Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:27:20.596Z Has data issue: false hasContentIssue false

5 - Signal Detection in Radiology

from Part I - Historical Reflections and Theoretical Foundations

Published online by Cambridge University Press:  20 December 2018

Ehsan Samei
Affiliation:
Duke University Medical Center, Durham
Elizabeth A. Krupinski
Affiliation:
Emory University, Atlanta
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbey, C.K., Barrett, H.H. (2001). Human and model-observer performance in ramp-spectrum noise: effects of regularization and object variability. J Opt Soc Am, A18, 473487.Google Scholar
Abbey, C.K., Eckstein, M.P. (2006). Classification images for detection, contrast discrimination, and identification tasks with a common ideal observer. J Vision, 6, 335355.Google Scholar
Abbey, C.K., Eckstein, M.P. (2007). Classification images for simple detection and discrimination tasks in correlated noise. J Opt Soc Am, A24, B110–B124.Google Scholar
Abbey, C.K., Eckstein, M.P., Bochud, F.O. (1999). Estimation of human-observer templates for 2 alternative forced choice tasks. Proc SPIE, 3663, 284295.Google Scholar
Abbey, C.K., Eckstein, M.P., Shimozaki, S.S., et al. (2002). Human observer templates for detection of a simulated lesion in mammo-graphic images. Proc SPIE Med Imag, 4686, 2536.Google Scholar
Aguilar, M., Anguinano, E., Pancorbo, M.A. (1993). Fractal characterization by frequency analysis. II. A new method. J Microscopy, 172, 233238.Google Scholar
Ahumada, A.J., Jr. (1996). Perceptual classification images from Vernier acuity masked by noise. Perception, 25(ECVP ‘96 suppl.), 18.CrossRefGoogle Scholar
Anguinano, E., Pancorbo, M.A., Aguilar, M. (1993). Fractal characterization by frequency analysis. I. Surfaces. J Microscopy, 172, 223232.Google Scholar
Barlow, H.B. (1962). A method of determining the overall quantum efficiency of visual discriminations. J Physiol (Lond), 160, 155168.Google Scholar
Barrett, H.H. (1990). Objective assessment of image quality: effects of quantum noise and object variability. J Opt Soc Am, A7, 12661278.Google Scholar
Barrett, H.H., Denny, J.L., Wagner, R.F., Myers, K.J. (1995). Objective assessment of image quality: II. Fisher information, Fourier crosstalk, and figures of merit for task performance. J Opt Soc Am, A12, 834852.Google Scholar
Bath, M., Hakansson, M., Borjesson, S., et al. (2005a). Nodule detection in digital chest radiography: introduction to the RADIUS chest trial. Radiat Prot Dosimetry, 114, 8591.CrossRefGoogle Scholar
Bath, M., Hakansson, M., Borjesson, S., et al. (2005b). Nodule detection in digital chest radiography: part of image background acting as pure noise. Radiat Protect Dosimetry, 114, 102108.Google Scholar
Bath, M., Hakansson, M., Borjesson, S., et al. (2005c). Nodule detection in digital chest radiography: effect of anatomical noise. Radiat Protect Dosimetry, 114, 109113.CrossRefGoogle ScholarPubMed
Bochud, F.O., Verdun, F.R., Hessler, C., Valley, J.F. (1995). Detectability on radiological images: the influence of anatomical noise. Proc SPIE Med Imag, 2436, 156165.Google Scholar
Bochud, F.O., Verdun, F.R., Valley, J.F., Hessler, C., Moeckli, R. (1997). The importance of anatomical noise in mammography. Proc SPIE Med Imag, 3036, 7480.Google Scholar
Bochud, F.O., Valley, J.F., Verdun, F.R., Hessler, C., Schnyder, P. (1999a). Estimation of the noisy component of anatomical backgrounds. Med Phys, 26, 13651370.CrossRefGoogle ScholarPubMed
Bochud, F.O., Abbey, C.K., Eckstein, M.P. (1999b). Further investigation of the effect of phase spectrum on visual detection in structured backgrounds. Proc SPIE Med Imag, 3663, 273281.Google Scholar
Bochud, F.O., Abbey, C.K., Eckstein, M.P. (2004). Search for lesions in mammograms: non-Gaussian observer response. Med Phys, 31, 2436.CrossRefGoogle Scholar
Burgess, A.E. (1985). Detection and identification efficiency: an update. Proc SPIE, 535, 5056.Google Scholar
Burgess, A.E. (1998). Prewhitening revisited. Proc SPIE Med Imag, 3340, 5564.Google Scholar
Burgess, A.E. (2001). Evaluation of detection model performance in power-law noise. Proc SPIE Med Imag, 4324, 123132.Google Scholar
Burgess, A.E. (2005). Effect of detector element size on signal detectability in digital mammography. Proc SPIE Med Imag, 5745, 232242.CrossRefGoogle Scholar
Burgess, A.E., Colborne, B. (1988). Visual signal detection. IV. Observer inconsistency. J Opt Soc Am, A5, 617627.Google Scholar
Burgess, A.E., Judy, P.F. (2007). Signal detection in power-law noise: effect of spectrum exponents. J Opt Soc Am, A24, B52–B60.Google Scholar
Burgess, A.E., Jacobson, F.L., Judy, P.F. (2001). Human observer detection experiments with mammograms and power-law noise. Med Phys, 28, 419437.Google Scholar
Burgess, A.E., Jacobson, F.L., Judy, P.F. (2005). Effect of breast tissue density on mass detection. Oral presentation. Presented at Medical Image Perception Society Conference XI, Windermere, UK.Google Scholar
Cargill, E., Barrett, H.H., Fiete, R.D., Kur, M., Patton, D.D. (1988). Fractal physiology and nuclear medicine scans. Proc SPIE, 914, 355361.Google Scholar
Castella, C., Kinkel, K., Verdun, F.R., et al. (2007a). Mass detection on real and synthetic mammograms: human observer templates and local statistics. Proc SPIE Med Imag, 6515, 65150U.Google Scholar
Castella, C., Abbey, C.K., Eckstein, M.P., et al. (2007b). Human linear template with mammographic backgrounds estimated with a genetic algorithm. J Opt Soc Am, A12, B1–B12.Google Scholar
Castella, C., Kinkel, K., Descombes, F., et al. (2008). Mammographic texture synthesis: second generation clustered lumpy backgrounds using a genetic algorithm. Optics Express, 16, 75957607.Google Scholar
Chakraborty, D., Kundel, H.L. (2001). Anomalous results for signal detection in mammograms. Proc SPIE Med Imag, 4324, 6876.Google Scholar
Chawla, A.S., Samei, E., Saunders, R., Abbey, C., Delong, D. (2007).Effect of dose reduction on the detection of mammographic lesions: a mathematical observer model analysis. Med Phys, 34, 33853398.CrossRefGoogle ScholarPubMed
Cohen, G., DiBianca, F.A. (1979). The use of contrast detail dose evaluation of image quality in a computed tomographic scanner. J Comput Assist Tomogr, 3, 189195.Google Scholar
Coltman, J.W. (1948). Fluoroscopic image brightening by electronic means. Radiology, 51, 359.Google Scholar
Cook, L.T., Cox, C.G., Insana, M.F., et al. (1996). Contrast-detail analysis of the effect of image compression on computed tomographic images. Proc SPIE Med Imag, 2712, 128137.Google Scholar
Cunningham, I.A. (2000). Applied linear systems theory. In: Beutel, J., Kundel, H.L., Van Metter, R.L. (eds.) Handbook of Medical Imaging, Vol. 1. Physics and Psychophysics. Bellingham, WA: SPIE Press, pp. 79159.Google Scholar
Eckstein, M.P., Whiting, J.S. (1995). Lesion detection in structured noise. Acad Radiol, 3, 249253.Google Scholar
Eckstein, M.P., James, S., Whiting, J.S. (1996). Visual signal detection in structured backgrounds. I. Effect of number of possible spatial locations and signal contrast. J Opt Soc Am, A13, 17771787.CrossRefGoogle Scholar
Eckstein, M.P., Ahumada, A.J., Watson, A.B., Whiting, J.S. (1997a).What is degrading human visual detection performance in natural medical image backgrounds? Proc SPIE Med Imag, 3036, 5063.Google Scholar
Eckstein, M.P., Ahumada, A.J., Watson, A.B. (1997b). Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise. J Opt Soc Am, A14, 24062419.Google Scholar
Eckstein, M.P., Abbey, C.K., Whiting, J.S. (1998). Human vs. model observers in anatomic backgrounds. Proc SPIE Med Imag, 3340, 1626.Google Scholar
Gaskill, J.D. (1978). Linear Systems, Fourier Transforms, and Optics. New York, NY: John Wiley.Google Scholar
Good, W.F., Abrams, G.S., Catullo, V.J., et al. (2008). Digital breast tomosynthesis: a pilot observer study. Am J Roentgenol, 190, 865869.Google Scholar
Hakansson, M., Bath, M., Borjesson, S., et al. (2005a). Nodule detection in digital chest radiography: effect of nodule location. Radiat Protect Dosimetry, 114, 9296.Google Scholar
Hakansson, M., Bath, M., Borjesson, S., et al. (2005b). Nodule detection in digital chest radiography: effect of system noise. Radiat Protect Dosimetry, 114, 97101.Google Scholar
Hakansson, M., Bath, M., Borjesson, S., et al. (2005c). Nodule detection in digital chest radiography: summary of the RADIUS chest trial. Radiat Protect Dosimetry, 114, 97101.Google Scholar
Judy, P.F., Swensson, R.G., Szulc, M. (1981). Lesion detection and signal-to-noise ratio in CT images. Med Phys, 8, 323.Google Scholar
Judy, P.F., Swensson, R.G., Nawfel, R.D., Chan, K.H., Seltzer, S.E. (1992). Contrast-detail curves for liver CT. Med Phys, 19, 11671174.Google Scholar
Karssemeijer, N., Frieling, J.T., Hendriks, J.H. (1993). Spatial resolution in digital mammography. Invest Radiol, 28, 413419.Google Scholar
Kaufhold, J., Thomas, J.A., Eberhard, J.W., Galbo, C.E., GonzálezTrotter, D.E. (2002). A calibration approach to glandular tissue composition estimation in digital mammography. Med Phys, 29, 18671880.Google Scholar
Keelan, B.W., Topfer, K., Yorkston, J., Sehnert, W.J., Ellinwood, J.S. (2004). Relative impact of detector noise and anatomical structure on lung nodule detection. Proc SPIE Med Imag, 5372, 230241.Google Scholar
Kundel, H.L., Nodine, C.F., Thickman, D., Toto, L. (1985). Nodule detection with and without a chest film. Invest Radiol, 20, 9499.CrossRefGoogle Scholar
Lehmann, L.A., Alvarez, R.E., Macovski, A., et al. (1981). Generalized image combinations in dual KVP digital radiography. Med Phys, 8, 659667.Google Scholar
Lubin, J. (1995). A visual discrimination model for imaging system design and evaluation. In: Peli, E. (ed.) Visual Models for Target Detection and Recognition. Singapore: World Scientific Publishers.Google Scholar
Muka, E., Blame, H., Daly, S. (1995). Display of medical images on CRT soft-copy displays: a tutorial. Proc SPIE Med Imag, 2431, 341359.Google Scholar
Myers, K.J., Barrett, H.H. (1987). Addition of a channel mechanism to the ideal-observer model. J Opt Soc Am, A4, 24472457.Google Scholar
Obuchowski, N.A., Beiden, S.V., Berbaum, K.S., et al. (2004). Multireader, multicase receiver operating characteristic analysis: an empirical comparison of five methods. Acad Radiol, 11, 980995.Google Scholar
Revesz, G., Kundel, H.L., Graber, M.A. (1974). The influence of structured noise on the detectability of radiological abnormalities. Invest Radiol, 9, 479486.Google Scholar
Riederer, S.J., Pelc, N.J., Chesler, D.A. (1978). The noise power spectrum in computed X-ray tomography. Phys Med Biol, 23, 446454.Google Scholar
Ruschin, M., Timberg, P., Svahna, T., et al. (2007). Improved in-plane visibility of tumors using breast tomosynthesis. Proc SPIE Med Imag, 6510, 65101J.Google Scholar
Samei, E., Flynn, M.J., Eyler, W.R. (1999). Detection of subtle lung nodules: relative influence of quantum and anatomic noise on chest radiographs. Radiology, 213, 727734.Google Scholar
Samei, E., Eyler, W., Baron, L. (2000). Effects of anatomical structure on signal detection. In: Beutel, J., Kundel, H.L., Van Metter, R.L (eds.) Handbook of Medical Imaging, Vol. 1. Physics and Psychophysics. Bellingham, WA: SPIE Press, pp. 655682.Google Scholar
Samei, E., Saunders, R.S., Baker, J.A., Delong, D.M. (2007). Digital mammography: effects of reduced radiation dose on diagnostic performance. Radiology, 243, 396404.Google Scholar
Saunders, R.S., Baker, J.A., Delong, D.M., Johnson, J.P., Samei, E. (2007). Does image quality matter? Impact of resolution and noise on mammographic task performance. Med Phys, 34, 39713981.Google Scholar
Schade, O.H. (1987). Image quality: a comparison of photographic and television systems. Reprinted in SMPTE J, 100, 567595.Google Scholar
Seltzer, S.E., Judy, P.F., Swensson, R.G., Chan, K.H., Nawfel, R.D. (1994). Flattening of the contrast-detail curve for large lesions on CT liver images. Med Phys, 21, 15471555.Google Scholar
Sharp, P.F., Metz, C.E., Wagner, R.F., Myers, K.J., Burgess, A.E. (1996). ICRU Report 54, Medical Imaging: The Assessment of Image Quality. Bethesda, MD: International Commission on Radiological Units and Measurements.Google Scholar
Smith, S.W., Wagner, R.F., Sandrik, J.M., Lopez, H. (1983). Low-contrast detectability and contrast/detail analysis in medical ultra-sound. IEEE Trans Son Ultrason, SU-30, 164173.Google Scholar
Sturm, R.E., Morgan, R.H. (1949). Screen intensification systems and their limitations. Am J Roentgenol, 62, 617634.Google Scholar
Tapiovaara, M.J., Wagner, R.F. (1993). SNR and noise measurement for medical imaging. I. A practical approach based on statistical decision theory. Phys Med Biol, 3, 7192.Google Scholar
Tischenko, O., Hoeschen, C., Effenberger, O., et al. (2003). Measurement of the noise components in the medical X-ray intensity pattern due to overlaying non-recognizable structures. Proc SPIE Med Imag, 5030, 422432.Google Scholar
Wagner, R.F. (1977). Towards a unified view of radiological imaging systems. Part II: noisy images. Med Phys, 4, 279296.Google Scholar
Wagner, R.F., Brown, D.G. (1985). Unified SNR analysis of medical imaging systems. Phys Med Biol, 30, 498518.Google Scholar
Wagner, R.F., Weaver, K.E. (1972). An assortment of image quality indices for radiographic film-screen combinations – can they be resolved? Proc SPIE, 35, 8394.Google Scholar
Wagner, R.F., Weaver, K.E., Denny, E.W., Bostrum, R.G. (1974).Towards a unified view of radiological imaging systems. Part I: noiseless images. Med Phys, 1, 124.Google Scholar
Wagner, R.F., Brown, D.G., Pastel, M.S. (1979). Application of information theory to the assessment of computed tomography. Med Phys, 6, 8394.Google Scholar
Wagner, R.F., Insana, M.F., Brown, D.G. (1985). Progress in signal and texture discrimination in medical imaging. Proc SPIE, 535, 5764.Google Scholar
Wagner, R.F., Insana, M.F., Brown, D.G., Garra, B.S., Jennings, R.J. (1990). Texture discrimination: radiologist, machine and man. In: Blakemore, C. (ed.) Vision: Coding and Efficiency. London: Cambridge University Press, pp. 310318.Google Scholar
Wagner, R.F., Myers, K.J., Hanson, K.M. (1992). Task performance on constrained reconstructions: human observers compared with suboptimal Bayesian performance. Proc SPIE, 1652, 352362.Google Scholar
Wagner, R.F., Metz, C.E., Campbell, G. (2007). Assessment of medical imaging systems and computer aids: a tutorial review. Acad Radiol, 14, 723748.Google Scholar
Whiting, J.S., Eckstein, M.P., Morioka, C.A., Eigler, N.L. (1996). Effect of additive noise, signal contrast and feature motion on visual detection in structured noise. Proc SPIE Med Imag, 2712, 2638.Google Scholar
Williams, D.B., Siewerdsen, J.H., Tward, D.J., et al. (2007). Optimal kVp selection for dual-energy imaging of the chest: evaluation by task-specific observer preference tests. Med Phys, 34, 39163925.Google Scholar
Zhang, Y., Pham, B.T., Eckstein, M.P. (2004). Automated optimization of JPEG 2000 encoder options based on model observer performance for detecting variable signals in X-ray coronary angiograms. IEEE Trans Med Imag, 23, 459474.Google Scholar
Zhang, Y., Pham, B.T., Eckstein, M.P. (2005). Task-based model/human observer evaluation of SPIHT wavelet compression with human visual system-based quantization. Acad Radiol, 12, 324336.Google Scholar
Zhang, Y., Pham, B.T., Eckstein, M.P. (2007). Evaluation of internal noise methods for Hotelling observer models. Med Phys, 34, 33123322.Google Scholar
Zhou, L., Oldan, J., Fisher, P., Gindi, G. (2006). Low contrast lesion detection in tomosynthetic breast imaging using a realistic breast phantom. Proc SPIE, 6142, 61425A.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×