Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T21:54:24.450Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  30 May 2024

Steven L. Girshick
Affiliation:
University of Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, FF (1969). Multistate kinetics in nonsteady-state nucleation: A numerical solution. Journal of Chemical Physics 51, 16321638. doi:10.1063/1.1672224.CrossRefGoogle Scholar
Abraham, FF (1974). Homogeneous Nucleation Theory: The Pretransition Theory of Vapor Condensation. New York and London: Academic Press.Google Scholar
Adams, GW, Schmitt, JL, and Zalabsky, RA (1984). The homogeneous nucleation of nonane. Journal of Chemical Physics 81, 50745078. doi:10.1063/1.447496.CrossRefGoogle Scholar
Afzalifar, A, Shields, GC, Fowler, VR, and Ras, RHA (2022). Probing the free energy of small water clusters: Revisiting classical nucleation theory. Journal of Chemical Physics Letters 13, 80388046. doi:10.1021/acs.jpclett.2c01361.CrossRefGoogle ScholarPubMed
Agarwal, P and Girshick, SL (2012). Sectional modeling of nanoparticle size and charge distributions in dusty plasmas. Plasma Sources Science and Technology 21, 055023. doi:10.1088/0963-0252/21/5/055023.CrossRefGoogle Scholar
Agarwal, P and Girshick, SL (2014). Numerical modeling of the spatiotemporal behavior of an RF argon-silane plasma with dust particle nucleation and growth. Plasma Chemistry and Plasma Processing 34, 489503. doi:10.1007/s11090-013-9511-3.CrossRefGoogle Scholar
Alcock, CB, Itkin, VP, and Horrigan, MK (1984). Vapour pressure equations for the metallic elements: 298–2500 K. Canadian Metallurgical Quarterly 23, 309313. doi:10.1179/cmq.1984.23.3.309.CrossRefGoogle Scholar
Andres, RP and Boudart, M (1965). Time lag in multistate kinetics: Nucleation. Journal of Chemical Physics 42, 20572064.CrossRefGoogle Scholar
Anisimov, MP, Hopke, PK, Shandakov, SD, and Shvets, II (2000). n-Pentanol–helium homogeneous nucleation rates. Journal of Chemical Physics 113, 19711975. doi:10.1063/1.482002.CrossRefGoogle Scholar
Bao, JL, Seal, P, and Truhlar, DG (2015). Nanodusty plasma chemistry: A mechanistic and variational transition state theory study of the initial steps of silyl anion-silane and silylene anion-silane polymerization reactions. Physical Chemistry Chemical Physics 17, 1592815935. doi:10.1039/c5cp01979f.CrossRefGoogle ScholarPubMed
Becker, R and Döring, W (1935). Kinetische Behandlung der Keimbildung in übersättigten Dämpfen [Kinetic treatment of nucleation in supersaturated vapors]. Annalen der Physik 24, 719752.CrossRefGoogle Scholar
Benson, SW (1976). Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters, 2nd ed. New York: Wiley.Google Scholar
Bhabhe, A and Wyslouzil, B (2011). Nitrogen nucleation in a cryogenic supersonic nozzle. Journal of Chemical Physics 135, 244311. doi:10.1063/1.3671453.CrossRefGoogle Scholar
Bhandarkar, U, Swihart, MT, Girshick, SL, and Kortshagen, U (2000). Modeling of silicon hydride clustering in a low-pressure silane plasma. Journal of Physics D: Applied Physics 33, 27312746. doi:10.1088/0022-3727/33/21/311.CrossRefGoogle Scholar
Bhandarkar, U, Kortshagen, U, and Girshick, SL (2003). Numerical study of the effect of gas temperature on the time for onset of particle nucleation in argon-silane low pressure plasmas. Journal of Physics D: Applied Physics 36, 13991408. doi:10.1088/0022-3727/36/12/307.CrossRefGoogle Scholar
Blander, M and Katz, JL (1972). The thermodynamics of cluster formation in nucleation theory. Journal of Statistical Physics 4, 5559.CrossRefGoogle Scholar
Blanquart, G and Pitsch, H (2009). Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model. Combustion and Flame 156, 16141626. doi:10.1016/j.combustflame.2009.04.010.CrossRefGoogle Scholar
Blanquart, G, Pepiot-Desjardins, P, and Pitsch, H (2009). Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combustion and Flame 156, 588607. doi:10.1016/j.combustflame.2008.12.007.CrossRefGoogle Scholar
Blokhuis, EM and Kuipers, J (2006). Thermodynamic expressions for the Tolman length. Journal of Chemical Physics 124, 074701. doi:10.1063/1.2167642.CrossRefGoogle ScholarPubMed
Boufendi, L and Bouchoule, A (1994). Particle nucleation and growth in a low-pressure argon-silane discharge. Plasma Sources Science and Technology 3, 262267. doi:10.1088/0963-0252/3/3/004.CrossRefGoogle Scholar
Brus, D, Hyvarinen, AP, Zdimal, V, and Lihavainen, H (2005). Homogeneous nucleation rate measurements of 1-butanol in helium: A comparative study of a thermal diffusion cloud chamber and a laminar flow diffusion chamber. Journal of Chemical Physics 122, 214506. doi:10.1063/1.1917746.CrossRefGoogle Scholar
Brus, D, Zdimal, V, and Stratmann, F (2006). Homogeneous nucleation rate measurements of 1-propanol in helium: The effect of carrier gas pressure. Journal of Chemical Physics 124, 164306. doi:10.1063/1.2185634.CrossRefGoogle ScholarPubMed
Brus, D, Hyvarinen, AP, Zdimal, V, and Lihavainen, H (2008a). Erratum: “Homogeneous nucleation rate measurements of 1-butanol in helium: A comparative study of a thermal diffusion cloud chamber and a laminar flow diffusion chamber” [vol 122, pg 214506, 2005]. Journal of Chemical Physics 128, 079901. doi:10.1063/1.2830800.CrossRefGoogle Scholar
Brus, D, Zdimal, V, and Smolik, J (2008b). Homogeneous nucleation rate measurements in supersaturated water vapor. Journal of Chemical Physics 129, 174501. doi:10.1063/1.3000629.CrossRefGoogle ScholarPubMed
Brus, D, Zdimal, V, and Smolik, J (2008c). Supplemental information to Journal of Chemical Physics 129, 174501 (2008): Homogeneous nucleation rate measurements in supersaturated water vapor. EPAPS Document No. E-JCPSA6-129-614841. doi: 10.1063/1.3151622.CrossRefGoogle Scholar
Brus, D, Zdimal, V, and Uchtmann, H (2009). Homogeneous nucleation rate measurements in supersaturated water vapor II. Journal of Chemical Physics 131, 074507. doi:10.1063/1.3211105.CrossRefGoogle ScholarPubMed
Bumstead, HA and Van Name, RG (eds) (1906). The Scientific Papers of J. Willard Gibbs, vol 1. London: Longmans, Green and Co, 252258.Google Scholar
Campagna, MM, Hruby, J, van Dongen, MEH, and Smeulders, DMJ (2020). Homogeneous water nucleation: Experimental study on pressure and carrier gas effects. Journal of Chemical Physics 153, 164303. doi:10.1063/5.0021477.CrossRefGoogle Scholar
Chase, MW (1998). NIST-JANAF Thermochemical Tables. Washington, DC: American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology.Google Scholar
Connelly, BC, Long, MB, Smooke, MD, Hall, RJ, and Colket, MB (2009). Computational and experimental investigation of the interaction of soot and NO in coflow diffusion flames. Proceedings of the Combustion Institute 32, 777784. doi:10.1016/j.proci.2008.06.182.CrossRefGoogle Scholar
D’Anna, A (2009). Combustion-formed nanoparticles. Proceedings of the Combustion Institute 32, 593613. doi:10.1016/j.proci.2008.09.005.CrossRefGoogle Scholar
De Bleecker, K, Bogaerts, A, Gijbels, R, and Goedheer, W (2004a). Numerical investigation of particle formation mechanisms in silane discharges. Physical Review E 69, 056409. doi:10.1103/PhysRevE.69.056409.CrossRefGoogle ScholarPubMed
De Bleecker, K, Bogaerts, A, and Goedheer, W (2004b). Modeling of the formation and transport of nanoparticles in silane plasmas. Physical Review E 70, 056407. doi:10.1103/PhysRevE.70.056407.CrossRefGoogle ScholarPubMed
Dingilian, KK, Lippe, M, Kubecka, J, Krohn, J, Li, CX, Halonen, R, Keshavarz, F, Reischl, B, Kurten, T, Vehkamäki, H, Signorell, R, and Wyslouzil, BE (2021). New particle formation from the vapor phase: From barrier-controlled nucleation to the collisional limit. Journal of Physical Chemistry Letters 12, 45934599. doi:10.1021/acs.jpclett.1c00762.CrossRefGoogle Scholar
Dobbins, RA, Eklund, TI, and Tjoa, R (1977). The direct measurement of the nucleation rate constants. In Pouring, AA (ed), Condensation in High Speed Flows. New York: American Society for Mechanical Engineers, 4358.Google Scholar
Dobbins, RA, Eklund, TI, and Tjoa, R (1980). Direct measurement of the nucleation rate constants. Journal of Aerosol Science 11, 2333. doi:10.1016/0021-8502(80)90141-X.CrossRefGoogle Scholar
Elm, J, Kubecka, J, Besel, V, Jaaskelainen, MJ, Halonen, R, Kurten, T, and Vehkamäki, H (2020). Modeling the formation and growth of atmospheric molecular clusters: A review. Journal of Aerosol Science 149. 105621. doi:10.1016/j.jaerosci.2020.105621.CrossRefGoogle Scholar
Farkas, L (1927). Keimbildungsgeschwindigkeit in übersättigten Dämpfen [Nucleation rate in supersaturated vapors]. Zeitschrift für physikalische Chemie, Stöchiometrie und Verwandtschaftslehre 125 U, 236242. doi:10.1515/zpch-1927–12513.CrossRefGoogle Scholar
Feder, J, Russell, KC, Lothe, J, and Pound, GM (1966). Homogeneous nucleation and growth of droplets in vapours. Advances in Physics 15, 111178. doi:10.1080/00018736600101264.CrossRefGoogle Scholar
Flagan, RC (2007). A thermodynamically consistent kinetic framework for binary nucleation. Journal of Chemical Physics 127, 214503. doi:10.1063/1.2800001.CrossRefGoogle ScholarPubMed
Flageollet‐Daniel, C, Garnier, JP and Mirabel, P (1983). Microscopic surface tension and binary nucleation. Journal of Chemical Physics 78, 26002606. doi:10.1063/1.445017.CrossRefGoogle Scholar
Flood, H (1934). Tröpfchenbildung in übersättigten Äthylalkohol-Wasserdampfgemischen [Formation of droplets in supersaturated mixtures of ethyl alcohol and water vapor]. Zeitschrift für Physikalische Chemie 170A, 286294. doi:10.1515/zpch-1934-17026.CrossRefGoogle Scholar
Ford, IJ (1997). Nucleation theorems, the statistical mechanics of molecular clusters, and a revision of classical nucleation theory. Physical Review E 56, 56155629. doi:10.1103/PhysRevE.56.5615.CrossRefGoogle Scholar
Ford, IJ and Clement, CF (1989). The effects of temperature fluctuations in homogeneous nucleation theory. Journal of Physics A: Mathematical and General. 22, 40074018. doi:10.1088/0305-4470/22/18/033.CrossRefGoogle Scholar
Frenklach, M (2002). Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics 4, 20282037. doi:10.1039/b110045a.CrossRefGoogle Scholar
Frenklach, M and Wang, H (1991). Detailed modeling of soot particle nucleation and growth. Symposium (International) on Combustion 23, 15591566. doi:10.1016/S0082-0784(06)80426–1.CrossRefGoogle Scholar
Fridman, AA, Boufendi, L, Hbid, T, Potapkin, BV, and Bouchoule, A (1996). Dusty plasma formation: Physics and critical phenomena. Theoretical approach. Journal of Applied Physics 79, 13031314. 10.1063/1.361026.CrossRefGoogle Scholar
Friedlander, SK (1983). Dynamics of aerosol formation by chemical reaction. Annals of the New York Academy of Sciences 404, 354364. doi:10.1111/j.1749–6632.1983.tb19497.x.CrossRefGoogle Scholar
Friedlander, SK (2000). Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics. New York: Oxford University Press.Google Scholar
Gai, H, Thompson, DL, and Raff, LM (1988). Trajectory study of the formation and decay of silicon trimer complexes in monomer-dimer collisions. Journal of Chemical Physics 88, 156162. doi:10.1063/1.454647.CrossRefGoogle Scholar
Gallagher, A, Howling, AA, and Hollenstein, C (2002). Anion reactions in silane plasma. Journal of Applied Physics 91, 55715580. doi:10.1063/1.1459758.CrossRefGoogle Scholar
Gelbard, F and Seinfeld, JH (1979). The general dynamic equation for aerosols: Theory and application to aerosol formation and growth. Journal of Colloid and Interface Science 68, 363382. doi:10.1016/0021-9797(79)90289-3.CrossRefGoogle Scholar
Gelbard, F, Tambour, Y, and Seinfeld, JH (1980). Sectional representations for simulating aerosol dynamics. Journal of Colloid and Interface Science 76, 541556. doi:10.1016/0021-9797(80)90394-X.CrossRefGoogle Scholar
Ghosh, D, Manka, A, Strey, R, Seifert, S, Winans, RE, and Wyslouzil, BE (2008). Using small angle x-ray scattering to measure the homogeneous nucleation rates of n-propanol, n-butanol, and n-pentanol in supersonic nozzle expansions. Journal of Chemical Physics 129, 124302. doi:10.1063/1.2978384.CrossRefGoogle ScholarPubMed
Girshick, SL (1997). Theory of nucleation from the gas phase by a sequence of reversible chemical reactions. Journal of Chemical Physics 107, 19481952. doi:10.1063/1.475050.CrossRefGoogle Scholar
Girshick, SL (2014). The dependence of homogeneous nucleation rate on supersaturation. Journal of Chemical Physics 141, 024307. doi:10.1063/1.4887338.CrossRefGoogle ScholarPubMed
Girshick, SL and Chiu, C-P (1990). Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor. Journal of Chemical Physics 93, 12731277. doi:10.1063/1.459191.CrossRefGoogle Scholar
Girshick, SL, Chiu, C-P, and McMurry, PH (1990). Time-dependent aerosol models and homogeneous nucleation rates. Aerosol Science and Technology 13, 465477. doi:10.1080/02786829008959461.CrossRefGoogle Scholar
Girshick, SL, Swihart, MT, Nijhawan, S, Suh, S-M, and Mahajan, MR (2000). Numerical modeling of gas-phase nucleation and particle growth during chemical vapor deposition of silicon. Journal of the Electrochemical Society 147, 23032311. doi:10.1149/1.1393525.CrossRefGoogle Scholar
Girshick, SL, Agarwal, P, and Truhlar, DG (2009). Homogeneous nucleation with magic numbers: Aluminum. Journal of Chemical Physics 131, 134305. doi:10.1063/1.3239469.CrossRefGoogle ScholarPubMed
Giunta, CJ, McCurdy, RJ, Chapple-Sokol, JD, and Gordon, RG (1990). Gas-phase kinetics in the atmospheric pressure chemical vapor deposition of silicon from silane and disilane. Journal of Applied Physics 67, 10621075. doi:10.1063/1.345792.CrossRefGoogle Scholar
Goldstein, AN, Echer, CM, and Alivisatos, AP (1992). Melting in semiconductor nanocrystals. Science 256, 14251427. doi:10.1126/science.256.5062.1425.CrossRefGoogle ScholarPubMed
Grassmann, A and Peters, F (2000). Homogeneous nucleation rates of n-pentanol in nitrogen measured in a piston-expansion tube. Journal of Chemical Physics 113, 67746781. doi:10.1063/1.1310597.CrossRefGoogle Scholar
Grassmann, A and Peters, F (2002). Homogeneous nucleation rates of n-propanol in nitrogen measured in a piston-expansion tube. Journal of Chemical Physics 116, 76177620. doi:10.1063/1.1465400.CrossRefGoogle Scholar
Grinin, AP and Kuni, FM (1989). Thermal and fluctuation effects of nonisothermal nucleation. Theoretical and Mathematical Physics 80, 968980. doi:10.1007/BF01016191.CrossRefGoogle Scholar
Haar, L, Gallagher, JS and Kell, GS (1984). NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units. New York: Hemisphere Publishing Company.Google Scholar
Hamill, P, Cadle, RD, and Kiang, CS (1977). The nucleation of H2SO4-H2O solution aerosol particles in the stratosphere. Journal of Atmospheric Sciences 34, 150162. doi:10.1175/1520-0469(1977)034 < 0150:Tnohhs>http://2.0.Co;2.2.0.CO;2>CrossRefGoogle Scholar
Haye, MJ and Bruin, C (1994). Molecular dynamics study of the curvature correction to the surface tension. Journal of Chemical Physics 100, 556559. doi:10.1063/1.466972.CrossRefGoogle Scholar
Heath, CH (2001). Binary condensation in a supersonic nozzle. Ph.D. dissertation, Department of Chemical Engineering, Worcester Polytechnic University, Worcester, MA.Google Scholar
Heath, CH, Streletzky, K, Wyslouzil, BE, Wölk, J, and Strey, R (2002). H2O-D2O condensation in a supersonic nozzle. Journal of Chemical Physics 117, 61766185. doi:10.1063/1.1502644.CrossRefGoogle Scholar
Heist, RH and He, H (1994). Review of vapor to liquid homogeneous nucleation experiments from 1968 to 1992. Journal of Physical and Chemical Reference Data 23, 781805. doi:10.1063/1.555951.CrossRefGoogle Scholar
Heist, RH and Reiss, H (1973). Investigation of the homogeneous nucleation of water vapor using a diffusion cloud chamber. Journal of Chemical Physics 59, 665671. doi:10.1063/1.1680073.CrossRefGoogle Scholar
Hinds, WC (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York: Wiley.Google Scholar
Holten, V, Labetski, DG, and van Dongen, MEH (2005). Homogeneous nucleation of water between 200 and 240 K: New wave tube data and estimation of the Tolman length. Journal of Chemical Physics 123, 104505. doi:10.1063/1.2018638.CrossRefGoogle ScholarPubMed
Howling, AA, Dorier, J-L and Hollenstein, C (1993a). Negative ion mass spectra and particulate formation in radio frequency silane plasma deposition experiments. Applied Physics Letters 62, 13411343. doi:10.1063/1.108724.CrossRefGoogle Scholar
Howling, AA, Sansonnens, L, Dorier, J-L and Hollenstein, C (1993b). Negative hydrogenated silicon ion clusters as particle precursors in RF silane plasma deposition experiments. Journal of Physics D: Applied Physics 26, 10031006. doi:10.1088/0022–3727/26/6/019.CrossRefGoogle Scholar
Howling, AA, Sansonnens, L, Dorier, J-L, and Hollenstein, C (1994). Time-resolved measurements of highly polymerized negative ions in radio frequency silane plasma deposition experiments. Journal of Applied Physics 75, 13401353. doi:10.1063/1.356413.CrossRefGoogle Scholar
Howling, AA, Courteille, C, Dorier, J-L, Sansonnens, L, and Hollenstein, C (1996). From molecules to particles in silane plasmas. Pure and Applied Chemistry 68, 10171022. doi:10.1351/pac199668051017.CrossRefGoogle Scholar
Hruby, J, Viisanen, Y, and Strey, R (1996). Homogeneous nucleation rates for n-pentanol in argon: Determination of the critical cluster size. Journal of Chemical Physics 104, 51815187. doi:10.1063/1.471145.CrossRefGoogle Scholar
Hultgren, R (1973). Selected Values of the Thermodynamic Properties of the Elements. Metals Park, OH: American Society for Metals.Google Scholar
Hung, C-H, Krasnopoler, MJ, and Katz, JL (1989). Condensation of a supersaturated vapor. VIII. The homogeneous nucleation of n-nonane. Journal of Chemical Physics 90, 18561865. doi:10.1063/1.456027.CrossRefGoogle Scholar
Iland, K, Wedekind, J, Wölk, J, Wagner, PE, and Strey, R (2004). Homogeneous nucleation rates of 1-pentanol. Journal of Chemical Physics 121, 1225912264. doi:10.1063/1.1809115.CrossRefGoogle ScholarPubMed
Iland, K, Wölk, J, Strey, R, and Kashchiev, D (2007). Argon nucleation in a cryogenic nucleation pulse chamber. Journal of Chemical Physics 127, 154506. doi:10.1063/1.2764486.CrossRefGoogle Scholar
Kacker, A and Heist, RH (1985). Homogeneous nucleation rate measurements. 1. Ethanol, n-propanol, and i-propanol. Journal of Chemical Physics 82, 27342744. doi:10.1063/1.448271.CrossRefGoogle Scholar
Kalikmanov, VI (2006). Mean-field kinetic nucleation theory. Journal of Chemical Physics 124, 124505. doi:10.1063/1.2178812.CrossRefGoogle ScholarPubMed
Kantrowitz, A (1951). Nucleation in very rapid vapor expansions. Journal of Chemical Physics 19, 10971100.CrossRefGoogle Scholar
Kashchiev, D (1982). On the relation between nucleation work, nucleus size, and nucleation rate. Journal of Chemical Physics 76, 50985102. doi:10.1063/1.442808.CrossRefGoogle Scholar
Kashchiev, D (2000). Nucleation: Basic Theory with Applications. Oxford: Butterworth Heinemann.Google Scholar
Katz, JL and Donohue, MD (1982). Nucleation with simultaneous chemical reaction. Journal of Colloid and Interface Science 85, 267277. doi:10.1016/0021-9797(82)90255-7.CrossRefGoogle Scholar
Katzer, G, Ernst, MC, Sax, AF, and Kalcher, J (1997). Computational thermochemistry of medium-sized silicon hydrides. Journal of Physical Chemistry A 101, 39423958. doi:10.1021/jp9631947.CrossRefGoogle Scholar
Kelkar, M, Rao, NP, and Girshick, SL (1996). Homogeneous nucleation of silicon: Effects of the properties and kinetics of small structured clusters. In Kulmala, M and Wagner, PE (eds), Nucleation and Atmospheric Aerosols 1996. Oxford: Elsevier Science Ltd, 117120.CrossRefGoogle Scholar
Keshavarz, F, Kubečka, J, Attoui, M, Vehkamäki, H, Kurtén, T, and Kangasluoma, J (2020). Molecular origin of the sign preference of ion- induced heterogeneous nucleation in a complex ionic liquid–diethylene glycol system. Journal of Physical Chemistry C 124, 2694426952. doi:10.1021/acs.jpcc.0c09481.CrossRefGoogle Scholar
Kholghy, MR, Kelesidis, GA, and Pratsinis, SE (2018). Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation. Physical Chemistry Chemical Physics 20, 1092610938. doi:10.1039/c7cp07803j.CrossRefGoogle ScholarPubMed
Kildgaard, JV, Mikkelsen, KV, Bilde, M, and Elm, J (2018). Hydration of atmospheric molecular clusters: A new method for systematic configurational sampling. Journal of Physical Chemistry A 122, 50265036. doi:10.1021/acs.jpca.8b02758.CrossRefGoogle ScholarPubMed
Kim, YJ, Wyslouzil, BE, Wilemski, G, Wölk, J, and Strey, R (2004). Isothermal nucleation rates in supersonic nozzles and the properties of small water clusters. Journal of Physical Chemistry A 108, 43654377. doi:10.1021/jp037030j.CrossRefGoogle Scholar
Kulmala, M, Laaksonen, A, and Girshick, SL (1992). The self-consistency correction to homogeneous nucleation: Extension to binary systems. Journal of Aerosol Science 23, 309312. doi:10.1016/0021-8502(92)90331-o.CrossRefGoogle Scholar
Laaksonen, A (1992). Nucleation of binary water-normal-alcohol vapors. Journal of Chemical Physics 97, 19831989. doi:10.1063/1.463136.CrossRefGoogle Scholar
Landau, L and Teller, E (1936). Theory of sound dispersion. Physik Zeitschrift der Sowjetunion 10, 3438.Google Scholar
Le Picard, R, Markosyan, AH, Porter, DH, Girshick, SL, and Kushner, MJ (2016). Synthesis of silicon nanoparticles in nonthermal capacitively-coupled flowing plasmas: Processes and transport. Plasma Chemistry and Plasma Processing 36, 941972. doi:10.1007/s11090-016-9721-6.CrossRefGoogle Scholar
Lei, YA, Bykov, T, Yoo, S, and Zeng, XC (2005). The Tolman length: Is it positive or negative? Journal of the American Chemical Society 127, 1534615347. doi:10.1021/ja054297i.CrossRefGoogle ScholarPubMed
Lemmon, EW, Bell, IH, Huber, ML, and McLinden, MO (2023). Thermophysical properties of fluid systems. In Linstrom, PJ and Mallard, WG (eds), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Gaithersburg, MD: National Institute of Standards and Technology. doi:10.18434/T4D303 (accessed May 12, 2023).Google Scholar
Li, ZH and Truhlar, DG (2008). Cluster and nanoparticle condensation and evaporation reactions. Thermal rate constants and equilibrium constants for Alm + Aln-m = Aln with n = 2–60 and m = 1–8. Journal of Physical Chemistry C 112, 1110911121. doi:10.1021/jp711349v.CrossRefGoogle Scholar
Li, ZH, Bhatt, D, Schultz, NE, Siepmann, JI, and Truhlar, DG (2007). Free energies of formation of clusters and nanoparticles from molecular simulations: Aln with n = 2–60. Journal of Physical Chemistry C 111, 1622716242. doi:10.1021/jp073559v.CrossRefGoogle Scholar
Lighty, JS, Veranth, JM, and Sarofim, AF (2000). Combustion aerosols: Factors governing their size and composition and implications to human health. Journal of the Air & Waste Management Association 50, 15651618. doi:10.1080/10473289.2000.10464197.CrossRefGoogle ScholarPubMed
Lihavainen, H, Viisanen, Y, and Kulmala, M (2001). Homogeneous nucleation of n-pentanol in a laminar flow diffusion chamber. Journal of Chemical Physics 114, 1003110038. doi:10.1063/1.1368131.CrossRefGoogle Scholar
Luijten, CCM (1998). Nucleation and droplet growth at high pressure. Ph.D. dissertation, Eindhoven University of Technology, Eindhoven, Netherlands.Google Scholar
Luijten, CCM, Baas, ODE, and vanDongen, EH (1997a). Homogeneous nucleation rates for n-pentanol from expansion wave tube experiments. Journal of Chemical Physics 106, 41524156. doi:10.1063/1.473125.CrossRefGoogle Scholar
Luijten, CCM, Bosschaart, KJ, and vanDongen, MEH (1997b). High pressure nucleation in water/nitrogen systems. Journal of Chemical Physics 106, 81168123. doi:10.1063/1.473818.CrossRefGoogle Scholar
Maheshwary, S, Patel, N, Sathyamurthy, N, Kulkarni, AD, and Gadre, SR (2001). Structure and stability of water clusters (H2O)n, n = 8–20: An ab initio investigation. Journal of Physical Chemistry A 105, 1052510537. doi:10.1021/jp013141b.CrossRefGoogle Scholar
Manka, AA, Brus, D, Hyvarinen, AP, Lihavainen, H, Wölk, J, and Strey, R (2010). Homogeneous water nucleation in a laminar flow diffusion chamber. Journal of Chemical Physics 132, 244505. doi:10.1063/1.3427537.CrossRefGoogle Scholar
Manka, AA, Wedekind, J, Ghosh, D, Hohler, K, Wölk, J, and Strey, R (2012). Nucleation of ethanol, propanol, butanol, and pentanol: A systematic experimental study along the homologous series. Journal of Chemical Physics 137, 054316. doi:10.1063/1.4739096.CrossRefGoogle ScholarPubMed
Martin, DL, Raff, LM, and Thompson, DL (1990). Silicon dimer formation by three-body recombination. Journal of Chemical Physics 92, 53115318. doi:10.1063/1.458602.CrossRefGoogle Scholar
McGraw, R and Laviolette, RA (1995). Fluctuations, temperature, and detailed balance in classical nucleation theory. Journal of Chemical Physics 102, 89838994. doi:10.1063/1.468952.CrossRefGoogle Scholar
McMurry, PH and Friedlander, SK (1979). New particle formation in the presence of an aerosol. Journal of Colloid and Interface Science 78, 513527. doi:10.1016/0004-6981(79)90322-6.CrossRefGoogle Scholar
Mikheev, VB, Irving, PM, Laulainen, NS, Barlow, SE, and Pervukhin, VV (2002). Laboratory measurement of water nucleation using a laminar flow tube reactor. Journal of Chemical Physics 116, 1077210786. doi:10.1063/1.1480274.CrossRefGoogle Scholar
Miller, JA and Melius, CF (1992). Kinetic and thermodynamic issues in the formation of aromatic-compounds in flames of aliphatic fuels. Combustion and Flame 91, 2139. doi:10.1016/0010-2180(92)90124-8.CrossRefGoogle Scholar
Miller, RC (1976). A comprehensive chamber study of homogeneous nucleation of water over a wide range of temperatures and nucleation rates. Ph.D. dissertation, Department of Physics, University of Missouri, Rolla.Google Scholar
Miller, RC, Anderson, RJ, Kassner, JL, and Hagen, DE (1983). Homogeneous nucleation rate measurements for water over a wide range of temperature and nucleation rate. Journal of Chemical Physics 78, 32043211. doi:10.1063/1.445236.CrossRefGoogle Scholar
Mirabel, P and Katz, JL (1974). Binary homogeneous nucleation as a mechanism for the formation of aerosols. Journal of Chemical Physics 60, 11381144. doi:10.1063/1.1681124.CrossRefGoogle Scholar
Nadykto, AB, Yu, F, and Herb, J (2008). Towards understanding the sign preference in binary atmospheric nucleation. Physical Chemistry Chemical Physics 10, 70737078. doi:10.1039/b807415a.CrossRefGoogle ScholarPubMed
Napari, I, Noppel, M, Vehkamäki, H, and Kulmala, M (2002). An improved model for ternary nucleation of sulfuric acid-ammonia-water. Journal of Chemical Physics 116, 42214227. doi:10.1063/1.1450557.CrossRefGoogle Scholar
Nijmeijer, MJP, Bruin, C, Vanwoerkom, AB, Bakker, AF, and Vanleeuwen, JMJ (1992). Molecular dynamics of the surface tension of a drop. Journal of Chemical Physics 96, 565576. doi:10.1063/1.462495.CrossRefGoogle Scholar
Nobel Foundation (1965). In Physics, 1922–1941. Amsterdam: Elsevier.Google Scholar
NobelPrize.org (2021). The Nobel Prize in Physics 1927. Nobel Prize Outreach AB 2023. www.nobelprize.org/prizes/physics/1927/summary (accessed May 10, 2023).Google Scholar
Onischuk, AA, Purtov, PA, Baklanov, AM, Karasev, VV, and Vosel, SV (2006). Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: Metal vapor homogeneous nucleation. Journal of Chemical Physics 124, 014506. doi:10.1063/1.2140268.CrossRefGoogle ScholarPubMed
Oxtoby, DW (1992). Homogeneous nucleation: Theory and experiment. Journal of Physics: Condensed Matter 4, 76277650. doi:10.1088/0953-8984/4/38/001.Google Scholar
Perrin, J, Böhm, C, Etemadi, R, and Lioret, A (1994). Possible routes for cluster growth and particle formation in rf silane discharges. Plasma Sources Science and Technology 3, 252261. doi:10.1088/0963-0252/3/3/003.CrossRefGoogle Scholar
Perrin, J, Leroy, O, and Bordage, MC (1996). Cross-sections, rate constants and transport coefficients in silane plasma chemistry. Contributions to Plasma Physics 36, 349. doi:10.1002/ctpp.2150360102.CrossRefGoogle Scholar
Pesthy, AJ, Flagan, RC, and Seinfeld, JH (1981). The effect of a growing aerosol on the rate of homogeneous nucleation of a vapor. Journal of Colloid and Interface Science 82, 465479. doi:10.1016/0021-9797(81)90388-X.CrossRefGoogle Scholar
Peters, F and Paikert, B (1989). Nucleation and growth rates of homogeneously condensing water vapor in argon from shock tube experiments. Experiments in Fluids 7, 521530.CrossRefGoogle Scholar
Preining, O (1998). The physical nature of very, very small particles and its impact on their behaviour. Journal of Aerosol Science 29, 481495. doi:10.1016/S0021-8502(97)10046-5.CrossRefGoogle Scholar
Rao, NP and McMurry, PH (1989). Nucleation and growth of aerosol in chemically reacting systems: A theoretical study of the near collision-controlled regime. Aerosol Science and Technology 11, 120132. doi:10.1080/02786828908959305.CrossRefGoogle Scholar
Rao, NP and McMurry, PH (1990). Effect of the Tolman surface tension correction on nucleation in chemically reacting systems. Aerosol Science and Technology 13, 183195. doi:10.1080/02786829008959436.CrossRefGoogle Scholar
Rasmussen, FR, Kubecka, J, Besel, V, Vehkamäki, H, Mikkelsen, KV, Bilde, M, and Elm, J (2020). Hydration of atmospheric molecular clusters III: Procedure for efficient free energy surface exploration of large hydrated clusters. Journal of Physical Chemistry A 124, 52535261. doi:10.1021/acs.jpca.0c02932.CrossRefGoogle ScholarPubMed
Reguera, D, Bowles, RK, Djikaev, Y, and Reiss, H (2003). Phase transitions in systems small enough to be clusters. Journal of Chemical Physics 118, 340353. doi:10.1063/1.1524192.CrossRefGoogle Scholar
Reiss, H (1950). The kinetics of phase transitions in binary systems. Journal of Chemical Physics 18, 840848. doi:10.1063/1.1747784.CrossRefGoogle Scholar
Rudek, MM, Katz, JL, Vidensky, IV, Zdimal, V, and Smolik, J (1999). Homogeneous nucleation rates of n-pentanol measured in an upward thermal diffusion cloud chamber. Journal of Chemical Physics 111, 36233629. doi:10.1063/1.479642.CrossRefGoogle Scholar
Ruscic, B (2013). Active thermochemical tables: Water and water dimer. Journal of Physical Chemistry 117, 1194011953. doi: 10.1021/jp403197t.CrossRefGoogle ScholarPubMed
Russell, KC (1969). Nucleation on gaseous ions. Journal of Chemical Physics 50, 18091816. doi:10.1063/1.1671276.CrossRefGoogle Scholar
Salpeter, EE (1973). Heat transfer in nucleation theory. Journal of Chemical Physics 58, 43314337. doi:10.1063/1.1678990.CrossRefGoogle Scholar
Sarou-Kanian, V, Millot, F, and Rifflet, JC (2003). Surface tension and density of oxygen-free liquid aluminum at high temperature. International Journal of Thermophysics. 24, 277286. doi:10.1023/A:1022466319501.CrossRefGoogle Scholar
Schmitt, JL and Doster, GJ (2002). Homogeneous nucleation of n-pentanol measured in an expansion cloud chamber. Journal of Chemical Physics 116, 19761978. doi:10.1063/1.1429953.CrossRefGoogle Scholar
Schmitt, JL, Adams, GW, and Zalabsky, RA (1982). Homogeneous nucleation of ethanol. Journal of Chemical Physics 77, 20892097. doi:10.1063/1.444014.CrossRefGoogle Scholar
Seinfeld, JH and Pandis, SN (1998). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: Wiley.Google Scholar
Shi, G, Seinfeld, JH, and Okuyama, K (1990). Transient kinetics of nucleation. Physical Review A 41, 21012108. doi:10.1103/PhysRevA.41.2101.CrossRefGoogle ScholarPubMed
Shields, RM, Temelso, B, Archer, KA, Morrell, TE, and Shields, GC (2010). Accurate predictions of water cluster formation, (H2O)n = 2–10. Journal of Physical Chemistry A 114, 1172511737. doi:10.1021/jp104865w.CrossRefGoogle ScholarPubMed
Simpson, JA and Weiner, ESC (eds) (1989). The Oxford English Dictionary, 2nd ed. Oxford: Clarendon Press; New York: Oxford University Press.Google Scholar
Sinha, S, Bhabhe, A, Laksmono, H, Wölk, J, Strey, R, and Wyslouzil, B (2010). Argon nucleation in a cryogenic supersonic nozzle. Journal of Chemical Physics 132, 064304. doi:10.1063/1.3299273.CrossRefGoogle Scholar
Smooke, MD, Hall, RJ, Colket, MB, Fielding, J, Long, MB, McEnally, CS, and Pfefferle, LD (2004). Investigation of the transition from lightly sooting towards heavily sooting co-flow ethylene diffusion flames. Combustion Theory and Modelling 8, 593606. doi:10.1088/1364-7830/8/3/009.CrossRefGoogle Scholar
Stauffer, D (1976). Kinetic theory of two-component (“hetero-molecular”) nucleation and condensation. Journal of Aerosol Science 7, 319333. doi:10.1016/0021-8502(76)90086-0.CrossRefGoogle Scholar
Strey, R, Wagner, PE, and Schmeling, T (1986). Homogeneous nucleation rates for n-alcohol vapors measured in a two-piston expansion chamber. Journal of Chemical Physics 84, 23252335. doi:10.1063/1.450396.CrossRefGoogle Scholar
Suh, SM, Girshick, SL, and Zachariah, MR (2003). The role of total pressure in gas-phase nucleation: A diffusion effect. Journal of Chemical Physics 118, 736745. doi:10.1063/1.1490345.CrossRefGoogle Scholar
Swihart, MT (2000). Electron affinities of selected hydrogenated silicon clusters (SixHy, x = 1–7, y = 0–15) from density functional theory calculations. Journal of Physical Chemistry A 104, 60836087. doi:10.1021/jp000626b.CrossRefGoogle Scholar
Swihart, MT and Girshick, SL (1999). Thermochemistry and kinetics of silicon hydride cluster formation during thermal decomposition of silane. Journal of Physical Chemistry B 103, 6476. doi:10.1021/jp983358e.CrossRefGoogle Scholar
Temelso, B, Archer, KA, and Shields, GC (2011). Benchmark structures and binding energies of small water clusters with anharmonicity corrections. Journal of Physical Chemistry A 115, 1203412046. doi:10.1021/jp2069489.CrossRefGoogle ScholarPubMed
ter Horst, JH, Bedeaux, D, and Kjelstrup, S (2011). The role of temperature in nucleation processes. Journal of Chemical Physics 134, 054703. doi:10.1063/1.3544689.CrossRefGoogle ScholarPubMed
Thomson, JJ (1888). Applications of Dynamics to Physics and Chemistry. London: Cambridge University Press.Google Scholar
Tohmfor, G and Volmer, M (1938). Die keimbildung unter dem einfluss elektrischer landungen [Nucleation under the influence of electrical charging]. Annalen der Physik (Leipzig), Series 5 33, 109131.CrossRefGoogle Scholar
Tolman, RC (1949). The effect of droplet size on surface tension. Journal of Chemical Physics 17, 333337. doi:10.1063/1.1747247.CrossRefGoogle Scholar
Vehkamäki, H (2006). Classical Nucleation Theory in Multicomponent Systems. Berlin: Springer.Google Scholar
Viisanen, Y and Strey, R (1994). Homogeneous nucleation rates for n-butanol. Journal of Chemical Physics 101, 78357843. doi:10.1063/1.468208.CrossRefGoogle Scholar
Viisanen, Y, Strey, R, and Reiss, H (1993). Homogeneous nucleation rates for water. Journal of Chemical Physics 99, 46804692. doi:10.1063/1.466066.CrossRefGoogle Scholar
Viisanen, Y, Strey, R, Laaksonen, A, and Kulmala, M (1994). Measurement of the molecular content of binary nuclei. 2. Use of the nucleation rate surface for water-ethanol. Journal of Chemical Physics 100, 60626072. doi:10.1063/1.467117.CrossRefGoogle Scholar
Viisanen, Y, Wagner, PE, and Strey, R (1998). Measurement of the molecular content of binary nuclei. IV. Use of the nucleation rate surfaces for the n-nonane-n-alcohol series. Journal of Chemical Physics 108, 42574266. doi:10.1063/1.475825.CrossRefGoogle Scholar
Viisanen, Y, Strey, R, and Reiss, H (2000). Erratum: ‘‘Homogeneous nucleation rates for water’’ [Journal of Chemical Physics 99, 4680 (1993)]. Journal of Chemical Physics 112, 82058206. doi:10.1063/1.481368.CrossRefGoogle Scholar
Vincenti, WG and Kruger, CH (1965). Introduction to Physical Gas Dynamics. New York: Wiley.Google Scholar
Volmer, M (1939). Kinetics of Phase Formation. Dresden, Germany: Theodor Steinkopff Verlag.Google Scholar
Volmer, M and Weber, A (1926). Keimbildung in übersättigten Gebilden [Nucleation in supersaturated structures]. Zeitschrift für Physikalische Chemie (Leipzig) 119 U, 277301. doi:10.1515/zpch-1926-11927.CrossRefGoogle Scholar
Wagner, PE and Strey, R (1981). Homogeneous nucleation rates of water vapor measured in a two-piston expansion chamber. Journal of Physical Chemistry 85, 26942698. doi:10.1021/j150618a026.CrossRefGoogle Scholar
Wagner, PE and Strey, R (1984). Measurements of homogeneous nucleation rates for n-nonane vapor using a two-piston expansion chamber. Journal of Chemical Physics 80, 52665275. doi:10.1063/1.446554.CrossRefGoogle Scholar
Wang, H and Frenklach, M (1997). A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame 110, 173221. doi:10.1016/s0010-2180(97)00068-0.CrossRefGoogle Scholar
Watanabe, Y, Shiratani, M, Fukuzawa, T, Kawasaki, H, Ueda, Y, Singh, S, and Ohkura, H (1996). Contribution of short lifetime radicals to growth of particles in SiH4 HF discharges and effects of particles on deposited films. Journal of Vacuum Science and Technology A 14, 9951001. doi:10.1116/1.580069.CrossRefGoogle Scholar
Wilemski, G and Wyslouzil, BE (1995). Binary nucleation kinetics. I. Self-consistent size distribution. Journal of Chemical Physics 103, 11271136. doi:10.1063/1.469823.CrossRefGoogle Scholar
Wilson, CTR (1897). Condensation of water vapour in the presence of dust-free air and other gases. Philosophical Transactions of the Royal Society of London, Series A 189, 265307. doi:10.1098/rsta.1897.0011.Google Scholar
Wilson, CTR (1899). On the condensation nuclei produced in gases by the action of Röntgen rays, uranium rays, ultra-violet light, and other agents. Philosophical Transactions of the Royal Society of London, Series A 192, 403453. doi:10.1098/rsta.1899.0009.Google Scholar
Wilson, CTR (1927). On the cloud method of making visible ions and the tracks of ionizing particles. Nobel Lecture, Dec. 12, 1927. In Nobel Lectures, Physics, 1922–1941. Amsterdam: Elsevier, 194214.Google Scholar
Wölk, J and Strey, R (2001). Homogeneous nucleation of H2O and D2O in comparison: The isotope effect. Journal of Physical Chemistry B 105, 1168311701. doi:10.1021/jp0115805.CrossRefGoogle Scholar
Wölk, J, Strey, R, Heath, CH, and Wyslouzil, BE (2002). Empirical function for homogeneous water nucleation rates. Journal of Chemical Physics 117, 49544960. doi:10.1063/1.1498465.CrossRefGoogle Scholar
Wu, JJ and Flagan, RC (1988). A discrete-sectional solution to the aerosol dynamic equation. Journal of Colloid and Interface Science 123, 339352.Google Scholar
Wyslouzil, BE and Seinfeld, JH (1992). Nonisothermal homogeneous nucleation. Journal of Chemical Physics 97, 26612670. doi:10.1063/1.463055.CrossRefGoogle Scholar
Wyslouzil, BE and Wölk, J (2016). Overview: Homogeneous nucleation from the vapor phase – The experimental science. Journal of Chemical Physics 145, 211702. doi:10.1063/1.4962283.CrossRefGoogle ScholarPubMed
Yang, H, Drossinos, Y, and Hogan, CJ (2019). Excess thermal energy and latent heat in nanocluster collisional growth. Journal of Chemical Physics 151, 224304. doi:10.1063/1.5129918.CrossRefGoogle ScholarPubMed
Zeldovich, JB (1943). On the theory of new phase formation, cavitation. Acta Physicochimica URSS 18, 122.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Steven L. Girshick, University of Minnesota
  • Book: Nucleation of Particles from the Gas Phase
  • Online publication: 30 May 2024
  • Chapter DOI: https://doi.org/10.1017/9781139028851.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Steven L. Girshick, University of Minnesota
  • Book: Nucleation of Particles from the Gas Phase
  • Online publication: 30 May 2024
  • Chapter DOI: https://doi.org/10.1017/9781139028851.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Steven L. Girshick, University of Minnesota
  • Book: Nucleation of Particles from the Gas Phase
  • Online publication: 30 May 2024
  • Chapter DOI: https://doi.org/10.1017/9781139028851.011
Available formats
×