Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T11:36:30.695Z Has data issue: false hasContentIssue false

31 - Central engine afterglow from GRBs and the polarization signature

from Part II - Polarized emission in X-ray sources

Published online by Cambridge University Press:  06 July 2010

Y. Z. Fan
Affiliation:
Niels Bohr International Academy, University of Copenhagen, Denmark
Ronaldo Bellazzini
Affiliation:
Istituto Nazionale di Fisica Nucleare (INFN), Rome
Enrico Costa
Affiliation:
Istituto Astrofisica Spaziale, Rome
Giorgio Matt
Affiliation:
Università degli Studi Roma Tre
Gianpiero Tagliaferri
Affiliation:
Osservatorio Astronomico di Brera
Get access

Summary

There are two kinds of gamma-ray burst (GRB) afterglows. One is the fireball afterglow that is the radiation of the external shock(s) driven by the GRB remnant. The other is the emission from the late ejecta launched by the prolonged activity of the central engine, i.e. the central engine afterglow. The former seems to be only weakly polarized and thus is not suitable for the upcoming X-ray polarimetry. For the latter, the polarization property is less clear. Some central engine afterglows, such as energetic flares and the plateau followed by a sharp drop, might be highly polarized because the outflows powering these behaviors may be Poynting-flux dominated. Furthermore, the breakdown of the symmetry of the visible emitting region may be hiding in some X-ray data and will give rise to interesting polarization signatures. For example, in the high latitude emission model for the sharp X-ray decline strong polarization evolution is possible. An XRT-like detector but with polarization capability on board a Swift-like satellite would be suitable to detect these possible signals.

The central engine afterglow

In the context of the standard fireball model of GRBs, the prompt γ-rays and the afterglow emission are powered by internal shocks and external shocks, respectively (see for a review). Before 2004, most of the afterglow data were collected hours after the prompt γ-ray emission and were found to be consistent with the external forward shock model, though at times energy injection, a wind medium profile, or a structured/patchy jet were needed.

Type
Chapter
Information
X-ray Polarimetry
A New Window in Astrophysics
, pp. 209 - 214
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×