We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The neural mechanisms contributing to the social problems of pediatric brain tumor survivors (PBTS) are unknown. Face processing is important to social communication, social behavior, and peer acceptance. Research with other populations with social difficulties, namely autism spectrum disorder, suggests atypical brain activation in areas important for face processing. This case-controlled functional magnetic resonance imaging (fMRI) study compared brain activation during face processing in PBTS and typically developing (TD) youth.
Methods:
Participants included 36 age-, gender-, and IQ-matched youth (N = 18 per group). PBTS were at least 5 years from diagnosis and 2 years from the completion of tumor therapy. fMRI data were acquired during a face identity task and a control condition. Groups were compared on activation magnitude within the fusiform gyrus for the faces condition compared to the control condition. Correlational analyses evaluated associations between neuroimaging metrics and indices of social behavior for PBTS participants.
Results:
Both groups demonstrated face-specific activation within the social brain for the faces condition compared to the control condition. PBTS showed significantly decreased activation for faces in the medial portions of the fusiform gyrus bilaterally compared to TD youth, ps ≤ .004. Higher peak activity in the left fusiform gyrus was associated with better socialization (r = .53, p < .05).
Conclusions:
This study offers initial evidence of atypical activation in a key face processing area in PBTS. Such atypical activation may underlie some of the social difficulties of PBTS. Social cognitive neuroscience methodologies may elucidate the neurobiological bases for PBTS social behavior.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.