Skip to main content Accessibility help
×
Hostname: page-component-5f745c7db-szhh2 Total loading time: 0 Render date: 2025-01-06T20:47:02.372Z Has data issue: true hasContentIssue false

10 - Mechanisms of atmospheric heating

Published online by Cambridge University Press:  14 August 2009

C. J. Schrijver
Affiliation:
Stanford University, California
C. Zwaan
Affiliation:
Universiteit Utrecht, The Netherlands
Get access

Summary

After our discussion of the observed radiative emissions from solar and stellar outer atmospheres, we now turn to the mechanisms heating the outer-atmospheric domains to a temperature that even in apparently quiescent conditions is up to 3 orders of magnitude higher than that of the photosphere. Over the years, a multitude of mechanisms has been proposed to transport energy from the stellar interior into the outer atmosphere and to dissipate it there (see the compilations by Narain and Ulmschneider, 1990, 1996, and the summary in Table 10.1). It has become clear that the real question is no longer how the atmosphere can be heated, but which mechanisms dominate under specific conditions. The problem of outer-atmospheric heating can be separated into two parts: (a) what is the source of the energy, and (b) how is it transported and dissipated? Although at first sight the second part seems to be separable into the problems of transport and dissipation, this is not always the case, because some mechanisms intricately link these two processes through cascades or critical self-regulation, as we mention below.

Our discussion concentrates on coronal heating, with a substantial bias to current-based mechanisms. Space limitations do not allow an in-depth discussion of the many distinct wave-heating processes. Chromospheric heating follows similar principles as coronal heating, but the added complexity of radiative transfer and nonforce-free fields complicate studies in this area. In contrast, the larger viscosity and resistivity of the chromosphere make it easier to dissipate both currents and waves.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×