Nature Communications 13: 799.CrossRefGoogle ScholarPubMed
Simpson, C., Kiesling, W., Mewis, H. et al. (2011). Evolutionary diversification of reef corals: comparison of the molecular and fossil records. Evolution 65: 32743284.CrossRefGoogle ScholarPubMed
Souza-Egipsy, V., Altamirano, M., Amils, R. et al. (2011). Photosynthetic performance of phototrophic biofilms in extreme acidic environments. Environmental Microbiology 13: 23512358.CrossRefGoogle ScholarPubMed
Speelman, E. N., van Kempen, M. M. L., Barke, J. et al. (2009). The Eocene Arctic Azolla bloom: Environmental conditions, productivity and carbon drawdown. Geobiology 7: 155170.CrossRefGoogle ScholarPubMed
Spribille, T., Tagirdzhanova, G., Goyette, S. et al. (2020). 3D biofilms: In search of the polysaccharides holding together lichen symbioses. FEMS Microbiology Letters 367: 5. https://doi.org/10.1093/femsle/fnaa023.CrossRefGoogle ScholarPubMed
Stat, M., Carter, D. & Hoegh-Guldberg, O. (2006). The evolutionary history of Symbiodinium and scleractinian hosts – Symbiosis, diversity, and the effect of climate change. Perspectives in Plant Ecology, Evolution and Systematics 8: 2343.CrossRefGoogle Scholar
Steinberg, C. E. W., Schäfer, H. & Beisker, W. (1998). Do acid-tolerant cyanobacteria exist? Acta Hydrochimica et Hydrobiologica 26: 1319.3.0.CO;2-V>CrossRefGoogle Scholar
Szyja, M., Büdel, B. & Colesie, C. (2018). Ecophysiological characterization of early successional biological soil crusts in heavily human-impacted areas. Biogeosciences 15: 19191931.CrossRefGoogle Scholar
Takai, K., Nakamura, K., Toki, T., et al. (2008). Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high pressures cultivation. Proceedings of the National Academy of Sciences USA 105: 1094910954.CrossRefGoogle Scholar
Talling, J. F., Wood, R. B., Prosser, M. V. et al. (1973). The upper limit of photosynthetic productivity by phytoplankton: Evidence from Ethiopian soda lakes. Freshwater Biology 3: 5376.CrossRefGoogle Scholar
Tamaru, Y., Takani, Y., Yoshida, T. et al. (2005). Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Applied and Environmental Microbiology 71: 73277333.CrossRefGoogle ScholarPubMed
Taranto, P. A., Keenan, T. W. & Potts, M. (1993). Rehydration induces rapid onset of lipid biosynthesis in desiccated Nostoc commune (Cyanobacteria). Biochimica et Biophysica Acta 168: 228237.CrossRefGoogle Scholar
Teugels, B., Bouillon, S., Veuger, B. et al. (2008). Kleptoplastids mediate nitrogen acquisition in the sea slug Elysia viridis. Aquatic Botany 4: 1521.CrossRefGoogle Scholar
Thomas, N. J., Coates, C. J., Kam, W. et al. (2023). Environmental constraints on the photosynthetic rate of the marine flatworm Symsagittifera roscoffensis. Journal of Experimental Marine Biology and Ecology 558: 51830. https://doi.org/10.1016/j.jembe.2022.151830.CrossRefGoogle Scholar
Treves, H., Raanan, H., Finkel, M. O. et al. (2013). A newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light intensity. FEMS Microbiology Ecology 86: 373380.CrossRefGoogle ScholarPubMed
Treves, H., Raanan, H., Kedem, I. et al. (2016). The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. New Phytologist 210: 12291243.CrossRefGoogle ScholarPubMed
Van Oppen, M. J. H. & Medina, M. (2020). Coral evolutionary responses to microbial symbioses. Philosophical Transactions of the Royal Society B 375: 20190591.CrossRefGoogle ScholarPubMed
Varshney, P., Beardall, J. & Wangikar, P. (2018). Isolation and biochemical characterisation of two novel thermophilic green algal species- Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Research 30: 2837.CrossRefGoogle Scholar
Varshney, P., Sohoni, S., Wangikar, P. P. et al. (2016). Effect of high CO2 concentrations on the growth and macromolecular composition of a heat- and high-light–tolerant microalga. Journal of Applied Phycology 28: 26312640.CrossRefGoogle Scholar
Varshney, P., Mikulic, P., Vonshak, A. et al. (2015). Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource Technology 184: 363372.CrossRefGoogle ScholarPubMed
Wägele, H., Deusch, O., Händeler, K. et al. (2011). Transcription evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakybranchus ocellatus does not entail lateral transfer of algal nuclear genes. Molecular Biology and Evolution 28: 699706.CrossRefGoogle Scholar
Wagner, G. M. (1997). Azolla: A review of its biology and utilization. The Botanical Review 63: 126.CrossRefGoogle Scholar
Wyness, A. J., Roush, D. & McQuaid, C. D. (2022). Global distribution and diversity of marine euendolithic cyanobacteria. Journal of Phycology 58: 746759.CrossRefGoogle ScholarPubMed
Xue, S., Zang, Y., Chen, J. et al. (2020). Ultraviolet-B radiation stress triggers reactive oxygen species and regulates the antioxidant defense and photosynthesis systems of intertidal red algae Neoporphyra haitanensis. Frontiers in Marine Science 9. https://doi.org/10.3389/fmars.2022.1043462.Google Scholar
Yaguchi, T., Chung, S., Igarashi, Y. et al. (1992). Purification of RuBisCO from the thermophilic cyanobacterium Synechococcus sp. strain a-1. Journal of Fermentation Bioengineering 73: 348351.CrossRefGoogle Scholar
Yaguchi, T., Chung, S. Y., Igarashi, Y. et al. (1993). Cloning, sequence and overexpression of the thermophilic cyanobacterium gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase. Journal of Fermentation Bioengineering 75: 18.CrossRefGoogle Scholar
Yang, H., Genot, B., Duhamel, S. et al. (2022). Organismal and cellular interactions in vertebrate-alga symbiosis. Biochemical Society Transactions 50: 609620.CrossRefGoogle Scholar
Yong-Hong, B., Zhong-Yang, D., Zheng-Yu, H., et al. (2005). Response of Nostoc flagelliforme to salt stress. Acta Hydrobiologica Sinica 29: 125129.Google Scholar
Zheng, Y., Xue, C., Chen, H. et al. (2020). Low-temperature adaptation of the snow alga Chlamydomonas nivalis is associated with the photosynthetic system regulatory process. Frontiers in Microbiology 11: 1233. https://doi.org/10.3389/fmicb.2020.01233.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×