Published online by Cambridge University Press: 01 January 2025
Points of view analysis (PVA), proposed by Tucker and Messick in 1963, was one of the first methods to deal explicitly with individual differences in multidimensional scaling, but at some point was apparently superceded by the weighted Euclidean model, well-known as the Carroll and Chang INDSCAL model. This paper argues that the idea behind points of view analysis deserves new attention, especially as a technique to analyze group differences. A procedure is proposed that can be viewed as a streamlined, integrated version of the Tucker and Messick Process, which consisted of a number of separate steps. At the same time, our procedure can be regarded as a particularly constrained weighted Euclidean model. While fitting the model, two types of nonlinear data transformations are feasible, either for given dissimilarities, or for variables from which the dissimilarities are derived. Various applications are discussed, where the two types of transformation can be mixed in the same analysis; a quadratic assignment framework is used to evaluate the results.
The research of the first author was supported by the Royal Netherlands Academy of Arts and Sciences (KNAW); the research of the second author by the Netherlands Organization for Scientific Research (NWO Grant 560-267-029). An earlier version of this paper was presented at the European Meeting of the Psychometric Society, Leuven, 1989. We wish to thank Willem J. Heiser for his stimulating comments to earlier versions of this paper, and we are grateful to the Editor and anonymous referees for their helpful suggestions.