Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T03:33:06.822Z Has data issue: false hasContentIssue false

Précis of Vigor: Neuroeconomics of Movement Control

Published online by Cambridge University Press:  02 December 2020

Reza Shadmehr
Affiliation:
Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, [email protected]
Alaa A. Ahmed
Affiliation:
Department of Mechanical Engineering and Department of Integrative Physiology, University of Colorado, Boulder, CO80027, USA. [email protected]

Abstract

Why do we run toward people we love, but only walk toward others? Why do people in New York seem to walk faster than other cities? Why do our eyes linger longer on things we value more? There is a link between how the brain assigns value to things, and how it controls our movements. This link is an ancient one, developed through shared neural circuits that on one hand teach us how to value things, and on the other hand control the vigor with which we move. As a result, when there is damage to systems that signal reward, like dopamine and serotonin, that damage not only affects our mood and patterns of decision-making, but how we move. In this book, we first ask why, in principle, evolution should have developed a shared system of control between valuation and vigor. We then focus on the neural basis of vigor, synthesizing results from experiments that have measured activity in various brain structures and neuromodulators, during tasks in which animals decide how patiently they should wait for reward, and how vigorously they should move to acquire it. Thus, the way we move unmasks one of our well-guarded secrets: how much we value the thing we are moving toward.

Type
Précis
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bahill, A. T., Clark, M. R., & Stark, L. (1975). The main sequence: A tool for studying human eye movements. Mathematical Biosciences, 24, 191204.CrossRefGoogle Scholar
Bailey, M. R., Goldman, O., Bello, E. P., Chohan, M. O., Jeong, N., Winiger, V., … Simpson, E. H. (2018). An interaction between serotonin receptor signaling and dopamine enhances goal-directed vigor and persistence in mice. Journal of Neuroscience, 38, 21492162. https://doi.org/10.1523/JNEUROSCI.2088-17.2018.CrossRefGoogle ScholarPubMed
Bautista, L. M., Tinbergen, J., & Kacelnik, A. (2001). To walk or to fly? How birds choose among foraging modes. Proceedings of the National Academy of Sciences of the United States of America, 98, 10891094. https://doi.org/10.1073/pnas.98.3.1089.CrossRefGoogle ScholarPubMed
Berret, B., Castanier, C., Bastide, S., & Deroche, T. (2018). Vigour of self-paced reaching movement: Cost of time and individual traits. Scientific Reports, 8, 10655. https://doi.org/10.1038/s41598-018-28979-6.CrossRefGoogle ScholarPubMed
Cohen, J. Y., Amoroso, M. W., & Uchida, N. (2015). Serotonergic neurons signal reward and punishment on multiple timescales. eLife, 4, e06346. https://doi.org/10.7554/eLife.06346.CrossRefGoogle ScholarPubMed
Correia, P. A., Lottem, E., Banerjee, D., Machado, A. S., Carey, M. R., & Mainen, Z. F. (2017). Transient inhibition and long-term facilitation of locomotion by phasic optogenetic activation of serotonin neurons. eLife, 6, e20975. https://doi.org/10.7554/eLife.20975.CrossRefGoogle ScholarPubMed
da Silva, J. A., Tecuapetla, F., Paixao, V., & Costa, R. M. (2018). Dopamine neuron activity before action initiation gates and invigorates future movements. Nature, 554, 244248. https://doi.org/10.1038/nature25457.CrossRefGoogle ScholarPubMed
Eagle, D. M., Bari, A., & Robbins, T. W. (2008). The neuropsychopharmacology of action inhibition: Cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology (Berlin), 199, 439456. https://doi.org/10.1007/s00213-008-1127-6.CrossRefGoogle ScholarPubMed
Golla, H., Tziridis, K., Haarmeier, T., Catz, N., Barash, S., & Thier, P. (2008). Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. European Journal of Neuroscience, 27, 132144.CrossRefGoogle ScholarPubMed
Gordon, J., Ghilardi, M. F., & Ghez, C. (1994). Accuracy of planar reaching movements. I. Independence of direction and extent variability. Experimental Brain Research, 99, 97111.CrossRefGoogle ScholarPubMed
Haith, A. M., Reppert, T. R., & Shadmehr, R. (2012). Evidence for hyperbolic temporal discounting of reward in control of movements. Journal of Neuroscience, 32, 1172711736. https://doi.org/10.1523/JNEUROSCI.0424-12.2012.CrossRefGoogle ScholarPubMed
Hunter, L. C., Hendrix, E. C., & Dean, J. C. (2010). The cost of walking downhill: Is the preferred gait energetically optimal? Journal of Biomechanics, 43, 19101915. https://doi.org/10.1016/j.jbiomech.2010.03.030.CrossRefGoogle ScholarPubMed
Ivry, R. B. (1986). Force and timing components of the motor program. Journal of Motor Behavior, 18, 449474.CrossRefGoogle ScholarPubMed
Kawagoe, R., Takikawa, Y., & Hikosaka, O. (1998). Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neuroscience, 1, 411416.CrossRefGoogle ScholarPubMed
Kawagoe, R., Takikawa, Y., & Hikosaka, O. (2004). Reward-predicting activity of dopamine and caudate neurons – A possible mechanism of motivational control of saccadic eye movement. Journal of Neurophysiology, 91, 10131024. https://doi.org/10.1152/jn.00721.2003.CrossRefGoogle ScholarPubMed
Kim, H. F., Amita, H., & Hikosaka, O. (2017). Indirect pathway of caudal basal ganglia for rejection of valueless visual objects. Neuron, 94, 920930. https://doi.org/10.1016/j.neuron.2017.04.033.CrossRefGoogle ScholarPubMed
Kim, H. F., & Hikosaka, O. (2013). Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron, 79, 10011010. https://doi.org/10.1016/j.neuron.2013.06.044.CrossRefGoogle ScholarPubMed
Lauwereyns, J., Watanabe, K., Coe, B., & Hikosaka, O. (2002). A neural correlate of response bias in monkey caudate nucleus. Nature, 418, 413417.CrossRefGoogle ScholarPubMed
Lemon, W. C. (1991). Fitness consequences of foraging behaviour in the zebra finch. Nature, 352, 153155.CrossRefGoogle Scholar
Levine, R. V., & Norenzayan, A. (1999). The pace of life in 31 countries. Journal of Cross-Cultural Psychology, 30, 178205.CrossRefGoogle Scholar
Lottem, E., Banerjee, D., Vertechi, P., Sarra, D., Lohuis, M. O., & Mainen, Z. F. (2018). Activation of serotonin neurons promotes active persistence in a probabilistic foraging task. Nature Communications, 9, 1000. https://doi.org/10.1038/s41467-018-03438-y.CrossRefGoogle Scholar
Manohar, S. G., Chong, T. T., Apps, M. A., Batla, A., Stamelou, M., Jarman, P. R., … Husain, M. (2015). Reward pays the cost of noise reduction in motor and cognitive control. Current Biology, 25, 17071716. https://doi.org/10.1016/j.cub.2015.05.038.CrossRefGoogle ScholarPubMed
Manohar, S. G., Muhammed, K., Fallon, S. J., & Husain, M. (2019). Motivation dynamically increases noise resistance by internal feedback during movement. Neuropsychologia, Cognitive Effort, 123, 1929. https://doi.org/10.1016/j.neuropsychologia.2018.07.011.CrossRefGoogle ScholarPubMed
Mazzoni, P., Hristova, A., & Krakauer, J. W. (2007). Why don't we move faster? Parkinson's disease, movement vigor, and implicit motivation. Journal of Neuroscience, 27, 71057116.CrossRefGoogle ScholarPubMed
Milstein, D. M., & Dorris, M. C. (2007). The influence of expected value on saccadic preparation. Journal of Neuroscience, 27, 48104818.CrossRefGoogle ScholarPubMed
Miyazaki, K. W., Miyazaki, K., Tanaka, K. F., Yamanaka, A., Takahashi, A., Tabuchi, S., & Doya, K. (2014). Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards. Current Biology, 24, 20332040. https://doi.org/10.1016/j.cub.2014.07.041.CrossRefGoogle ScholarPubMed
Ralston, H. J. (1958). Energy-speed relation and optimal speed during level walking. Internationale Zeitschrift fur Angewandte Physiologie, Einschliesslich Arbeitsphysiologie, 17, 277283.Google ScholarPubMed
Reppert, T. R., Lempert, K. M., Glimcher, P. W., & Shadmehr, R. (2015). Modulation of saccade vigor during value-based decision making. Journal of Neuroscience, 35, 1536915378. https://doi.org/10.1523/JNEUROSCI.2621-15.2015.CrossRefGoogle ScholarPubMed
Reppert, T. R., Rigas, I., Herzfeld, D., Sedaghat-Nejad, E., Komogortsev, O., & Shadmehr, R. (2018). Movement vigor as a trait-like attribute of individuality. Journal of Neurophysiology, 120, 741757. https://doi.org/10.1152/jn.00033.2018.CrossRefGoogle Scholar
Richardson, H., & Verbeek, N. A. M. (1986). Diet selection and optimization by northwestern crows feeding on Japanese littleneck clams. Ecology, 67, 12191226.CrossRefGoogle Scholar
Rosenbaum, D. A. (1980). Human movement initiation: Specification of arm, direction, and extent. Journal of Experimental Psychology General, 109, 444474.CrossRefGoogle ScholarPubMed
Sackaloo, K., Strouse, E., & Rice, M. S. (2015). Degree of preference and its influence on motor control when reaching for most preferred, neutrally preferred, and least preferred candy. OTJR Occupation, Participation and Health, 35, 8188.CrossRefGoogle ScholarPubMed
Samuelson, P. A. (1938). A note on the pure theory of consumer's behaviour. Economica, 51, 6172.CrossRefGoogle Scholar
Sato, M., & Hikosaka, O. (2002). Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement. Journal of Neuroscience, 22, 23632373.CrossRefGoogle ScholarPubMed
Schelp, S. A., Pultorak, K. J., Rakowski, D. R., Gomez, D. M., Krzystyniak, G., Das, R., & Oleson, E. B. (2017). A transient dopamine signal encodes subjective value and causally influences demand in an economic context. Proceedings of the National Academy of Sciences of the United States of America, 114, E11303E11312. https://doi.org/10.1073/pnas.1706969114.CrossRefGoogle Scholar
Sedaghat-Nejad, E., Herzfeld, D. J., & Shadmehr, R. (2019). Reward prediction error modulates saccade vigor. Journal of Neuroscience, 39, 50105017.CrossRefGoogle ScholarPubMed
Seideman, J. A., Stanford, T. R., & Salinas, E. (2018). Saccade metrics reflect decision-making dynamics during urgent choices. Nature Communications, 9, 2907. https://doi.org/10.1038/s41467-018-05319-w.CrossRefGoogle ScholarPubMed
Shadmehr, R., & Ahmed, A. A. (2020). Vigor: Neuroeconomics of movement control. MIT Press.CrossRefGoogle ScholarPubMed
Shadmehr, R., Huang, H. J., & Ahmed, A. A. (2016). A representation of effort in decision-making and motor control. Current Biology, 26, 19291934.CrossRefGoogle ScholarPubMed
Stelmach, G. E., & Worringham, C. J. (1988). The preparation and production of isometric force in Parkinson's disease. Neuropsychologia, 26, 93103.CrossRefGoogle ScholarPubMed
Straube, A., Fuchs, A. F., Usher, S., & Robinson, F. R. (1997). Characteristics of saccadic gain adaptation in rhesus macaques. Journal of Neurophysiology, 77, 874895.CrossRefGoogle ScholarPubMed
Summerside, E. M., Shadmehr, R., & Ahmed, A. A. (2018). Vigor of reaching movements: Reward discounts the cost of effort. Journal of Neurophysiology, 119, 23472357.CrossRefGoogle ScholarPubMed
Syed, E. C., Grima, L. L., Magill, P. J., Bogacz, R., Brown, P., & Walton, M. E. (2016). Action initiation shapes mesolimbic dopamine encoding of future rewards. Nature Neuroscience, 19, 3436. https://doi.org/10.1038/nn.4187.CrossRefGoogle ScholarPubMed
Takikawa, Y., Kawagoe, R., & Hikosaka, O. (2002). Reward-dependent spatial selectivity of anticipatory activity in monkey caudate neurons. Journal of Neurophysiology, 87, 508515.CrossRefGoogle ScholarPubMed
Thura, D., Cos, I., Trung, J., & Cisek, P. (2014). Context-dependent urgency influences speed-accuracy trade-offs in decision-making and movement execution. Journal of Neuroscience, 34, 1644216454. https://doi.org/10.1523/JNEUROSCI.0162-14.2014.CrossRefGoogle ScholarPubMed
Wickler, S. J., Hoyt, D. F., Cogger, E. A., & Hall, K. M. (2001). Effect of load on preferred speed and cost of transport. Journal of Applied Physiology, 90, 15481551. https://doi.org/10.1152/jappl.2001.90.4.1548.CrossRefGoogle ScholarPubMed
Wickler, S. J., Hoyt, D. F., Cogger, E. A., & Hirschbein, M. H. (2000). Preferred speed and cost of transport: The effect of incline. Journal of Experimental Biology, 203, 21952200.CrossRefGoogle ScholarPubMed
Xu-Wilson, M., Zee, D. S., & Shadmehr, R. (2009). The intrinsic value of visual information affects saccade velocities. Experimental Brain Research, 196, 475481.CrossRefGoogle ScholarPubMed
Yasuda, M., Yamamoto, S., & Hikosaka, O. (2012). Robust representation of stable object values in the oculomotor Basal Ganglia. Journal of Neuroscience, 32, 1691716932. https://doi.org/10.1523/JNEUROSCI.3438-12.2012.CrossRefGoogle ScholarPubMed
Yoon, T., Geary, R. B., Ahmed, A. A., & Shadmehr, R. (2018). Control of movement vigor and decision making during foraging. Proceedings of the National Academy of Sciences of the United States of America, 115, E10476E10485.CrossRefGoogle ScholarPubMed
Yoon, T., Jaleel, A., Ahmed, A. A., & Shadmehr, R. (2020). Saccade vigor and the subjective economic value of visual stimuli. Journal of Neurophysiology, 123, 21612172. https://doi.org/10.1152/jn.00700.2019.CrossRefGoogle ScholarPubMed