Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-30T23:11:44.817Z Has data issue: false hasContentIssue false

Chapter 13 - In Vitro Fertilization and Assisted Reproductive Technologies in Polycystic Ovary Syndrome

Published online by Cambridge University Press:  13 May 2022

Gabor T. Kovacs
Affiliation:
Monash University, Melbourne, Australia
Bart Fauser
Affiliation:
University Medical Center, Utrecht, Netherlands
Richard S. Legro
Affiliation:
Penn State Medical Center, Hershey, PA, USA
Get access

Summary

In vitro fertilization (IVF) should be viewed as a third-line treatment for those with polycystic ovary syndrome (PCOS). In the absence of known causative factors of infertility, such as tubal or sperm abnormalities, a methodical approach to treatment should first include lifestyle modification and an efficacious trial of ovulation induction (OI). Cumulative pregnancy rates of 62% within 4 treatment cycles have been shown with letrozole, an aromatase inhibitor[1] – now widely accepted as the first-line OI agent in PCOS.[2, 3] For those who remain refractory to different regimens of OI, the move to IVF, with the associated risk of ovarian hyperstimulation syndrome (OHSS), becomes justified. The presence of polycystic ovaries is a major risk factor for OHSS, necessitating careful planning of gonadotropin stimulation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amer, S. A., Smith, J., Mahran, A., Fox, P. and Fakis, A. Double-blind randomized controlled trial of letrozole versus clomiphene citrate in subfertile women with polycystic ovarian syndrome. Hum Reprod 2017; 32(8): 16311638.CrossRefGoogle ScholarPubMed
Balen, A. H., Morley, L. C., Misso, M. et al. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update 2016; 22(6): 687708. https://doi.org/10.1093/humupd/dmw025CrossRefGoogle ScholarPubMed
Teede, H. J., Misso, M. L., Costello, M. F. et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril 2018; 110(3): 364379.CrossRefGoogle ScholarPubMed
The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004; 19: 4147.CrossRefGoogle Scholar
Balen, A. H., Laven, J. S. E., Tan, S. L. and Dewailly, D. Ultrasound assessment of the polycystic ovary: International consensus definitions. Hum Reprod Update 2003; 9: 505514.CrossRefGoogle ScholarPubMed
Wijeyaratne, C. N., Balen, A. H., Barth, J. H. and Belchetz, P. E. Clinical manifestations and insulin resistance (IR) in polycystic ovary syndrome (PCOS) among South Asians and Caucasians: Is there a difference? Clin Endocrinol 2002; 57(3): 343350.CrossRefGoogle ScholarPubMed
Mascarenhas, M. and Balen, A. H. Could ethnicity have a different effect on fresh and frozen embryo transfer outcomes: A retrospective study. Reprod Biomed Online 2019; 39(5): 764769.CrossRefGoogle ScholarPubMed
Palomba, S. and La Sala, G. B. Oocyte competence in women with PCOS. Trends Endocrinol Metab 2017; 28(3): 186198.CrossRefGoogle Scholar
Qiao, J. and Feng, H. L. Extra- and intra-ovarian factors in polycystic ovary syndrome: Impact on oocyte maturation and embryo developmental competence. Hum Reprod Update 2011; 17: 1733.Google Scholar
Teissier, M. P., Chable, H., Paulhac, S. and Aubard, Y. Comparison of follicle steroidogenesis from normal and polycystic ovaries in women undergoing IVF: Relationship between steroid concentrations, follicle size, oocyte quality and fecundability. Hum Reprod 2000; 15(12): 24712477.CrossRefGoogle ScholarPubMed
Dewailly, D., Robin, G., Peigne, M., Decanter, C., Pigny, P. and Catteau-Jonard, S. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update 2016; 22(6): 709724. https://doi.org/10.1093/humupd/dmw027CrossRefGoogle ScholarPubMed
Westergaard, L. G., Yding Andersen, C., Erb, K. et al. Placental protein 14 concentrations in circulation related to hormonal parameters and reproductive outcome in women undergoing IVF/ICSI. Reprod Biomed Online 2004; 8(1): 91–8.Google Scholar
Wood, J. R., Dumesic, D. A., Abbott, D. H. and Strauss, J. F., III. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab 2007; 92(2): 705713.CrossRefGoogle ScholarPubMed
Li, Z. and Huang, H. Epigenetic abnormality: A possible mechanism underlying the fetal origin of polycystic ovary syndrome. Med Hypotheses 2008; 70(3): 3842.CrossRefGoogle ScholarPubMed
Risal, S., Pei, Y., Lu, H. et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nature Medicine 2019; 25(11).CrossRefGoogle ScholarPubMed
Picton, H. M. and Balen, A. H. Transgenerational PCOS transmission. Nat Med 2019; 25(12): 18181820. https://doi.org/10.1038/s41591-019-0678-xCrossRefGoogle ScholarPubMed
Mills, G., Badeghiesh, A., Suarthana, E., Baghlaf, H. and Dahan, M. H. Polycystic ovary syndrome as an independent risk factor for gestational diabetes and hypertensive disorders of pregnancy: A population-based study on 9.1 million pregnancies. Hum Reprod 2020; 35(7): 16661674.CrossRefGoogle Scholar
Boomsma, C. M., Eijkemans, M. J. C., Hughes, E. G., Visser, G. H. A., Fauser, B. C. J. M. and Macklon, N. S. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum Reprod Update 2006; 12(6): 673683.CrossRefGoogle ScholarPubMed
Lim, S. S., Hutchison, S. K., Van Ryswyk, E., Norman, R. J., Teede, H. J. and Moran, L. J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev 2019; 3: CD007506.Google ScholarPubMed
Norman, R. J. and Mol, B. W. J. Successful weight loss interventions before in vitro fertilization: Fat chance? Fertil Steril 2018; 110(4): 581586.CrossRefGoogle ScholarPubMed
Jungheim, E. S., Lanzendorf, S. E., Odem, R. R., Moley, K. H., Chang, A. S. and Ratts, V. S. Morbid obesity is associated with lower clinical pregnancy rates after in vitro fertilization in women with polycystic ovary syndrome. Fertil Steril 2009; 92(1): 256261.Google Scholar
Qiu, M., Tao, Y., Kuang, Y. and Wang, Y. Effect of body mass index on pregnancy outcomes with the freeze-all strategy in women with polycystic ovarian syndrome. Fertil Steril 2019; 112(6): 11721179.CrossRefGoogle ScholarPubMed
Einarsson, S., Bergh, C., Friberg, B. et al. Weight reduction intervention for obese infertile women prior to IVF: A randomized controlled trial. Hum Reprod 2017; 32(8): 16211630.CrossRefGoogle ScholarPubMed
Knight, M., Bunch, K., Tuffnell, D. et al. (eds.). Saving Lives, Improving Mothers’ Care: Lessons Learned to Inform Maternity Care from the UK and Ireland Confidential Enquiries into Maternal Deaths and Morbidity 2016–18. Oxford: National Perinatal Epidemiology Unit, University of Oxford and MBRACE-UK, 2020.Google Scholar
Holmes, D. I. and Zazhary, I. The vascular endothelial growth factor (VEGF) family: Angiogenic factors in health and disease. Genome Biol 2005; 6(2): 209.Google Scholar
Braat, D. D., Schutte, J. M., Bernadus, R. E., Mooij, T. M. and van Leeuwen, F. E. Maternal death related to IVF in the Netherlands 1984–2008. Hum Reprod 2010; 25(7): 17821786.CrossRefGoogle ScholarPubMed
Mourad, S., Brown, J. and Farquhar, C. Interventions for the prevention of OHSS in ART cycles: An overview of Cochrane reviews. Cochrane Database Syst Rev. 2017; 23(1): CD012103.Google Scholar
Swanton, A., Storey, L., McVeigh, E. and Child, T. IVF outcome in women with PCOS, PCO and normal ovarian morphology. Eur J Obstet Gynaecol Reprod Biol 2010; 149(1): 6871.Google Scholar
Peitsidis, P. and Agrawal, R. Role of vascular endothelial growth factor in women with PCO and PCOS: A systematic review. Reprod Biomed Online 2010; 20(4): 444452.Google Scholar
Balen, A. H., Tan, S. L., MacDougall, J. and Jacobs, H. S. Miscarriage rates following in vitro fertilisation are increased in women with polycystic ovaries and reduced by pituitary desensitisation with buserelin. Hum Reprod 1993; 8: 959964.Google Scholar
Tarlatzis, B. C. and Koblibianakis, E. M. GnRH agonists vs antagonists. Best Pract Res Clin Obstet Gynaecol 2007; 21(1): 5765.CrossRefGoogle ScholarPubMed
ESHRE Reproductive Endocrinology Guideline Group. Ovarian Stimulation for IVF/ICSI: Guideline of the European Society of Human Reproduction and Embryology. Grimbergen: ESHRE, 2019.Google Scholar
Al-Inany, H. G., Youssef, M. A., Ayeleke, R., Brown, J., Lam, W. and Broekmans, F. J. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst Rev 2016; 29(4): CD001750. https://doi.org/10.1002/14651858Google Scholar
Farquhar, C., Rombauts, L., Kremer, J. A. M., Lethaby, A. and Ayeleke, R. O. Oral contraceptive pill, progestogen or oestrogen pretreatment for ovarian stimulation protocols for women undergoing assisted reproductive techniques. Cochrane Database Syst Rev 2017; 5: CD006109.Google Scholar
van Wely, M., Kwan, I., Burt, A. L. et al. Recombinant versus urinary gonadotrophin for ovarian stimulation in assisted reproductive technology cycles. Cochrane Database Syst Rev 2011; 2: CD005354.Google Scholar
Weiss, N. S., Kostova, E., Nahuis, M., Mol, B. W. J., van der Veen, F., van Wely, M. Gonadotrophins for ovulation induction in women with polycystic ovary syndrome. Cochrane Database Syst Rev 2019; 1(1): CD010290.Google ScholarPubMed
Lensen, S. F., Wilkinson, J., Leijdekkers, J. A. et al. Individualised gonadotropin dose selection using markers of ovarian reserve for women undergoing in vitro fertilisation plus intracytoplasmic sperm injection (IVF/ICSI). Cochrane Database Syst Rev 2018; 2(2): CD012693.Google ScholarPubMed
Humaidan, P., Papanikolaou, E. G., Kyrou, D. et al. The luteal phase after GnRH-agonist triggering of ovulation: Present and future perspectives. Reprod Biomed Online 2012; 24(2): 134141. https://doi.org/10.1016/j.rbmo.2011.11.00CrossRefGoogle ScholarPubMed
Fauser, B. C., de Jong, D., Olivennes, F. et al. Endocrine profiles after triggering of final oocyte maturation with GnRH agonist after cotreatment with the GnRH antagonist ganirelix during ovarian hyperstimulation for in vitro fertilization. J Clin Endocrinol Metab 2002; 87(2): 709715.Google Scholar
Haahr, T., Roque, M., Esteves, S. C. and Humaidan, P. GnRH agonist trigger and LH activity luteal phase support versus hCG trigger and conventional luteal phase support in fresh embryo transfer IVF/ICSI cycles: A systematic PRISMA review and meta-analysis. Front Endocrinol (Lausanne) 2017; 8: 116. https://doi.org/10.3389/fendo.2017.00116CrossRefGoogle ScholarPubMed
Andersen, C. Y., Elbaek, H. O., Alsbjerg, B. et al. Daily low-dose hCG stimulation during the luteal phase combined with GnRHa triggered IVF cycles without exogenous progesterone: A proof of concept trial. Hum Reprod 2015; 30(10): 23872395. https://doi.org/10.1093/humrep/dev184Google Scholar
Youssef, M. A., Abou-Setta, A. M. and Lam, W. S. Recombinant versus urinary human chorionic gonadotrophin for final oocyte maturation triggering in IVF and ICSI cycles. Cochrane Database Syst Rev 2016; 4(4): CD003719.Google Scholar
Abbara, A, Jayasena, C. N., Christopoulos, G. et al. Efficacy of kisspeptin-54 to trigger oocyte maturation in women at high risk of ovarian hyperstimulation syndrome (OHSS) during in vitro fertilization (IVF) therapy. J Clin Endocrinol Metab 2015; 100(9): 33223331. https://doi.org/10.1210/jc.2015-2332Google Scholar
Jeon, Y. E., Lee, K. E., Jung, J. A. et al. Kisspeptin, leptin and retinol-binding protein 4 in women with PCOS. Gynecol Obstet Invest 2013; 75(4): 268274. https://doi.org/10.1159/000350217CrossRefGoogle Scholar
Wong, K. M., van Wely, M., Mol, F., Repping, S. and Mastenbroek, S. Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst Rev 2017; 3: CD011184.Google ScholarPubMed
Chen, Z.-J., Shi, Y., Sun, Y. et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med 2016; 375: 523533.Google Scholar
Diamanti-Kandarakis, E., Christakou, C. D., Kandaraki, E. and Economou, F. N. Metformin: An old medication of new fashion: Evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol 2010; 162: 193212.CrossRefGoogle ScholarPubMed
Sharpe, A., Morley, L. C., Tang, T., Norman, R. J. and Balen, A. H. Metformin for ovulation induction (excluding gonadotrophins) in women with polycystic ovary syndrome. Cochrane Database Syst Rev 2019; 12: CD013505.Google ScholarPubMed
Tso, L. O., Costello, M. F., Albuquerque, L. E., Andriolo, R. B. and Macedo, C. R. Metformin treatment before and during IVF or ICSI in women with polycystic ovary syndrome. Cochrane Database Syst Rev 2014; 11: CD006105.Google Scholar
Doldi, N., Persico, P., Di Sebastiano, F., Marsiglio, E., Ferrari, A. Gonadotropin-releasing hormone antagonist and metformin for treatment of polycystic ovary syndrome patients undergoing in vitro fertilization-embryo transfer. Gynecol Endocrinol 2006; 22(5): 235238.CrossRefGoogle ScholarPubMed
Jacob, S. L., Brewer, C., Tang, T., Picton, H. M., Barth, J. H. and Balen, A. H. A short course of metformin does not reduce OHS in a GnRH antagonist cycle for women with PCOS undergoing IVF: A randomised placebo-controlled trial. Hum Reprod 2016; 31(12): 27562764. https://doi.org/10.1093/humrep/dew268CrossRefGoogle Scholar
Siristatidis, C. S., Maheshwari, A., Vaidakis, D. and Bhattacharya, S. In vitro maturation in subfertile women with polycystic ovarian syndrome undergoing assisted reproduction. Cochrane Database of Syst Rev 2018; 11: CD006606.Google Scholar
Mostinckx, L., Segers, I., Belva, F. et al. Obstetric and neonatal outcome of ART in patients with polycystic ovary syndrome: IVM of oocytes versus controlled ovarian stimulation. Hum Reprod 2019; 34(8): 15951607.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×