Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T16:20:17.405Z Has data issue: false hasContentIssue false

3 - Applications of Synchrotron and FEL X-Rays in High-Pressure Research

Published online by Cambridge University Press:  03 August 2023

Yingwei Fei
Affiliation:
Carnegie Institution of Washington, Washington DC
Michael J. Walter
Affiliation:
Carnegie Institution of Washington, Washington DC
Get access

Summary

Accelerator-based hard X-ray sources (storage-ring synchrotron radiation, and X-ray free electron laser, or FEL) provide X-ray beams with high energy, high brilliance, short tens-of-picosecond-to-femtosecond pulses, and high coherence that are well suited for high-pressure studies. Developments in high-pressure technology, advanced X-ray optics and detectors, and synergies with theoretical computations have helped drive the rapid growth of high-pressure research using synchrotron and FEL X-rays. In this chapter, we present a brief review of the research field from a historical perspective, illustrated by selected aspects on research using the diamond anvil cell. We then highlight a few of the active areas in high-pressure X-ray research, including ultrahigh-pressure generation, amorphous materials at high pressure, phase transition kinetics, and materials metastability. Finally, an outlook on future directions and opportunities with the upgrades in both synchrotron and FEL facilities worldwide is presented.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alatas, A., Sinn, H., Zhao, J. Y., et al. (2008). Experimental aspects of inelastic X-ray scattering studies on liquids under extreme conditions (P–T). High Pressure Research, 28, 175183.CrossRefGoogle Scholar
Alonso-Mori, R., Kern, J., Gildea, R. J., et al. (2012). Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proceedings of the National Academy of Science., 109, 1910319107.Google Scholar
Alp, E. E., Sturhahn, W., Toellner, T. S., Zhao, J., Hu, M., Brown, D. E. (2002). Vibrational dynamics studies by nuclear resonant inelastic x-ray scattering. Hyperfine Interactions, 144, 3-20.CrossRefGoogle Scholar
Andrault, D., Itie, J. P., Poirier, J. P. (1988). High-pressure synchrotron radiation EXAFS study of perovskites. Chemical Geology, 70, 6060.Google Scholar
Antonangeli, D., Siebert, J., Aracne, C. M., et al. (2011). Spin crossover in ferropericlase at high pressure: a seismologically transparent transition? Science, 331, 6467.Google Scholar
Antonangeli, D., Siebert, J., Badro, J., Farber, D. L., Fiquet, G., Morard, G., Ryerson, F. J. (2010). Composition of the Earth’s inner core from high-pressure sound velocity measurements in Fe–Ni–Si alloys. Earth and Planet. Science Letters, 295, 292296.Google Scholar
Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P., Morard, G. (2013). Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science, 340, 464466.Google Scholar
Aquilanti, G., Pascarelli, S., Mathon, O., Munoz, M., Narygina, O., Dubrovinsky, L. (2009). Development of micro-XANES mapping in the diamond anvil cell. Journal of Synchrotron Radiation, 16, 376379.CrossRefGoogle ScholarPubMed
Aquilanti, G., Trapananti, A., Karandikar, A., et al. (2015). Melting of iron determined by X-ray absorption spectroscopy to 100 GPa. Proceedings of the National Academy of Science., 112, 1204212045.Google Scholar
Badro, J., Fiquet, G., Guyot, F., et al. (2003). Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science, 300, 789791.Google Scholar
Badro, J., Fiquet, G., Struzhkin, V. V., et al. (2002). Nature of the high-pressure transition in Fe2O3 hematite. Physical Review Letters, 89, 205504.Google Scholar
Badro, J., Struzhkin, V. V., Shu, J., et al. (1999). Magnetism in FeO at megabar pressures from X-ray emission spectroscopy. Physical Review Letters, 83, 41014104.CrossRefGoogle Scholar
Baldini, M., Yang, W., Aquilanti, G., et al. (2011). High-pressure EXAFS measurements of crystalline Ge using nanocrystalline diamond anvils. Physical Review B, 84, 014111.Google Scholar
Baron, A. Q. R., Tanaka, Y., Miwa, D., et al. (2001). Early commissioning of the SPring-8 beamline for high resolution inelastic X-ray scattering. Nuclear Instruments and Methods in Physics Research A, 467468, Part 1, 627630.CrossRefGoogle Scholar
Bassett, W. A. (1980). Synchrotron radiation, an intense X-ray source for high pressure diffraction studies. Physics of the Earth and Planetary Interiors, 23, 337340.Google Scholar
Bassett, W. A., Anderson, A. J., Mayanovic, R. A., Chou, I. M. (2000). Modified hydrothermal diamond anvil cells for XAFS analyses of elements with low energy absorption edges in aqueous solutions at sub- and supercritical conditions. Z. Kristall., 215, 711717.Google Scholar
Baublitz, J. M. A., Arnold, V., Ruoff, A. L. (1981). Energy dispersive X‐ray diffraction from high pressure polycrystalline specimens using synchrotron radiation. Review of Scientific Instruments, 52, 16161624.CrossRefGoogle Scholar
Benedict, U., Grosshans, W. A., Holzapfel, W. B. (1986). Systematics of electron delocalization in lanthanide and actinide elements under pressure. Physica B+C, 144, 1418.Google Scholar
Benmore, C. J., Soignard, E., Amin, S. A., et al. (2010). Structural and topological changes in silica glass at pressure. Physical Review B, 81, 054105.Google Scholar
Booth, C. H., Jiang, Y., Wang, D. L., et al. (2012). Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics. Proceedings of the National Academy of Science., 109, 1020510209.Google Scholar
Bosak, A., Hoesch, M., Antonangeli, D., Farber, D. L., Fischer, I., Krisch, M. (2008). Lattice dynamics of vanadium: Inelastic X-ray scattering measurements. Physical Review B, 78, 020301.CrossRefGoogle Scholar
Bostedt, C., Boutet, S., Fritz, D. M., et al. (2016). Linac coherent light source: the first five years. Review of Modern Physics, 88, 015007.Google Scholar
Bradley, J. A., Moore, K. T., Lipp, M. J., et al. (2012). 4f electron delocalization and volume collapse in praseodymium metal. Physical Review B, 85, 100102.Google Scholar
Bridgman, P. W. (1909). The measurement of high hydrostatic pressure. I. A simple primary gauge. Proceedings of the American Academy of Arts and Sciences, 44, 201217.Google Scholar
Buras, B., Olsen, J. S., Gerward, L., Will, G., Hinze, E. (1977). X-ray energy-dispersive diffractometry using synchrotron radiation. Journal of Applied Crystallography, 10, 431438.Google Scholar
Burkel, E., Peisl, J., Dorner, B. (1987). Observation of inelastic X-ray scattering from phonons. Europhysics Letters, 3, 957.Google Scholar
Bykov, M., Bykova, E., Aprilis, G., et al. (2018). Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nature Communications, 9, 2756.Google Scholar
Cai, Y. Q., Mao, H. K., Chow, P. C., et al. (2005). Ordering of hydrogen bonds in high-pressure low-temperature H2O. Physics Review Letters, 94, 025502.Google Scholar
Catalli, K., Shim, S.-H., Dera, P., et al. (2011). Effects of the Fe3+ spin transition on the properties of aluminous perovskite – new insights for lower-mantle seismic heterogeneities. Earth and Planetary Science Letters, 310, 293302.Google Scholar
Chefki, M., Abd-Elmeguid, M. M., Micklitz, H., et al. (1998). Pressure-induced transition of the sublattice magnetization in EuCo2P2: change from local moment Eu(4f) to itinerant Co(3d) magnetism. Physical Review Letters, 80, 802805.Google Scholar
Chen, B., Jackson, J. M., Sturhahn, W., et al. (2012). Spin crossover equation of state and sound velocities of (Mg0.65Fe0.35)O ferropericlase to 140 GPa. Journal of Geophysical Research, 117, B08208.Google Scholar
Chen, D. Z., Shi, C. Y., An, Q., et al. (2015). Fractal atomic-level percolation in metallic glasses. Science, 349, 13061310.Google Scholar
Deb, S. K., Wilding, M., Somayazulu, M., McMillan, P. F. (2001). Pressure-induced amorphization and an amorphous-amorphous transition in densified porous silicon. Nature, 414, 528530.Google Scholar
Dewaele, A., Loubeyre, P., Occelli, F., Marie, O., Mezouar, M. (2018). Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nature Communications, 9, 2913.Google Scholar
Ding, Y., Haskel, D., Ovchinnikov, S. G., et al. (2008). Novel pressure-induced magnetic transition in magnetite (Fe3O4). Physical Review Letters., 100, 045508.Google Scholar
Dubrovinskaia, N., Dubrovinsky, L., Solopova, N. A., et al. (2016). Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Science Advances, 2, e1600341.Google Scholar
Dubrovinsky, L., Boffa-Ballaran, T., Glazyrin, K., et al. (2010). Single-crystal X-ray diffraction at megabar pressures and temperatures of thousands of degrees. High Pressure Research, 30, 620633.Google Scholar
Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B., Abakumov, A. M. (2012). Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nature Communications, 3, 1163.Google Scholar
Duffy, T. S. (2005). Synchrotron facilities and the study of the Earth’s deep interior. Reports on Progress in Physics, 68, 18111859.Google Scholar
Evans, W. J., Yoo, C.-S., Lee, G. W., Cynn, H., Lipp, M. J., Visbeck, K. (2007). Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials. Review of Scientific Instruments, 78, 073904.Google Scholar
Falconi, S., Monaco, G., Crichton, W. A., Mezouar, M., Verbeni, R. (2004). Collimator for inelastic X-ray scattering experiments at high temperature and pressure conditions. High Pressure Research, 24, 463469.Google Scholar
Farber, D. L., Krisch, M., Antonangeli, D., et al. (2006). Lattice dynamics of molybdenum at high pressure. Physical Review Letters, 96, 115502.Google Scholar
Fei, Y. W., Mao, H. K. (1993). Static compression of Mg(OH)2 to 78-GPa at high-temperature and constraints on the equation of state of fluid H2O. Journal of Geophysical Research–Solid Earth, 98, 1187511884.Google Scholar
Fei, Y. W., Mao, H. K. (1994). In-situ determination of the NiAs phase of FeO at high-pressure and temperature. Science, 266, 16781680.Google Scholar
Fei, Y. W., Mao, H. K., Shu, J. F., Parthasarathy, G., Bassett, W. A., Ko, J. D. (1992). Simultaneous high-P, high-T X-ray-diffraction study of beta-(Mg,Fe)2SiO4 to 26-GPa and 900-K. Journal of Geophysical Research–Solid Earth, 97, 44894495.Google Scholar
Feng, Z. D., Zhou, Y. H., Tan, R., et al. (2018). Dynamic damage and fracture of a conductive glass under high-rate compression: a synchrotron based study. Journal of Non·crystalline Solids, 494, 4049.Google Scholar
Fiquet, G., Badro, J., Guyot, F., Requardt, H., Krisch, M. (2001). Sound velocities in iron to 110 Gigapascals. Science, 291, 468471.Google Scholar
Fister, T. T., Nagle, K. P., Vila, F. D., et al. (2009). Intermediate-range order in water ices: nonresonant inelastic X-ray scattering measurements and real-space full multiple scattering calculations. Physical Review B, 79, 174117.Google Scholar
Fleet, M. E., Herzberg, C. T., Henderson, G. S., Crozier, E. D., Osborne, M. D., Scarfe, C. M. (1984). Coordination of Fe, Ga and Ge in high pressure glasses by Mössbauer, Raman and X-ray absorption spectroscopy, and geological implications. Geochim. Cosmochim. Acta, 48, 14551466.Google Scholar
Fukui, H., Sakai, T., Sakamaki, T., et al. (2013). A compact system for generating extreme pressures and temperatures: an application of laser-heated diamond anvil cell to inelastic X-ray scattering. Review of Scientific Instruments, 84(11), 10.1063/1.4826497.Google Scholar
Gallo, E., Glatzel, P. (2014). Valence to core X-ray emission spectroscopy. Advanced Materials, 26, 77307746.Google Scholar
Gleason, A. E., Bolme, C. A., Galtier, E., et al. (2017a). Compression freezing kinetics of water to ice VII. Physical Review Letters, 119, 025701.Google Scholar
Gleason, A. E., Bolme, C. A., Lee, H. J., et al. (2017b). Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation. Nature Communications, 8, 1481.Google Scholar
Gleason, A. E., Bolme, C. A., Lee, H. J., et al. (2015). Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nature Communications, 6(1), 8191.Google Scholar
Goncharov, A. F., Prakapenka, V. B., Struzhkin, V. V., Kantor, I., Rivers, M. L., Dalton, D. A. (2010). X-ray diffraction in the pulsed laser heated diamond anvil cell. Review of Scientific Instruments, 81, 113902.Google Scholar
Gorman, M. G., Briggs, R., McBride, E. E., et al. (2015). Direct observation of melting in shock-compressed bismuth with femtosecond X-ray diffraction. Physical Review Letters, 115, 095701.Google Scholar
Gorman, M. G., Coleman, A. L., Briggs, R., et al. (2018). Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth. Scientific Reports, 8, 16927.Google Scholar
Haberl, B., Guthrie, M., Sinogeikin, S. V., Shen, G., Williams, J. S., Bradby, J. E. (2015). Thermal evolution of the metastable r8 and bc8 polymorphs of silicon. High Pressure Research., 35, 99116.Google Scholar
Haberl, B., Strobel, T. A., Bradby, J. E. (2016). Pathways to exotic metastable silicon allotropes. Applied Physics Reviews, 3, 040808.Google Scholar
Harder, R., Robinson, I. K. (2013). Coherent X-ray diffraction imaging of morphology and strain in nanomaterials. JOM, 65, 12021207.Google Scholar
Hausermann, D., Hanfland, M. (1996). Optics and beamlines for high-pressure research at the European synchrotron radiation facility. High Press. Research, 14, 223234.Google Scholar
Hemley, R. J., Jephcoat, A. P., Mao, H. K., Ming, L. C., Manghnani, M. H. (1988). Pressure-induced amorphization of crystalline silica. Nature, 334, 5254.Google Scholar
Henry, L., Mezouar, M., Garbarino, G., Sifré, D., Weck, G., Datchi, F. (2020). Liquid–liquid transition and critical point in sulfur. Nature, 584, 382386.Google Scholar
Hirao, N., Kawaguchi, S. I., Hirose, K., Shimizu, K., Ohtani, E., Ohishi, Y. (2020). New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8. Matter and Radiation at Extremes, 5, 018403.Google Scholar
Hong, X. G., Newville, M., Prakapenka, V. B., Rivers, M. L., Sutton, S. R. (2009). High quality X-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell. Review of Scientific Instruments, 80(7), 073908.Google Scholar
Hrubiak, R., Smith, J. S., Shen, G. (2019). Multimode scanning X-ray diffraction microscopy for diamond anvil cell experiments. Review of Scientific Instruments, 90, 025109.Google Scholar
Hruszkewycz, S. O., Cha, W., Andrich, P., et al. (2017). In situ study of annealing-induced strain relaxation in diamond nanoparticles using Bragg coherent diffraction imaging. APL Materials, 5, 26105.Google Scholar
Huang, X., Yang, W., Harder, R., et al. (2015). Deformation twinning of a silver nanocrystal under high pressure. Nano Letters, 15, 76447649.CrossRefGoogle Scholar
Hwang, H., Galtier, E., Cynn, H., et al. (2020). Subnanosecond phase transition dynamics in laser-shocked iron. Science Advances, 6, eaaz5132.Google Scholar
Ingalls, R., Garcia, G. A., Stern, E. A. (1978). X-ray absorption at high pressure. Physical Review Letters, 40, 334.Google Scholar
Ishimatsu, N., Matsumoto, K., Maruyama, H., et al. (2012). Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils. Journal of Synchrotron Radiation, 19, 768-772.Google Scholar
Itié, J. P., Girard, E., Guignot, N., Le Godec, Y., Mezouar, M. (2015). Crystallography under high pressure using synchrotron radiation. Journal of Physics D: Applied Physics, 48, 504007.Google Scholar
Itié, J. P., Polian, A., Calas, G., Petiau, J., Fontaine, A., Tolentino, H. (1989). Pressure-induced coordination changes in crystalline and vitreous GeO2. Physical Review Letters, 63, 398.Google Scholar
Jackson, J. M., Sturhahn, W., Lerche, M., et al. (2013a). Melting of compressed iron by monitoring atomic dynamics. Earth and Planetary Science Letters, 362, 143150.CrossRefGoogle Scholar
Jackson, J. M., Sturhahn, W., Lerche, M., et al. (2013b). Melting of compressed iron by monitoring atomic dynamics. Earth and Planetary Science Letters, 362, 143150.Google Scholar
Jackson, J. M., Sturhahn, W., Shen, , et al. (2005). A synchrotron Mossbauer spectroscopy study of (Mg,Fe)SiO3 perovskite up to 120 GPa. American Mineralogist, 90, 199205.Google Scholar
Jacobsen, M. K., Velisavljevic, N., Sinogeikin, S. V. (2015). Pressure-induced kinetics of the α to ω transition in zirconium. Journal of Applied Physics, 118, 025902.Google Scholar
Jamieson, J. C., Lawson, A. W., Nachtrieb, N. D. (1959). New device for obtaining X‐ray diffraction patterns from substances exposed to high pressure. Review of Scientific Instruments, 30, 10161019.CrossRefGoogle Scholar
Jenei, Z., O’Bannon, E. F., Weir, S. T., Cynn, H., Lipp, M. J., Evans, W. J. (2018). Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar. Nature Communications, 9, 3563.Google Scholar
Jensen, B. J., Luo, S. N., Hooks, D. E., et al. (2012). Ultrafast, high resolution, phase contrast imaging of impact response with synchrotron radiation. AIP Advances, 2, 012170.Google Scholar
Kamada, S., Ohtani, E., Fukui, H., et al. (2014). The sound velocity measurements of Fe3S. American Mineralogist., 99, 98101.Google Scholar
Kikegawa, T., Iwasaki, H., Fujimura, T., et al. (1987). Synchrotron-radiation study of phase-transitions in phosphorus at high-pressures and temperatures. Journal of Applied Crystallography, 20, 406410.Google Scholar
Kim, Y. H., Yi, Y. S., Kim, H. I., et al. (2019). Structural transitions in MgSiO3 glasses and melts at the core–mantle boundary observed via inelastic X-ray scattering. Geophysical Research Letters., 46, 1375613764.Google Scholar
Kono, Y., Kenney-Benson, C., Shen, G. (2020a). Opposed type double stage cell for Mbar pressure experiment with large sample volume. High Pressure Research, 40, 175183.Google Scholar
Kono, Y., Kenney-Benson, C., Shibazaki, Y., Park, C., Wang, Y. B., Shen, G. Y. (2015). X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris–Edinburgh press. Review of Scientific Instruments, 86(7), 072207.Google Scholar
Kono, Y., Shibazaki, Y., Kenney-Benson, C., Wang, Y., Shen, G. (2018). Pressure-induced structural change in MgSiO<sub>3</sub> glass at pressures near the Earth’s core–mantle boundary. Proceedings of the National Academy of Science., 115, 17421747.Google Scholar
Kono, Y., Shu, Y., Kenney-Benson, C., Wang, Y., Shen, G. (2020b). Structural evolution of SiO2 glass with Si coordination number greater than 6. Physical Review Letters, 125, 205701.Google Scholar
Konôpková, Z., Rothkirch, A., Singh, A. K., Speziale, S., Liermann, H.-P. (2015). In situ X-ray diffraction of fast compressed iron: analysis of strains and stress under non-hydrostatic pressure. Physics Review B, 91, 144101.Google Scholar
Krisch, M., Farber, D. L., Xu, R., et al. (2011). Phonons of the anomalous element cerium. Proceedings of the National Academy of Science, 108, 93429345.Google Scholar
Kunz, M., Caldwell, W. A., Clark, S. M., et al. (2005a). ALS beamline 12.2.2, a high-pressure X-ray user facility at the US-West-Coast. Acta Crystallographica A, 61, C374C374.Google Scholar
Kunz, M., MacDowell, A. A., Caldwell, W. A., et al. (2005b). A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source. Journal of Synchrotron Radiation, 12, 650658.Google Scholar
Kvashnina, K. O., Kvashnin, Y. O., Butorin, S. M. (2014). Role of resonant inelastic X-ray scattering in high-resolution core-level spectroscopy of actinide materials. Journal of Electron Spectroscopy and Related Phenomena, 194, 2736.Google Scholar
Langrand, C., Hilairet, N., Nisr, C., et al. (2017). Reliability of multigrain indexing for orthorhombic polycrystals above 1 Mbar: application to MgSiO3 post-perovskite. Journal of Applied Crystallography, 50, 120130.Google Scholar
Lausi, A., Polentarutti, M., Onesti, S., et al. (2015). Status of the crystallography beamlines at Elettra. European Physical Journal Plus, 130, 43.Google Scholar
Lavina, B., Dera, P., Downs, R. T. (2014). Modern X-ray diffraction methods in mineralogy and geosciences. Reviews in Mineralogy and Geochemistry., 78, 131.Google Scholar
Le Bolloch, D., Itie, J. P., Polian, A., Ravy, S. (2009). Combining high pressure and coherent diffraction: a first feasibility testHigh Pressure Research, 29635638https://doi.org/10.1080/08957950903421693.Google Scholar
Lee, S. K., Eng, P. J., Mao, H. K., Shu, J. F. (2008). Probing and modeling of pressure-induced coordination transformation in borate glasses: Inelastic X-ray scattering study at high pressure. Physical Review B, 78, 214203.Google Scholar
Lee, S. K., Kim, Y. H., Chow, P., Xiao, Y. M., Ji, C., Shen, G. Y. (2018). Amorphous boron oxide at megabar pressures via inelastic X-ray scattering. Proceedings of the National Academy of Sciences of the United States of America, 115, 58555860.Google Scholar
Lee, S. K., Kim, Y. H., Yi, Y. S., et al. (2019). Oxygen quadclusters in SiO2 glass above megabar pressures up to 160 GPa revealed by X-ray Raman scattering. Physical Review Letters, 123(23), 235701.Google Scholar
Lesher, C. E., Wang, Y. B., Gaudio, S., Clark, A., Nishiyama, N., Rivers, M. (2009). Volumetric properties of magnesium silicate glasses and supercooled liquid at high pressure by X-ray microtomography. Physics of the Earth and Planetary Interiors, 174, 292301.Google Scholar
Li, B., Ji, C., Yang, W., et al. (2018). Diamond anvil cell behavior up to 4 Mbar. Proceedings of the National Academy of Science, 115, 17131717.CrossRefGoogle ScholarPubMed
Li, J., Struzhkin, V. V., Mao, H.-k., et al. (2004). Electronic spin state of iron in lower mantle perovskite. Proceedings of the National Academy Science., 101, 1402714030.Google Scholar
Li, R., Liu, J., Bai, L., Tse, J. S., Shen, G. (2015). Pressure-induced changes in the electron density distribution in α-Ge near the α-β transition. Applied Physics Letters, 107, 072109.Google Scholar
Li, R., Liu, J., Popov, D., Park, C., Meng, Y., Shen, G. (2019). Experimental observations of large changes in electron density distributions in β-Ge. Physical Review B, 100, 224106.Google Scholar
Liermann, H. P., Konopkova, Z., Morgenroth, W., et al. (2015). The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA III. Journal of Synchrotron Radiation, 22, 908924.Google Scholar
Lima, F. A., Saleta, M. E., Pagliuca, R. J. S., et al. (2016). XDS: a flexible beamline for X-ray diffraction and spectroscopy at the Brazilian synchrotron. Journal of Synchrotron Radiation, 23, 15381549.Google Scholar
Lin, C., Smith, J. S., Sinogeikin, S. V., et al. (2016). Kinetics of the B1-B2 phase transition in KCl under rapid compression. Journal of Applied Physics, 119, 045902.Google Scholar
Lin, C., Smith, J. S., Sinogeikin, S. V., et al. (2017). A metastable liquid melted from a crystalline solid under decompression. Nature Communications, 8, 14260.Google Scholar
Lin, C., Smith, J. S., Sinogeikin, S. V., Shen, G. (2018). Experimental evidence of low-density liquid water upon rapid decompression. Proceedings of National Academy Science., 115, 20102015.CrossRefGoogle ScholarPubMed
Lin, J.-F., Alp, E. E., Mao, Z., et al. (2012). Electronic spin states of ferric and ferrous iron in the lower-mantle silicate perovskite. American Mineralogist, 97, 592597.Google Scholar
Lin, J.-F., Fukui, H., Prendergast, D., et al. (2007). Electronic bonding transition in compressed SiO2 glass. Physical Review B, 75, 012201.Google Scholar
Lin, J.-F., Struzhkin, V. V., Jacobsen, S. D., et al. (2005a). Spin transition of iron in magnesiowüstite in the Earth’s lower mantle. Nature, 436, 377380.Google Scholar
Lin, J.-F., Struzhkin, V. V., Jacobsen, S. D., et al. (2005b). X-ray emission spectroscopy with a laser-heated diamond anvil cell: a new experimental probe of the spin state of iron in the Earth’s interior. Journal of Synchrotron Radiation, 12, 637641.Google Scholar
Lin, J. F., Sturhahn, W., Zhao, J., Shen, G., Mao, H. K., Hemley, R. J. (2005c). Sound velocities of hot dense iron: Birch’s law revisited. Science, 308, 18921894.Google Scholar
Lin, Y., Zeng, Q., Yang, W., Mao, W. L. (2013). Pressure-induced densification in GeO2 glass: a transmission X-ray microscopy study. Applied Physics Letters, 103, 261909.Google Scholar
Lipp, M. J., Sorini, A. P., Bradley, J., et al. (2012). X-ray emission spectroscopy of cerium across the γ-α volume collapse transition. Physical Review Letters, 109, 195705.Google Scholar
Liu, H., Wang, L., Xiao, X., et al. (2008). Anomalous high-pressure behavior of amorphous selenium from synchrotron X-ray diffraction and microtomography. Proceedings of the National Academy of Science., 105, 1322913234.Google Scholar
Liu, J. (2016). High pressure X-ray diffraction techniques with synchrotron radiation. Chinese Physics B, 25, 076106.Google Scholar
Liu, Y., Wang, J., Azuma, M., Mao, W. L., Yang, W. (2014). Five-dimensional visualization of phase transition in BiNiO3 under high pressure. Applied Physics Letters, 104, 043108.Google Scholar
Loubeyre, P., LeToullec, R., Hausermann, D., et al. (1996). X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature, 383, 702704.Google Scholar
Lübbers, R., Grünsteudel, H. F., Chumakov, A. I., Wortmann, G. (2000). Density of states in iron at high pressure. Science, 287, 12501253.Google Scholar
Luo, S. N., Jensen, B. J., Hooks, D. E., et al. (2012). Gas gun shock experiments with single-pulse X-ray phase contrast imaging and diffraction at the Advanced Photon Source. Review of Scientific Instruments, 83, 073903.Google Scholar
Manley, M. E., Lander, G. H., Sinn, H., et al. (2003). Phonon dispersion in uranium measured using inelastic X-ray scattering. Physical Review B, 67, 052302.Google Scholar
Mao, H. K., Hemley, R. J., Chen, L. C., Shu, J. F., Finger, L. W., Wu, Y. (1989). X-ray diffraction to 302 gigapascals: high-pressure crystal structure of cesium iodide. Science, 246, 649651.Google Scholar
Mao, H. K., Hemley, R. J., Fei, Y., et al. (1991). Effect of pressure, temperature, and composition on lattice-parameters and density of (Fe,Mg)SiO3-perovskites to 30 GPa. Journal of Geophysical Research–Solid Earth and Planets, 96, 80698079.Google Scholar
Mao, H. K., Jephcoat, A. P., Hemley, R. J., et al. (1988). Synchrotron X-ray diffraction measurements of single-crystal hydrogen to 26.5 gigapascals. Science, 239, 11311134.Google Scholar
Mao, H. K., Mao, W. L. (2007). Diamond-anvil cells and probes for high P–T mineral physics, in Price, G. D., ed., Treatise on Geophysics, Elsevier, pp. 231268.Google Scholar
Mao, H. K., Shen, G. Y., Hemley, R. J. (1997). Multivariable dependence of Fe-Mg partitioning in the lower mantle. Science, 278, 20982100.Google Scholar
Mao, H. K., Shen, G., Hemley, R. J., Duffy, T. S. (1998). X-ray diffraction with a double hot plate laser heated diamond cell, in Manghnani, M. H., Yagi, T., eds., Properties of Earth and Planetary Materials, AGU, pp. 2734.Google Scholar
Mao, H. K., Wu, Y., Chen, L. C., Shu, J. F., Jephcoat, A. P. (1990). Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: implications for composition of the core. Journal of Geophysical Research, 95, 2173721742.Google Scholar
Mao, H. K., Xu, J., Struzhkin, V., et al. (2001). Phonon density of states of iron up to 153 gigapascals. Science, 292, 914916.Google Scholar
Mao, W. L., Lin, Y., Liu, Y., Liu, J. (2019). Applications for nanoscale X-ray imaging at high pressure. Engineering, 5, 479489.Google Scholar
Mao, W. L., Mao, H. K., Eng, P. J., et al. (2003). Bonding changes in compressed superhard graphite. Science, 302, 425427.Google Scholar
Mao, W. L., Shen, G., Prakapenka, V. B., et al. (2004). Ferromagnesian postperovskite silicates in the D” layer of the Earth. Proceedings of the National Academy of Science, 101, 1586715869.Google Scholar
Mao, Z., Lin, J.-F., Liu, J., et al. (2012). Sound velocities of Fe and Fe-Si alloy in the Earth’s core. Proceedings of the National Academy of Science., 109, 1023910244.Google Scholar
Masuda, R., Kobayashi, Y., Kitao, S., Kurokuzu, , et al. (2016). Synchrotron radiation based Mössbauer absorption spectroscopy of various nuclides. Hyperfine Interactions, 237, 43.Google Scholar
Mayanovic, R. A., Anderson, A. J., Bassett, W. A., Chou, I. M. (2007). Synchrotron X-ray spectroscopy of Eu/HNO3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly. Review of Scientific Instruments, 78, 053108.Google Scholar
McBride, E. E., White, T. G., Descamps, A., et al. (2018). Setup for meV-resolution inelastic X-ray scattering measurements and X-ray diffraction at the Matter in Extreme Conditions endstation at the Linac Coherent Light Source. Review of Scientific Instruments, 89, 10F104.Google Scholar
McMahon, J. M., Morales, M. A., Pierleoni, C., Ceperley, D. M. (2012). The properties of hydrogen and helium under extreme conditions. Review of Modern Physics, 84, 16071653.Google Scholar
McMahon, M. I. (2018). Synchrotron and FEL studies of matter at high pressures, in Jaeschke, E., Khan, S., Schneider, J. R., Hastings, J. B., eds., Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications, Springer International Publishing, pp. 140.Google Scholar
Meng, Y., Mao, H. K., Eng, P., et al. (2004). The formation of sp3 bonding in compressed BN. Nature Materials., 3, 111114.Google Scholar
Meng, Y., Shen, G., Mao, H.-k. (2006). Double-sided laser heating system at HPCAT for in situ X-ray diffraction at high pressures and high temperatures. Journal of Physics: Condensed Matter, 18, s1097s1103.Google Scholar
Mezouar, M. (2010). Synchrotron high-pressure high-temperature techniques. Paper presented at the High-Pressure Crystallography conference, Dordrecht.Google Scholar
Mezouar, M., Giampaoli, R., Garbarino, G., et al. (2017). Methodology for in situ synchrotron X-ray studies in the laser-heated diamond anvil cell. High Pressure Research, 37, 170180.Google Scholar
Miao, J., Ishikawa, T., Robinson, I. K., Murnane, M. M. (2015). Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science, 348, 530.Google Scholar
Ming, L. C., Manghnani, M. H., Balogh, J., Qadri, S. B., Skelton, E. F., Jamieson, J. C. (1983). Gold as a reliable internal pressure calibrant at high temperatures. Journal of Applied Physics, 54, 43904397.Google Scholar
Mishima, O., Calvert, L. D., Whalley, E. (1984). “Melting ice” I at 77 K and 10 kbar: a new method of making amorphous solids. Nature, 310, 393.Google Scholar
Mitsui, T., Hirao, N., Ohishi, Y., et al. (2009). Development of an energy-domain Fe-57-Mossbauer spectrometer using synchrotron radiation and its application to ultrahigh-pressure studies with a diamond anvil cell. Journal of Synchrotron Radiation, 16, 723729.Google Scholar
Montgomery, J. M., Lipp, M. J., Jenei, Z., Meng, Y., Evans, W. J. (2018). A simple and portable multi-channel pyrometer allowing temperature measurements down to 800 K on the microsecond scale. Review of Scientific Instruments, 89, 125117.Google Scholar
Morard, G., Hernandez, J.-A., Guarguaglini, M., et al. (2020). In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures. Proceedings of the National Academy of Science, 117, 11981.Google Scholar
Murakami, M., Hirose, K., Kawamura, K., Sata, N., Ohishi, Y. (2004). Post-perovskite phase transition in MgSiO3. Science, 304, 855858.Google Scholar
Murakami, M., Kohara, S., Kitamura, N., et al. (2019). Ultrahigh-pressure form of SiO2 glass with dense pyrite-type crystalline homology. Physical Review B, 99, 045153.Google Scholar
Murphy, C. A., Jackson, J. M., Sturhahn, W., Chen, B. (2011). Melting and thermal pressure of hcp-Fe from the phonon density of states. Physics of Earth and Planetary Interiors, 188, 114120.Google Scholar
Nagler, B., Arnold, B., Bouchard, G., et al. (2015). The matter in extreme conditions instrument at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22, 520525.CrossRefGoogle ScholarPubMed
Nasreen, F., Antonio, D., VanGennep, D., et al. (2016). High pressure effects on U L3 X-ray absorption in partial fluorescence yield mode and single crystal X-ray diffraction in the heavy fermion compound UCd11. Journal of Physics: Condensed Matter, 28, 105601.Google Scholar
Nasu, S. (1996). High pressure Mossbauer spectroscopy with nuclear forward scattering of synchrotron radiation. High Pressure Research, 14, 405412.Google Scholar
Oganov, A. R., Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s “D‘‘ layer. Nature, 430, 445448.Google Scholar
Ohishi, Y., Hirao, N., Sata, N., Hirose, K., Takata, M. (2008). Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8. High Pressure Research, 28, 163173.Google Scholar
Ohtani, E., Shibazaki, Y., Sakai, T., et al. (2013). Sound velocity of hexagonal close-packed iron up to core pressures. Geophysical Research Letters, 40, 2013GL057667.Google Scholar
Olbinado, M. P., Cantelli, V., Mathon, O., et al. (2018). Ultra high-speed X-ray imaging of laser-driven shock compression using synchrotron light. Journal of Physics D: Applied Physics, 51.Google Scholar
Olsen, J. S., Buras, B., Gerward, L., et al. (1984). A new high-pressure phase and the equation of state of YbH2. Physica Scripta, 29, 503507.Google Scholar
Olsen, J. S., Gerward, L., Dancausse, J. P., Gering, E. (1993). Developments and new possibilities in high-pressure powder diffraction with synchrotron-radiation – results for cerium metal and U6Fe. Physica B, 190, 9297.Google Scholar
Pacold, J. I., Bradley, J. A., Mattern, B. A., et al. (2012). A miniature X-ray emission spectrometer (miniXES) for high pressure studies in a diamond anvil cell. Journal of Synchrotron Radiation, 19, 245251.Google Scholar
Parab, N. D., Roberts, Z. A., Harr, M. H., et al. (2016). High speed X-ray phase contrast imaging of energetic composites under dynamic compression. Appl.ied Physics Letters, 109, 131903.Google Scholar
Park, C., Popov, D., Ikuta, D., et al. (2015). New developments in micro-X-ray diffraction and X-ray absorption spectroscopy for high-pressure research at 16-BM-D at the Advanced Photon Source. Review of Scientific Instruments, 86, 072205.Google Scholar
Pascarelli, S., Mathon, O. (2010). Advances in high brilliance energy dispersive X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 12, 55355546.Google Scholar
Pellegrini, C., Marinelli, A., Reiche, S. (2016). The physics of X-ray free-electron lasers. Review of Modern Physics, 88, 015006.Google Scholar
Petitgirard, S., Daniel, I., Dabin, Y., Cardon, H., Tucoulou, R., Susini, J. (2009). A diamond anvil cell for X-ray fluorescence measurements of trace elements in fluids at high pressure and high temperature. Review of Scientific Instruments, 80(3), 033906.Google Scholar
Petitgirard, S., Sahle, C. J., Weis, C., Gilmore, K., Spiekermann, G., Tse, J. S., et al. (2019a). Magma properties at deep Earth’s conditions from electronic structure of silica. Geochemical Perspectives Letters, 9, 3237.Google Scholar
Petitgirard, S., Spiekermann, G., Glazyrin, K., Garrevoet, J., Murakami, M. (2019b). Density of amorphous GeO2 to 133 GPa with possible pyritelike structure and stiffness at high pressure. Physical Review B, 100, 214104.Google Scholar
Piermarini, G. J., Weir, C. (1962). A diamond cell for X-ray diffraction studies at high pressures. Journal of Research of the National Bureau of Standards A: Physics and Chemistry, 66A, 325331.Google Scholar
Prakapenka, V. B., Kubo, A., Kuznetsov, A., et al. (2008). Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Pressure Research, 28, 225235.Google Scholar
Prescher, C., Prakapenka, V. B., Stefanski, J., Jahn, S., Skinner, L. B., Wang, Y. (2017). Beyond sixfold coordinated Si in SiO2 glass at ultrahigh pressures. Proceedings of the National Academy of Science, 114, 1004110046.Google Scholar
Rivers, M. L., Duffy, T. S., Wang, Y., Eng, P. J., Sutton, S. R., Shen, G. (1998). A new facility for high-pressure research at the Advanced Photon Source, in Manghnanai, M. H., Yagi, T, eds., Properties of Earth and Planetary Materials at High Pressure and Temperature, American Geophysical Union, pp. 7987.Google Scholar
Rueff, J. P. (2010). An Introduction to inelastic X-ray scattering, in Beaurepaire, E., Kappler, J. P., Krill, G., Scheurer, F., eds.Magnetism and Synchrotron Radiation, Springer-Verlag, pp. 263.Google Scholar
Rueff, J. P., Kao, C. C., Struzhkin, V. V., et al. (1999). Pressure-induced high-spin to low-spin transition in FeS evidenced by X-ray emission spectroscopy. Physical Review Letters., 82, 32843287.Google Scholar
Sakai, T., Yagi, T., Irifune, T., et al. (2018). High pressure generation using double-stage diamond anvil technique: problems and equations of state of rhenium. High Pressure Research, 38, 107119.Google Scholar
Sakai, T., Yagi, T., Ohfuji, H., et al. (2015). High-pressure generation using double stage micro-paired diamond anvils shaped by focused ion beam. Review of Scientific Instruments., 86, 033905.Google Scholar
Sakai, T., Yagi, T., Takeda, R., et al. (2020). Conical support for double-stage diamond anvil apparatus. High Pressure Research, 40, 1221.Google Scholar
Sakamaki, T., Ohtani, E., Fukui, H., et al. (2016). Constraints on Earth’s inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions. Science Advances, 2(2), e1500802.Google Scholar
Sanloup, C., de Grouchy, C. J. L. (2018). X-ray diffraction structure measurements, in Kono, Y., Sanloup, C., eds., Magmas under Pressure, Elsevier, pp. 137153.Google Scholar
Sato, T., Funamori, N. (2010). High-pressure structural transformation of SiO2 glass up to 100 GPa. Physical Review B, 82, 184102.Google Scholar
Schell, N., Simmons, R. O., Kaprolat, A., Schulke, W., Burkel, E. (1995). Electronic excitations in hcp He-4 at 61.5 MPa and 4.3 k studied by inelastic X-ray-scattering spectroscopy. Physical Review Letters, 74, 25352538.Google Scholar
Schmidt, C., Rickers, K. (2003). In-situ determination of mineral solubilities in fluids using a hydrothermal diamond-anvil cell and SR-XRF: solubility of AgCl in water. American Mineralogist, 88, 288292.Google Scholar
Schmidt, C., Rickers, K., Bilderback, D. H., Huang, R. (2007). In situ synchrotron-radiation XRF study of REE phosphate dissolution in aqueous fluids to 800 degrees C. Lithos, 95, 87102.Google Scholar
Schropp, A., Patommel, J., Seiboth, F., et al. (2012). Developing a platform for high-resolution phase contrast imaging of high pressure shock waves in matter, in Moeller, S. P., Yabashi, M, HauRiege, S. P, eds., X-Ray Free-Electron Lasers: Beam Diagnostics, Beamline Instrumentation, and Applications, vol. 8504, SPIE, https://doi.org/10.1117/12.929882.Google Scholar
Schultz, E., Mezouar, M., Crichton, W., et al. (2005). Double-sided laser heating system for in situ high pressure & high temperature monochromatic X-ray diffraction at the ESRF. High Pressure Research, 25, 7183.Google Scholar
Scopigno, T., Ruocco, G., Sette, F. (2005). Microscopic dynamics in liquid metals: the experimental point of view. Review of Modern Physics., 77, 881933.Google Scholar
Seto, M., Masuda, R., Higashitaniguchi, S., et al. (2010). Mössbauer spectroscopy in the energy domain using synchrotron radiation. Journal of Physics: Conference Series, 217, 012002.Google Scholar
Sette, F., Ruocco, G., Krisch, M., et al. (1995). Collective dynamics in water by high energy resolution inelastic X-ray scattering. Physical Review Letters, 75, 850853.Google Scholar
Shen, G., Ikuta, D., Sinogeikin, S., Li, Q., Zhang, Y., Chen, C. (2012). Direct observation of a pressure-induced precursor lattice in silicon. Physical Review Letters, 109, 205503.Google Scholar
Shen, G., Mao, H. K. (2016). High-pressure studies with X-rays using diamond anvil cells. Reports on Progress in Physics, 80, 016101.Google Scholar
Shen, G., Mao, H. K., Hemley, R. J. (1996). Laser-heating diamond-anvil cell technique: Double-sided heating with multimode Nd:YAG laser. Paper presented at the Advanced Materials’96 -New Trends in High Pressure Research, NIRIM, Tsukuba.Google Scholar
Shen, G., Prakapenka, V. B., Rivers, M. L., Sutton, S. R. (2004a). Structure of liquid iron at pressures up to 58 GPa. Physical Review Letters, 92, 185701.Google Scholar
Shen, G., Rivers, M. L., Wang, Y., Sutton, S. J. (2001). A laser heated diamond cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature. Review of Scientific Instruments, 72, 12731282.Google Scholar
Shen, G., Sata, N., Newville, M., Rivers, M. L., Sutton, S. R. (2002). Molar volumes of liquids measured in a diamond anvil cell. Applied Physics Letters, 81, 14111413.Google Scholar
Shen, G., Sinogeikin, S. (2015). Preface: high-pressure studies with X-rays. Review of Scientific Instruments, 86, 071901.Google Scholar
Shen, G., Smith, J. S., Kenney-Benson, C. (2019a). Nature of polyamorphic transformations in H2O under isothermal compression and decompression. Physical Review Materials, 3, 073404.Google Scholar
Shen, G., Smith, J. S., Kenney-Benson, C., Ferry, R. A. (2019b). In situ x-ray diffraction study of polyamorphism in H2O under isothermal compression and decompression. Journal of Chemical Physics, 150, 244201.Google Scholar
Shen, G., Sturhahn, W., Alp, E. E., et al. (2004b). Phonon density of states in iron at high pressures and high temperatures. Physics and Chemistry of Minerals., 31, 353359.Google Scholar
Shen, G. Y., Mao, H. K., Hemley, R. J., Duffy, T. S., Rivers, M. L. (1998). Melting and crystal structure of iron at high pressures and temperatures. Geophysical Research Letters., 25, 373376.Google Scholar
Shen, G. Y., Wang, Y. B. (2014). High-pressure apparatus integrated with synchrotron radiation, in Henderson, G. S., Neuville, D. R, Downs, R. T, eds., Spectroscopic Methods in Mineralogy and Materials Sciences, vol. 78, Cambridge University Press, pp. 745777.Google Scholar
Shi, C. Y., Zhang, L., Yang, W., et al. (2013). Formation of an interconnected network of iron melt at Earth’s lower mantle conditions. Nature Geoscience, 6, 971975.Google Scholar
Shim, S.-H., Bengtson, A., Morgan, D., et al. (2009). Electronic and magnetic structures of the postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors. Proceedings of the National Academy of Science., 106, 55085512.Google Scholar
Shimomura, O., Fukamachi, T., Kawamura, T., Hosoya, S., Hunter, S., Bienenstock, A. (1978). EXAFS measurement of high-pressure metallic phase of GaAs by use of a diamond anvil cell. Japan Journal of Applied Physics, 17, 221.Google Scholar
Shimomura, O., Takemura, K., Fujihisa, H., et al. (1992). Application of an imaging plate to high‐pressure X‐ray study with a diamond anvil cell (invited). Review of Scientific Instruments, 63, 967973.Google Scholar
Shimomura, O., Yamaoka, S., Yagi, T., et al. (1985). Multi-anvil type X-ray system for synchrotron radiation, in Minomura, S., ed., Solid State Physics under Pressure: Recent Advance with Anvil Devices, KTK Scientific Publisher, pp. 351356.Google Scholar
Sinn, H., Glorieux, B., Hennet, L., et al. (2003). Microscopic dynamics of liquid aluminum oxide. Science, 299, 20472049.Google Scholar
Sinogeikin, S. V., Smith, J. S., Rod, E., Lin, C., Kenney-Benson, C., Shen, G. (2015). Online remote control systems for static and dynamic compression and decompression using diamond anvil cells. Review of Scientific Instruments, 86, 072209.Google Scholar
Skelton, E. F., Kirkland, J., Qadri, S. B. (1982). Energy-dispersive measurements of diffracted synchrotron radiation as a function of pressure: applications to phase transitions in KCl and KI. Journal of Applied Crystallography, 15, 8288.Google Scholar
Smith, J. S., Rod, E. A., Shen, G. (2019). Fly scan apparatus for high pressure research using diamond anvil cells. Review of Scientific Instruments, 90, 015116.Google Scholar
Smith, J. S., Sinogeikin, S. V., Lin, C., Rod, E., Bai, L., Shen, G. (2015). Developments in time-resolved high pressure X-ray diffraction using rapid compression and decompression. Review of Scientific Instruments, 86, 072208.Google Scholar
Somayazulu, M. S., Finger, L. W., Hemley, R. J., Mao, H. K. (1996). High-pressure compounds in methane-hydrogen mixtures. Science, 271, 14001402.Google Scholar
Speziale, S., Milner, A., Lee, V. E., Clark, S. M., Pasternak, M. P., Jeanloz, R. (2005). Iron spin transition in Earth’s mantle. Proceedings of the National Academy of Science, 102, 1791817922.Google Scholar
Spiekermann, G., Harder, M., Gilmore, K., et al. (2019). Persistent octahedral coordination in amorphous GeO2 up to 100 GPa by Kβ” X-ray emission spectroscopy. Physical Review X, 9, 011025.Google Scholar
Stan, C. V., Beavers, C. M., Kunz, M., Tamura, N. (2018). X-ray diffraction under extreme conditions at the Advanced Light Source. Quantum Beam Science, 2, 4.Google Scholar
Staun Olsen, J., Steenstrup, S., Gerward, L., Benedict, U., Itié, J. P. (1986). High-pressure structural studies of uranium and thorium compounds with the rocksalt structure. Physica B+C, 139140, 308310.Google Scholar
Struzhkin, V. V., Mao, H. K., Lin, J.-F., Hemley, R. J., Tse, J. S., Ma, Y., et al. (2006). Valence band X-ray emission spectra of compressed germanium. Physical Review Letters., 96, 137402.Google Scholar
Sturhahn, W., Toellner, T. S., Alp, E. E et al. (1995). Phonon density of states measured by inelastic nuclear resonant scattering. Physical Revew Letters, 74, 38323835.Google Scholar
Susaki, J., Akaogi, M., Akimoto, S., Shimomura, O. (1985). Garnet-perovskite transformation in CaGeO3 – in situ X-ray measurements using synchrotron radiation. Geophysical Research Letters, 12, 729732.Google Scholar
Takahashi, S., Ohtani, E., Sakamaki, T., et al. (2019). Sound velocity of Fe3C at high pressure and high temperature determined by inelastic X-ray scattering. Comptes Rendus Geoscience, 351, 190196.Google Scholar
Takano, M., Nasu, S., Abe, T., et al. (1991). Pressure-induced high-spin to low-spin transition in CaFeO3. Physical Review Letters, 67, 32673270.Google Scholar
Tanis, E. A., Simon, A., Tschauner, O., et al. (2012). Solubility of xenotime in a 2 M HCl aqueous fluid from 1.2 to 2.6 GPa and 300 to 500 °C. American Mineralogist, 97, 17081713.Google Scholar
Tanis, E. A., Simon, A., Zhang, Y., et al. (2016). Rutile solubility in NaF–NaCl–KCl-bearing aqueous fluids at 0.5–2.79 GPa and 250–650 °C. Geochimica et Cosmochimica Acta, 177, 170181.Google Scholar
Troyan, I., Gavriliuk, A., Rüffer, R., et al. (2016). Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering. Science, 351, 13031306.Google Scholar
Vaughan, M. T. (1993). In situ X-ray diffraction using synchrotron radiation at high P and T in a multi-anvil device, in Luth, R. W., ed., Experiments at High Pressure and Applications to the Earth’s Mantle, Short Course Handbook, Mineralogical Association of Canada, pp. 95130.Google Scholar
Vohra, Y. K., Brister, K. E., Desgreniers, S., Ruoff, A. L., Chang, K. J., Cohen, M. L. (1986a). Phase-transition studies of germanium to 1.25 mbar. Physical Review Letters, 56, 19441947.Google Scholar
Vohra, Y. K., Brister, K. E., Weir, S. T., Duclos, S. J., Ruoff, A. L. (1986b). Crystal structures at megabar pressures determined by use of the Cornell synchrotron source. Science, 231, 11361138.Google Scholar
Vohra, Y. K., Samudrala, G. K., Moore, S. L., Montgomery, J. M., Tsoi, G. M., Velisavljevic, N. (2015). High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition. High Pressure Research, 35, 282288.Google Scholar
Vos, W. L., Finger, L. W., Hemley, R. J., Hu, J. Z., Mao, H. K., Schouten, J. A. (1992). A high-pressure Van-der-Waals compound in solid nitrogen helium mixtures. Nature, 358, 4648.Google Scholar
Wang, J., Yang, W., Wang, S., et al. (2012). High pressure nano-tomography using an iterative method. Journal of Applied Physics, 111, 112626112625.Google Scholar
Wang, Y. B., Weidner, D. J., Liebermann, R. C., et al. (1991). Phase-transition and thermal-expansion of MgSiO3 perovskite. Science, 251, 410413.Google Scholar
Watanuki, T., Shimomura, O., Yagi, T., Kondo, T., Isshiki, M. (2001). Construction of laser-heated diamond anvil cell system for in situ X-ray diffraction study at SPring-8. Review of Scientific Instruments, 72, 12891292.Google Scholar
Weir, C. E., Lippincott, E. R., Van Valkenburg, A., Bunting, E. N. (1959). Infrared studies in the 1- to 15-micron region to 30,000 atmospheres. Journal of Research of the National Bureau of Standards A: Physics and Chemistry, 63A, 5562.Google Scholar
Wilke, M., Appel, K., Vincze, L., Schmidt, C., Borchert, M., Pascarelli, S. (2010). A confocal set-up for micro-XRF and XAFS experiments using diamond-anvil cells. Journal of Synchrotron Radiation, 17, 669675.Google Scholar
Wong, J., Krisch, M., Farber, D. L., et al. (2003). Phonon dispersions of fcc δ-plutonium-gallium by inelastic X-ray scattering. Science, 301, 10781080.Google Scholar
Xiao, Y., Chow, P., Shen, G. (2016). High pressure X-ray emission spectroscopy at the advanced photon source. High Pressure Research, 36315331https://doi.org/10.1080/08957959.2016.1209498.Google Scholar
Yagi, T., Akaogi, M., Shimomura, O., Suzuki, T., Akimoto, S. (1987). In situ observation of the olivine-spinel phase-transformation in Fe2SiO4 using synchrotron radiation. Journal of Geophysical Research–Solid Earth and Planets, 92, 62076213.Google Scholar
Yagi, T., Sakai, T., Kadobayashi, H., Irifune, T. (2020). Review: high pressure generation techniques beyond the limit of conventional diamond anvils. High Pressure Research, 40, 148161.Google Scholar
Yamanaka, T., Hirose, K., Mao, W. L., et al. (2012). Crystal structures of (Mg1-x,Fex)SiO3 postperovskite at high pressures. Proceedings of the National Academy Science, 109, 10351040.Google Scholar
Yamanaka, T., Komatsu, Y., Nomori, H. (2007). Electron density distribution of FeTiO3 ilmenite under high pressure analyzed by MEM using single crystal diffraction intensities. Physics and Chemistry of Minerals, 34, 307318.Google Scholar
Yamaoka, S., Shimomura, O., Akaishi, M., et al. (1986). X-ray-observation of the formation of diamond and cubic boron-nitride at high-pressure and temperature. Physica B & C, 139, 668670.Google Scholar
Yang, W., Huang, X., Harder, R., Clark, J. N., Robinson, I. K., Mao, H.-k. (2013). Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure. Nature Communications, 4, 1680.Google Scholar
Yu, T., Wang, Y., Rivers, M. L. (2016). Imaging in 3D under pressure: a decade of high-pressure X-ray microtomography development at GSECARS. Progress in Earth and Planetary Science, 3, 17.Google Scholar
Zeng, Q., Kono, Y., Lin, Y., et al. (2014). Universal fractional noncubic power law for density of metallic glasses. Physical Review Letters, 112, 185502.Google Scholar
Zeng, Q., Lin, Y., Liu, Y., et al. (2016). General 2.5 power law of metallic glasses. Proceedings of the National Academy of Science., 113, 17141718.Google Scholar
Zeng, Z. D., Yang, L. X., Zeng, Q. S., et al. (2017). Synthesis of quenchable amorphous diamond. Nature Communications, 8, 322.Google Scholar
Zha, C. S., Duffy, T. S., Mao, H. K., Hemley, R. J. (1993). Elasticity of hydrogen to 24-GPa from single-crystal brillouin-scattering and synchrotron X-ray-diffraction. Physical Review B, 48, 92469255.Google Scholar
Zhang, L., Yuan, H., Meng, Y., Mao, H.-K. (2019). Development of high-pressure multigrain X-ray diffraction for exploring the Earth’s interior. Engineering, 5, 441447.Google Scholar
Zhao, J., Sturhahn, W., Lin, J. F., Shen, G., Alp, E. E., Mao, H. K. (2004). Nuclear resonant scattering at high pressure and high temperature. High Pressure Research, 24, 447457.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×