Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T21:23:47.295Z Has data issue: false hasContentIssue false

12 - On the Interface of Food Webs and Spatial Ecology: The Trophic Dimension of Species–Area Relationships

from Part III - Theoretical Advances in Species–Area Relationship Research

Published online by Cambridge University Press:  11 March 2021

Thomas J. Matthews
Affiliation:
University of Birmingham
Kostas A. Triantis
Affiliation:
National and Kapodistrian University of Athens
Robert J. Whittaker
Affiliation:
University of Oxford
Get access

Summary

We review trophic biogeography theory, a growing sub-discipline in ecology that seeks to merge food web ecology with the theory of island biogeography. We start by presenting a deliberately provocative theory, extending neutral community theory to multi-trophic systems, where one does not pay attention to the details of interactions across trophic levels, but rather emphasizes the consequences of traits associated with trophic rank, such as dispersal rates. Our results suggest that the effect of trophic rank on dispersal rates is a key driver of trophic rank effects on species–area relationships. We then examine effects of trophic specialization on species–area relationships, after which we turn to the implications of trophic generalization. An important arena of recent work is elucidating the impact of top down effects in food webs on species–area relationships. Lastly, we offer insights into key avenues for future research including the impact of cross-ecosystem subsidies in driving patterns of biodiversity in heterogeneous landscapes, the need to consider how species coexistence mechanisms may shift across islands or habitat patches varying in area and isolation, and assessing the evolutionary dimension of trophic influences on species–area relationships.

Type
Chapter
Information
The Species–Area Relationship
Theory and Application
, pp. 289 - 318
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, P. B., Hille Ris Lambers, J. & Levine, J. M. (2007) A niche for neutrality. Ecology Letters, 10, 95104.CrossRefGoogle ScholarPubMed
Aizen, M. A., Sabatino, M. & Tylianakis, J. M. (2012) Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science, 335, 14861489.CrossRefGoogle ScholarPubMed
Alonso, D., Pinyol-Gallemi, A., Alcoverro, T. & Arthur, R. (2015) Fish community reassembly after a coral mass mortality: Higher trophic groups are subject to increased rates of extinction. Ecology Letters, 18, 451461.CrossRefGoogle ScholarPubMed
Amarasekare, P. (2008) Spatial dynamics of foodwebs. Annual Review of Ecology and Systematics, 39, 479500.CrossRefGoogle Scholar
Anderson, W. B. & Wait, D. A. (2001) Subsidized island biogeography: Another new twist on an old theory. Ecology Letters, 4, 289291.CrossRefGoogle Scholar
Bagchi, R., Brown, L. M., Elphick, C. S., Wagner, D. L. & Singer, M. S. (2018) Anthropogenic fragmentation of landscapes: Mechanisms for eroding the specificity of plant-herbivore interactions. Oecologia, 187, 521533.CrossRefGoogle ScholarPubMed
Baiser, B., Gotelli, N. J., Buckley, H. L., Miller, T. E. & Ellison, A. M. (2012) Geographic variation in network structure of a Nearctic aquatic food web. Global Ecology & Biogeography, 21, 579591.Google Scholar
Brown, J. H., West, G. B. & Enquist, B. J. (2000) Scaling in biology: Patterns and processes, causes and consequences. Scaling in biology (ed. by Brown, J. H. and West, G. B.), pp. 124. Oxford: Oxford University Press.Google Scholar
Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. (2014) Empirical evaluation of neutral interactions in host-parasite networks. The American Naturalist, 183, 468479.Google Scholar
Canard, E., Mouquet, N., Marescot, L., Gaston, K. J., Gravel, D. & Mouillot, D. (2012) Emergence of structural patterns in neutral trophic networks. PLoS One, 7, e38295.CrossRefGoogle ScholarPubMed
Chase, J. M., Gooriah, L., May, F., Ryberg, W. A., Schuler, M. S., Craven, D. & Knight, T. M. (2019) A framework for disentangling ecological mechanisms underlying the island species–area relationship. Frontiers of Biogeography, 11, e40844.CrossRefGoogle Scholar
Chave, J. (2004) Neutral theory and community ecology. Ecology Letters, 7, 241253.Google Scholar
Chesson, P. (2018) Updates on mechanisms of maintenance of species diversity. Journal of Ecology, 107, 17731794.Google Scholar
Chisholm, R. A., Fung, T., Chimalakonda, D. & O’Dwyer, J. P. (2016) Maintenance of biodiversity on islands. Proceedings of the Royal Society B: Biological Sciences, 283, 20160102.CrossRefGoogle ScholarPubMed
Chisholm, R. A., Lim, F., Yeoh, Y. S., Seah, W. W., Condit, R. & Rosindell, J. (2018) Species–area relationships and biodiversity loss in fragmented landscapes. Ecology Letters, 21, 804813.CrossRefGoogle ScholarPubMed
Cirtwill, A. R. & Stouffer, D. B. (2016) Knowledge of predator–prey interactions improves predictions of immigration and extinction in island biogeography. Global Ecology & Biogeography, 25, 900911.Google Scholar
Cohen, J. E. (1977) Ratio of prey to predators in community food webs. Nature, 270, 165166.Google Scholar
Cohen, J. E. & Briand, F. (1984) Trophic links of community food webs. Proceedings of the National Academy of Sciences USA, 81, 41054109.Google Scholar
Cohen, J. E. & Newman, C. M. (1991) Community area and food-chain length: Theoretical predictions. The American Naturalist, 138, 15421554.Google Scholar
Cohen, J. E., Jonsson, T. & Carpenter, S. R. (2003) Ecological community description using the food web, species abundance, and body sizeProceedings of the National Academy of Sciences USA100, 17811786.Google Scholar
Colling, G. & Matthies, D. (2004) The effects of plant population size on the interactions between the endangered plant Scorzonera humilis (Asteraceae), a specialized herbivore, and a phytopathogenic fungus. Oikos, 105, 7178.Google Scholar
Connor, E. F., Courtney, A. C. & Yoder, J. M. (2000) Individuals–area relationships: The relationship between animal population density and area. Ecology, 81, 34748.Google Scholar
Donohue, I., Petchey, O. L., Kefi, S., Genin, A., Jackson, A. L., Yang, Q. & O’Connor, N. E. (2017) Loss of predator species, not intermediate consumers, triggers rapid and dramatic extinction cascades. Global Change Biology, 23, 29622972.CrossRefGoogle Scholar
Drakare, S., Lennon, J. J. & Hillebrand, H. (2006) The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecology Letters, 9, 215227.Google Scholar
Elton, C. (1927; reprinted 2001) Animal ecology. Chicago, IL: University of Chicago Press.Google Scholar
Elton, C. (1966) The pattern of animal communities. New York: John Wiley.Google Scholar
Etienne, R. S. & Alonso, D. (2005) A dispersal-limited sampling theory for species and alleles. Ecology Letters, 8, 11471156.Google Scholar
Fenoglio, M. S., Srivastava, D., Valladares, G., Cagnolo, L. & Salvo, A. (2012) Forest fragmentation reduces parasitism via species loss at multiple trophic levels. Ecology, 93, 24072420.Google Scholar
Fenoglio, M. S., Videla, M. A., Salvo, M. A. & Valladares, G. (2013) Beneficial insects in urban environments: Parasitism rates increase in large and less isolated plant patches via enhanced parasitoid species richness. Biological Conservation, 164, 8289.CrossRefGoogle Scholar
Franzen, M., Schweiger, O. & Betzholtz, P.-E. (2012) Species–area relationships are controlled by species traits. PLoS One, 7, e37359.Google Scholar
Galiana, N., Lurgi, M., Claramunt-Lopez, B., Fortin, M.-J., Leroux, S., Cazelles, K., Gravel, D. & Montoya, J. M. (2018) The spatial scaling of species interaction networks. Nature Ecology & Evolution, 2, 782790.Google Scholar
Genua, L., Start, D. & Gilbert, B. (2017) Fragment size affects plant herbivory via predator loss. Oikos, 126, 13571365.Google Scholar
Graham, N. A. J., Wilson, S. K., Carr, P., Hoey, A. S., Jennings, S. & MacNeil, M. A. (2018) Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature, 559, 250253.Google Scholar
Grainger, T. N., Germain, R. M., Jones, N. T. & Gilbert, B. (2017) Predators modify biogeographic constraints on species distributions in an insect metacommunity. Ecology, 98, 851860.Google Scholar
Gravel, D., Baiser, B., Dunne, J. A., Kopelke, J.-P., Martinez, N. D., Nyman, T., Poisot, T., Stouffer, D. B., Tylianakis, J. M., Wood, S. A. & Roslin, T. (2018) Bringing Elton and Grinnell together: A quantitative framework to represent the biogeography of ecological interaction networks. Ecography, 41, 115.Google Scholar
Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. (2011) Trophic theory of island biogeography. Ecology Letters, 14, 10101016.CrossRefGoogle ScholarPubMed
Guzman, L. M., Germain, R. M., Forbes, C., Straus, S., O’Connor, M. I., Gravel, D., Srivastava, D. S. & Thompson, P. L. (2019) Towards a multi-trophic extension of metacommunity ecology. Ecology Letters, 22, 1933.Google Scholar
Harfoot, M. B., Newbold, T., Tittensor, D. P., Emmott, S., Hutton, J., Lyutsarev, V., Smith, M. J., Scharlemann, J. P. & Purves, D. W. (2014) Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem modelPLoS Biology12, e1001841.CrossRefGoogle ScholarPubMed
Harvey, E. & MacDougall, A. S. (2014) Trophic island biogeography drives spatial divergence of community establishment. Ecology, 95, 28702878.Google Scholar
Hastings, A. (1977) Spatial heterogeneity and the stability of predator-prey systems. Theoretical Population Biology, 12, 3748.CrossRefGoogle ScholarPubMed
Heatwole, H. (2018) Trophic structure stability in insular biotic communities. The truth is the whole: Essays in honor of Richard Levins (ed. by Awerbuch, T., Clark, M. S. and Taylor, P. J.), pp. 220243. Arlington, MA: The Pumping Station.Google Scholar
Heatwole, H. & Levins, R. (1972) Trophic structure stability and faunal change during recolonization. Ecology, 53, 531534.CrossRefGoogle Scholar
Holt, R. D. (1977) Predation, apparent competition, and the structure of prey communities. Theoretical Population Biology, 12, 197229.CrossRefGoogle ScholarPubMed
Holt, R. D. (1992) A neglected facet of island biogeography: The role of internal spatial dynamics in area effects. Theoretical Population Biology, 41, 354371.Google Scholar
Holt, R. D. (1993) Ecology at the mesoscale: The influence of regional processes on local communities. Species diversity in ecological communities (ed. by Ricklefs, R. and Schluter, D.), pp. 7788. Chicago, IL: University of Chicago Press.Google Scholar
Holt, R. D. (1996) Food webs in space: An island biogeographic perspective. Food webs: Contemporary perspectives (ed. by Polis, G. and Winemiller, K.), pp. 313323. New York: Chapman and Hall.Google Scholar
Holt, R. D. (1997) From metapopulation dynamics to community structure: Some consequences of spatial heterogeneity. Metapopulation biology (ed. by Hanski, I. and Gilpin, M.), pp. 149164. New York: Academic Press.Google Scholar
Holt, R. D. (2010) Towards a trophic island biogeography: Reflections on the interface of island biogeography and food web ecology. The theory of island biogeography revisited (ed. by Losos, J. B. and Ricklefs, R. E.), pp. 143185. Princeton, NJ: Princeton University Press.Google Scholar
Holt, R. D. & Hoopes, M. F. (2005) Food web dynamics in a metacommunity context: Modules and beyond. Metacommunities: Spatial dynamics and ecological communities (ed. by Holyoak, M., Leibold, M. A. and Holt, R. D.), pp. 6894. Chicago, IL: University of Chicago Press.Google Scholar
Holt, R. D., Grover, J. & Tilman, D. (1994) Simple rules for interspecific dominance in systems with exploitative and apparent competition. The American Naturalist, 144, 741777.Google Scholar
Holt, R. D., Lawton, J. H., Polis, G. A. & Martinez, N. (1999) Trophic rank and the species–area relation. Ecology, 80, 14951504.Google Scholar
Hubbell, S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Huffaker, C. B. (1958) Experimental studies on predation: Dispersion factors and predator-prey oscillations. Hilgardia, 27, 343383.Google Scholar
Jacquet, C., Mouillot, D., Kulbicki, M. & Gravel, D. (2017) Extensions of island biogeography theory predict the scaling of functional trait composition with habitat area and isolation. Ecology Letters, 20, 135146.CrossRefGoogle ScholarPubMed
Kinlan, B. P. & Gaines, S. D. (2003) Propagule dispersal in marine and terrestrial environments: A community perspectiveEcology84, 20072020.Google Scholar
Krishna, A., Guimaraes, P. R. Jr., Jordano, P. & Bascompte, J. (2008) A neutral-niche theory of nestedness in mutualistic networks. Oikos, 117, 16091618.CrossRefGoogle Scholar
Lafferty, K. D. & Dunne, J. A. (2010) Stochastic ecological network occupancy (SENO) models: A new tool for modeling ecological networks across spatial scales. Theoretical Ecology, 3, 123135.Google Scholar
Lampert, A. & Hastings, A. (2016) Stability and distribution of predator–prey systems: Regional mechanisms and patterns. Ecology Letters, 19, 279288.Google Scholar
LeCraw, R. M., Kratina, P. & Srivastava, D. S. (2014) Food web complexity and stability across habitat connectivity gradients. Oecologia, 176, 903915.Google Scholar
Leibold, M. A. & Chase, J. M. (2018) Metacommunity ecology. Princeton, NJ: Princeton University Press.Google Scholar
Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R, Tilman, D., Loreau, M. & Gonzalez, A. (2004) The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7, 601613.Google Scholar
Liao, J., Bearup, D. & Blasius, B. (2017) Food web persistence in fragmented landscapes. Proceedings of the Royal Society B: Biological Sciences, 284, 20170350.CrossRefGoogle ScholarPubMed
Lomolino, M. V. (1984) Immigrant selection, predation, and the distribution of Microtus pennsylvanicus and Blarina brevicauda on islands. The American Naturalist, 123, 468483.Google Scholar
Losos, J. B. & Schluter, D. (2000) Analysis of an evolutionary species–area relationship. Nature, 408, 847850.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Martinson, H. M. & Fagan, W. F. (2014) Trophic disruption: A meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems. Ecology Letters, 17, 11781189.Google Scholar
Massol, F., Dubart, M., Calcagno, V., Cazelles, K., Jacquet, C., Kefi, S. & Gravel, D. (2017) Island biogeography of food webs. Advances in Ecological Research, 56, 183262.Google Scholar
Massol, F., Gravel, D., Mouquet, N., Cadotte, M. W., Fukami, T. & Leibold, M. A. (2011) Linking community and ecosystem dynamics through spatial ecology. Ecology Letters, 14, 313323.Google Scholar
Matthews, T. J., Guilhaumon, F., Triantis, K. A., Borregaard, M. K. & Whitaker, R. J. (2016) On the form of species–area relationships in habitat islands and true islands. Global Ecology & Biogeography, 25, 847858.Google Scholar
McCann, K. S., Rasmussen, J. B. & Umbanhowar, J. (2005) The dynamics of spatially coupled food webs. Ecology Letters, 8, 513523.Google Scholar
Montoya, J. M. & Galiana, N. (2018) Integrating species interaction networks and biogeography. Adaptive food webs: Stability and transitions of real and model ecosystems (ed. by Moore, J. C., de Ruiter, P. C., McCann, K. S. and Wolters, V.), pp. 289304. Cambridge: Cambridge University Press.Google Scholar
Murakami, M. & Hirao, T. (2010) Lizard predation alters the effect of habitat area on the species richness of insect assemblages on Bahamian isles. Diversity and Distributions, 16, 952958.Google Scholar
van Noordwijk, C. G. E., Verberk, W. C. E. P., Turin, H., Heuerman, T., Alders, K., Dekoninck, W., Hannig, K., Regan, E., McCormack, S., Brown, M. J. F., Remke, E., Siepel, H., Berg, M. P. & Bonte, D. (2015) Species–area relationships are modulated by trophic rank, habitat affinity and dispersal ability. Ecology, 96, 518531.Google Scholar
O’Dwyer, J. P. & Cornell, S. J. (2018) Cross-scale neutral ecology and the maintenance of biodiversity. Science Reports, 8, 10200.Google Scholar
Odum, E. P. (1971) Fundamentals of ecology. Philadelphia, PA: W.B. Saunders.Google Scholar
Oksanen, L., Oksanen, T., Dahlgren, J., Hambäck, P., Ekerholm, P., Lindgren, Å. & Olofsson, J. (2010) Islands as tests of the green world hypothesis. Trophic cascades: Predators, prey, and the changing dynamics of nature (ed. by Terborgh, J. and Estes, J. A.), pp. 163178. Washington, DC: Island Press.Google Scholar
Olff, H., Alonso, D., Berg, M. P., Eriksson, B. P., Loreau, M., Piersma, T. & Rooney, N. (2009) Parallel ecological networks in ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 17551779.Google Scholar
Orrock, J. L. & Fletcher, R. J. Jr. (2005) Changes in community size affect the outcome of competition. The American Naturalist, 166, 107111.CrossRefGoogle ScholarPubMed
Ostman, O., Griffin, N. W., Strasburg, J. L., Brisson, J. A., Templeton, A. R., Knight, T. M. & Chase, J. M. (2007) Habitat area affects arthropod communities directly and indirectly through top predators. Ecography, 30, 359366.Google Scholar
Ovaskainen, O. & Hanski, I. (2003) The species–area relationship derived from species-specific incidence functions. Ecology Letters, 6, 903909.Google Scholar
Piechnik, D. A., Lawler, S. P. & Martinez, N. D. (2008) Food-web assembly during a classic biogeographic study: Species ‘trophic breadth’ corresponds to colonization order. Oikos, 117, 665674.Google Scholar
Pillai, P., Loreau, M. & Gonzalez, A. (2010) A patch-dynamic framework for food web metacommunities. Theoretical Ecology, 3, 223237.Google Scholar
Piovia-Scott, J., Yang, L. H., Wright, A. N., Spiller, D. A. & Schoener, T. W. (2017) The effect of lizards on spiders and wasps: Variation with island size and marine subsidy. Ecosphere, 8, e01909.CrossRefGoogle Scholar
Polis, G. A., Anderson, W. B. & Holt, R. D. (1997) Toward an integration of landscape ecology and food web ecology: The dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics, 28, 289316.Google Scholar
Polis, G. A., Holt, R. D., Menge, B. A. & Winemiller, K. O. (1996) Time, space, and life history: Influences on food webs. Food webs: Integration of patterns and dynamics (ed. by Polis, G. A. and Winemiller, K. O.), pp. 435460. London: Chapman and Hall.Google Scholar
Ritchie, M. E. (1999) Biodiversity and reduced extinction risks spatially isolated rodent populations. Ecology Letters, 2, 1113.Google Scholar
Rizzuto, M., Carbone, C. & Pawar, S. (2018) Foraging constraints reverse the scaling of activity time in carnivoresNature Ecology & Evolution2, 247253.CrossRefGoogle ScholarPubMed
Rooney, N., McCann, K. S. & Moore, J. C. (2008) A landscape theory for food web architecture. Ecology Letters, 11, 867881.CrossRefGoogle ScholarPubMed
Rosindell, J. & Cornell, S. J. (2007) Species–area relationships from a spatially explicit neutral model in an infinite landscape. Ecology Letters, 10, 586595.CrossRefGoogle Scholar
Rosindell, J. & Cornell, S. J. (2009) Species–area curves, neutral models, and long-distance dispersal. Ecology, 90, 17431750.Google Scholar
Roslin, T., Várkonyi, G., Koponen, M., Vikberg, V. & Nieminen, M. (2014) Species–area relationships across four trophic levels – decreasing island size truncates food chains. Ecography, 37, 443453.Google Scholar
Ryberg, R. A. & Chase, J. M. (2007) Predator-dependent species–area relationships. The American Naturalist, 170, 636642.Google Scholar
Ryberg, W. A., Smith, K. G. & Chase, J. M. (2012) Predators alter the scaling of diversity in prey metacommunities. Oikos, 121, 19952000.Google Scholar
Sang, A., Teder, T., Helm, A. & Partel, M. (2010) Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biological Conservation, 143, 14051413.Google Scholar
Santos, A. M. C. & Quicke, D. L. J. (2011) Large-scale diversity patterns of parasitoid insects. Entomological Science, 14, 371382.Google Scholar
Scheiner, S. M. (2003) Six types of species–area curves. Global Ecology & Biogeography, 12, 441447.Google Scholar
Scherber, C., Andert, H., Niedringhaus, R. & Tscharntke, T. (2018) A barrier island perspective on species–area relationships. Ecology and Evolution, 8, 1287912889.Google Scholar
Schmitz, O. J., Miller, J. R., Trainor, A. M. & Abrahms, B. (2017) Toward a community ecology of landscapes: Predicting multiple predator–prey interactions across geographic space. Ecology, 98, 22812292.Google Scholar
Schoener, T. W. & Spiller, D. A. (2010) Trophic cascades on islands. Trophic cascades: Predators, prey, and the changing dynamics of nature (ed. by Terborgh, J. and Estes, J. A.), pp. 179202. Washington, DC: Island Press.Google Scholar
Schoener, T. W., Spiller, D. A. & Piovia-Scott, J. (2016) Variation in ecological interaction strength with island area: Theory and data from the Bahamian archipelago. Global Ecology & Biogeography, 25, 891899.CrossRefGoogle Scholar
Spiller, D. A. & Schoener, T. W. (2009) Species–area relationship. Encyclopedia of islands (ed. by Gillespie, R. G. and Clague, D. A.), pp. 857861. Berkeley, CA: University of California Press.Google Scholar
Steffan-Dewenter, I. & Tscharntke, T. (2000) Butterfly community structure in fragmented habitats. Ecology Letters, 3, 449456.Google Scholar
Stier, A. C., Hanson, K. M., Holbrook, S. J., Schmitt, R. J. & Brooks, A. J. (2014b) Predation and landscape characteristics independently affect reef fish community organization. Ecology, 95, 12941307.Google Scholar
Stier, A. C., Hein, A. M., Parravicini, V. & Kulbicki, M. (2014a) Larval dispersal drives trophic structure across Pacific coral reefs. Nature Communications, 5, 5575.Google Scholar
Summerhayes, V. S. & Elton, C. S. (1923) Contributions to the ecology of Spitsbergen and Bear Island. Journal of Ecology, 11, 214286.Google Scholar
Terborgh, J. (2010) The trophic cascade on islands. The theory of island biogeography revisited (ed. by Losos, J. B. and Ricklefs, R. E.), pp. 116142. Princeton, NJ: Princeton University Press.Google Scholar
Thornton, I. W. B. (1996) Krakatau – The destruction and reassembly of an island ecosystem. Cambridge, MA: Harvard University Press.Google Scholar
Toft, A. & Schoener, T. W. (1983) Abundance and diversity of orb spiders on 106 Bahamian Islands: Biogeography at an intermediate trophic level. Oikos, 41, 411426.Google Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.Google Scholar
Wang, S. & Loreau, M. (2014) Ecosystem stability in space: α, β and δ variability. Ecology Letters, 17, 891901.Google Scholar
Warren, B. H., Simberloff, D., Ricklefs, R. E., Aguilée, R., Condamine, F. L., Gravel, D., Morlon, H., Mouquet, N., Rosindel, J., Casquet, J., Conti, E., Cornuault, J., Fernández‐Palacios, J. M., Hengl, T., Norder, S. J., Rijsdijk, K. F., Sanmartín, I., Strasberg, D., Triantis, K. A., Valente, L. M., Whittaker, R. J., Gillespie, R. G., Emerson, B. C. & Thébaud, C. (2015) Islands as model systems in ecology and evolution: Prospects fifty years after MacArthur-Wilson. Ecology Letters, 18, 200217.Google Scholar
Whittaker, R. J. & Fernández-Palacios, J. M. (2007) Island biogeography: Ecology, evolution, and conservation, 2nd ed. Oxford: Oxford University Press.Google Scholar
Wilson, H. B., Holt, R. D. & Hassell, M. P. (1998) Persistence and area effects in a stochastic tritrophic model. The American Naturalist, 151, 587596.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×