Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T15:30:52.708Z Has data issue: false hasContentIssue false

Why we don't move: The importance of somatic maintenance and resting

Published online by Cambridge University Press:  30 September 2021

Joshua M. Schrock*
Affiliation:
Department of Anthropology and Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University, Chicago, IL60611, USA. [email protected]; jmschrock.com

Abstract

A compelling ecological theory of movement and vigor must explain why humans and other animals spend so much time not moving. When we rest, our somatic maintenance systems continue to work. When our somatic maintenance requirements increase, we place greater subjective value on resting. To explain variation in movement and vigor, we must account for the subjective value of resting.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert, A., Goodall, G., Dantzer, R., & Gheusi, G. (1997). Differential effects of lipopolysaccharide on pup retrieving and nest building in lactating mice. Brain, Behavior, and Immunity, 11(2), 107118.CrossRefGoogle ScholarPubMed
Bautista, L. M., Tinbergen, J., & Kacelnik, A. (2001). To walk or to fly? How birds choose among foraging modes. Proceedings of the National Academy of Sciences of the United States of America, 98(3), 10891094.CrossRefGoogle ScholarPubMed
Butte, N. F., & King, J. C. (2005). Energy requirements during pregnancy and lactation. Public Health Nutrition, 8(7A), 10101027.CrossRefGoogle ScholarPubMed
Eaton, S. B., & Eaton, S. B III. (2003). An evolutionary perspective on human physical activity: Implications for health. Comparative Biochemistry & Physiology. Part A, Molecular & Integrative Physiology, 136(1), 153159.CrossRefGoogle ScholarPubMed
Eaton, S. B., Konner, M., & Shostak, M. (1988). Stone agers in the fast lane: Chronic degenerative diseases in evolutionary perspective. American Journal of Medicine, 84(4), 739749.CrossRefGoogle ScholarPubMed
Engeland, C. G., Nielsen, D. V., Kavaliers, M., & Ossenkopp, K.-P. (2001). Locomotor activity changes following lipopolysaccharide treatment in mice: A multivariate assessment of behavioral tolerance. Physiology and Behavior, 72(4), 481491. https://doi.org/10.1016/s0031-9384(00)00436-4.CrossRefGoogle ScholarPubMed
Friedman, E. M., Reyes, T. M., & Coe, C. L. (1996). Context-dependent behavioral effects of interleukin-1 in the rhesus monkey (Macaca mulatta). Psychoneuroendocrinology, 21(5), 455468. https://doi.org/10.1016/0306-4530(96)00010-8.CrossRefGoogle Scholar
Guthold, R., Stevens, G. A., Riley, L. M., & Bull, F. C. (2018). Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1.9 million participants. The Lancet Global Health, 6(10), e1077e1086.CrossRefGoogle ScholarPubMed
Hart, B. L. (1990). Behavioral adaptations to pathogens and parasites: Five strategies. Neuroscience & Biobehavioral Reviews, 14(3), 273294.CrossRefGoogle ScholarPubMed
Hockey, R. (2013). The psychology of fatigue: Work, effort and control. Cambridge University Press.CrossRefGoogle Scholar
Horan, M. A., Little, R. A., Rothwell, N. J., & Strijbos, P. J. (1989). Comparison of the effects of several endotoxin preparations on body temperature and metabolic rate in the rat. Canadian Journal of Physiology and Pharmacology, 67(9), 10111014.CrossRefGoogle ScholarPubMed
Hubbard, J., Ruppert, E., Gropp, C.-M., & Bourgin, P. (2013). Non-circadian direct effects of light on sleep and alertness: Lessons from transgenic mouse models. Sleep Medicine Reviews, 17(6), 445452. https://doi.org/10.1016/j.smrv.2012.12.004.CrossRefGoogle ScholarPubMed
Lasselin, J., Karshikoff, B., Axelsson, J., Akerstedt, T., Benson, S., Engler, H., … Andreasson, A. (2020a). Fatigue and sleepiness responses to experimental inflammation and exploratory analysis of the effect of baseline inflammation in healthy humans. Brain, Behavior, and Immunity, 83, 309314. https://doi.org/10.1016/j.bbi.2019.10.020.CrossRefGoogle Scholar
Lasselin, J., Schedlowski, M., Karshikoff, B., Engler, H., Lekander, M., & Konsman, J. P. (2020b). Comparison of bacterial lipopolysaccharide-induced sickness behavior in rodents and humans: Relevance for symptoms of anxiety and depression. Neuroscience and Biobehavioral Reviews, 115, 1524. https://doi.org/10.1016/j.neubiorev.2020.05.001.CrossRefGoogle Scholar
Lieberman, D. E. (2015). Is exercise really medicine? An evolutionary perspective. Current Sports Medicine Reports, 14(4), 313319.CrossRefGoogle ScholarPubMed
Lima, S. L. (2005). Sleeping under the risk of predation. Animal Behaviour, 70(4), 723736. https://doi.org/10.1016/j.anbehav.2005.01.008.CrossRefGoogle Scholar
Llewellyn, D., Brown, G. P., Thompson, M. B., & Shine, R. (2011). Behavioral responses to immune-system activation in an anuran (the cane toad, Bufo marinus): Field and laboratory studies. Physiological and Biochemical Zoology, 84(1), 7786. https://doi.org/10.1086/657609.CrossRefGoogle Scholar
Lopes, P. C. (2014). When is it socially acceptable to feel sick? Proceedings of the Royal Society of London – Series B: Biological Sciences, 281(1788), 20140218.Google ScholarPubMed
Lopes, P. C., Adelman, J., Wingfield, J. C., & Bentley, G. E. (2012). Social context modulates sickness behavior. Behavioral Ecology and Sociobiology, 66(10), 14211428. https://doi.org/10.1007/s00265-012-1397-1.CrossRefGoogle Scholar
Lopes, P. C., Springthorpe, D., & Bentley, G. E. (2014). Increased activity correlates with reduced ability to mount immune defenses to endotoxin in zebra finches. Journal of Experimental Zoology Part A-Ecological Genetics & Physiology, 321(8), 422431.CrossRefGoogle ScholarPubMed
Maier, S. F., & Watkins, L. R. (1999). Bidirectional communication between the brain and the immune system: Implications for behaviour. Animal Behaviour, 57(4), 741751. https://doi.org/10.1006/anbe.1998.1068.CrossRefGoogle Scholar
McCusker, R. H., & Kelley, K. W. (2013). Immune-neural connections: How the immune system's response to infectious agents influences behavior. Journal of Experimental Biology, 216(Pt 1), 8498.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P., Hirschtick, J. L., Bonner, J. Z., & Swartz, A. M. (2010). Toward quantifying the usage costs of human immunity: Altered metabolic rates and hormone levels during acute immune activation in men. American Journal of Human Biology, 22(4), 546556.CrossRefGoogle ScholarPubMed
Munroe, R. H., Munroe, R. L., Michelson, C., Koel, A., Bolton, R., & Bolton, C. (1983). Time allocation in four societies. Ethnology, 22(4), 355370.CrossRefGoogle Scholar
Myers, J. S. (2008). Proinflammatory cytokines and sickness behavior: Implications for depression and cancer-related symptoms. Oncology Nursing Forum, 35(5), 802807.CrossRefGoogle ScholarPubMed
Nunn, C. L., & Samson, D. R. (2018). Sleep in a comparative context: Investigating how human sleep differs from sleep in other primates. American Journal of Physical Anthropology, 166(3), 601612.CrossRefGoogle Scholar
Owen-Ashley, N. T., & Wingfield, J. C. (2007). Acute phase responses of passerine birds: Characterization and seasonal variation. Journal of Ornithology, 148(2), 583591. https://doi.org/10.1007/s10336-007-0197-2.CrossRefGoogle Scholar
Pageaux, B., & Lepers, R. (2016). Fatigue induced by physical and mental exertion increases perception of effort and impairs subsequent endurance performance. Frontiers in Physiology, 7, 587. https://doi.org/10.3389/fphys.2016.00587.CrossRefGoogle ScholarPubMed
Pollard, K. A., & Blumstein, D. T. (2008). Time allocation and the evolution of group size. Animal Behaviour, 76(5), 16831699. https://doi.org/10.1016/j.anbehav.2008.08.006.CrossRefGoogle Scholar
Schrock, J. M. (2020). Why our immune systems make us feel sick: Pathologies, adaptations, and evolutionarily novel conditions. Doctoral Dissertation, University of Oregon, Eugene, Oregon.Google Scholar
Schrock, J. M., Snodgrass, J. J., & Sugiyama, L. S. (2019). Lassitude: The emotion of being sick. Evolution and Human Behavior, 41, 4457. https://doi.org/10.1016/j.evolhumbehav.2019.09.002.CrossRefGoogle Scholar
Shattuck, E. C., & Muehlenbein, M. P. (2015). Human sickness behavior: Ultimate and proximate explanations. American Journal of Physical Anthropology, 157(1), 118.CrossRefGoogle ScholarPubMed
Snodgrass, J. J. (2012). Human energetics. In Stinson, S., Bogin, B. & O'Rourke, D. (Eds.), Human biology (pp. 325384), Wiley.CrossRefGoogle Scholar
Spurr, G. B. (1983). Nutritional status and physical work capacity. American Journal of Physical Anthropology, 26(S1), 135. doi: https://doi.org/10.1002/ajpa.1330260503.CrossRefGoogle Scholar
Sundelin, T., Karshikoff, B., Axelsson, E., Hoglund, C. O., Lekander, M., & Axelsson, J. (2015). Sick man walking: Perception of health status from body motion. Brain, Behavior, and Immunity, 48, 5356. https://doi.org/10.1016/j.bbi.2015.03.007.CrossRefGoogle ScholarPubMed
Vichaya, E. G., & Dantzer, R. (2018). Inflammation-induced motivational changes: Perspective gained by evaluating positive and negative valence systems. Current Opinion in Behavioral Sciences, 22, 9095. https://doi.org/10.1016/j.cobeha.2018.01.008.CrossRefGoogle ScholarPubMed
Westerterp, K. R. (2017). Control of energy expenditure in humans. European Journal of Clinical Nutrition, 71(3), 340344.CrossRefGoogle ScholarPubMed