Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T23:03:17.973Z Has data issue: false hasContentIssue false

11 - Jets and gamma-ray burst unification schemes

Published online by Cambridge University Press:  05 December 2012

Jonathan Granot
Affiliation:
31 Rupin Street, Rehovot 76345, Israel
Enrico Ramirez-Ruiz
Affiliation:
Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064, USA
Chryssa Kouveliotou
Affiliation:
NASA-Marshall Space Flight Center, Huntsville
Ralph A. M. J. Wijers
Affiliation:
Universiteit van Amsterdam
Stan Woosley
Affiliation:
University of California, Santa Cruz
Get access

Summary

Evidence for bulk relativistic motion in gamma-ray bursts

The first line of evidence for ultrarelativistic bulk motion of the outflows that produce GRBs arises from the compactness argument. It relies on the observed short and intense pulses of gamma rays and their non-thermal energy spectrum that often extends up to high photon energies. Together, these facts imply that the emitting region must be moving relativistically. In order to understand this better, let us first consider a source that is either at rest or moves at a Newtonian velocity, β≡ v/c ≪1, corresponding to a bulk Lorentz factor Γ (1 – β2)−1/2 ≈ 1. For such a source the observed variability timescale (e.g., the width of the observed pulses) ∆t, implies a typical source size or radius R <ct, due to light time travel effects (for simplicity we ignore here cosmological effects, such as redshift or time of dilation). GRBs often show significant variability down to millisecond timescales, implying R<3 × 107(∆t/ 1 ms) cm. At cosmological distances their isotropic equivalent luminosity, L, is typically in the range of 1050–1053 erg s−1. In addition, the (observed part of the) εFε GRB spectrum typically peaks around a dimensionless photon energy of ε≡ Eph/mec2 ˜ 1, so that (for a Newtonian source) a good fraction of the total radiated energy is carried by photons that can pair produce with other photons of similar energy. (F is the radiative flux and Fε ≡ dF/dε.)

Type
Chapter
Information
Gamma-ray Bursts , pp. 215 - 250
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdo, A.A. et al. (2009a). Science 323, 1688.
Abdo, A.A. et al. (2009b). ApJ 706, L138.
Ackermann, M. et al. (2010). ApJ 716, 1178.
Amati, L. et al. (2002). A&A 390, 81.
Baring, M.G. & Harding, A.K. (1997). ApJ 491, 663.
Barraud, C. et al. (2003). A&A 400, 1021.
Berger, E. et al. (2003). Nature 426, 154.
Berger, E., Kulkarni, S.R., & Frail, D.A. (2004). ApJ 612, 966.
Blandford, R.D. & McKee, C.F. (1976). Phys. Fluids 19, 1130.
Blustin, A.J. et al. (2006). ApJ 637, 901.
Cannizzo, J.K., Gehrels, N., & Vishniac, E.T. (2004). ApJ 601, 380.
Coburn, W. & Boggs, S.E. (2003). Nature 423, 415.
Cohen, E. & Piran, T. (1999). ApJ 518, 346.
Covino, S., Ghisellini, G., Lazzati, D., & Malesani, D. (2004). In Gamma-Ray Bursts in the Afterglow Era, ASP Conf. Proc. eds: M., Feroci, F., Fontera, N., Masetti, & L., Piro, 312, 169.
Dado, S., Dar, A., & De Rujula, A. (2004). A&A 422, 381.
De Colle, F., Granot, J., Lopez-Camara, D. & Ramirez-Ruiz, E. (2012a). ApJ 746, 122.
De Colle, F., Ramirez-Ruiz, E., Granot, J. & Lopez-Camara, D. (2012b). ApJ 751, 57.
Dermer, C.D., Chiang, J., & Böttcher, M. (1999). ApJ 513, 656.
Drenkhahn, G. (2002). A&A 387, 714.
Eichler, D. & Levinson, A. (2003). ApJ 596, L147.
Eichler, D. & Levinson, A. (2004). ApJ 614, L13.
Eichler, D. & Waxman, E. (2005). ApJ 627, 861.
Eichler, D. & Granot, J. (2006). ApJ 641, L5.
Fenimore, E.E., Epstain, R.I., & Ho, C. (1993). A&AS 97, 59.
Fenimore, E.E. & Ramirez-Ruiz, E. (2000). astro-ph/0004176.
Firmani, C., Avila-Reese, V., Ghisellini, G., & Tutukov, A.V. (2004). ApJ 611, 1033.
Fong, W., Berger, E., & Fox, D.B. (2010). ApJ 708, 9.
Frail, D.A. et al. (1997). Nature 389, 261.
Frail, D.A. et al. (2000). ApJ 538, L129.
Frail, D.A. et al. (2001). ApJ 562, L55.
Frail, D.A. et al. (2003) AJ 125, 2299.
Frail, D.A. et al. (2005). ApJ 619, 994.
Fruchter, A.S. et al. (1999). ApJ 519, L13.
Fugazza, D. et al. (2004). GCN Circ. 2782.
Galama, T.J. et al. (1998). ApJ 500, L97.
Galassi, M. et al. (2004) GCN Circ.2770.
Garnavich, P.M., Loeb, A., & Stanek, K.Z. (2000). ApJ 544, L11.
Gaudi, B.S., Granot, J., & Loeb, A. (2001). ApJ 561, 178.
Gehrels, N. et al. (2005). Nature 437, 851.
Gehrels, N. et al. (2008). ApJ 689, 1161.
Gehrels, N., Ramirez-Ruiz, E., & Fox, D.B. (2009). ARA&A 47, 567.
Ghisellini, G. & Lazzati, D. (1999). MNRAS 309, L7.
Goodman, J. (1997). New Astron. 2, 449.
Götz, D. et al. (2009). ApJ 695, L208.
Granot, J., Piran, T., & Sari, R. (1999a). ApJ 527, 236.
Granot, J., Piran, T., & Sari, R. (1999b). ApJ 513, 679.
Granot, J. & Loeb, A. (2001). ApJ 551, L63.
Granot, J. et al. (2001). In Gamma-Ray Bursts in the Afterglow Era, eds: E., Costa, F., Fontera, & J., Hjorth. Berlin: Springer, p. 312.
Granot, J. & Sari, R. (2002). ApJ 568, 820.
Granot, J., Panaitescu, A., Kumar, P., & Woosley, S.E. (2002). ApJ 570, L61.
Granot, J. (2003). ApJ 596, L17.
Granot, J. & Königl, A. (2003). ApJ 594, L.83.
Granot, J. & Kumar, P. (2003). ApJ 591, 1086.
Granot, J. (2005). ApJ 631, 1022.
Granot, J., Ramirez-Ruiz, E. & Loeb, A. (2005a). ApJ 618, 413.
Granot, J., Ramirez-Ruiz, E., & Perna, R. (2005b). ApJ 630, 1003.
Granot, J., Königl, A., & Piran, T. (2006). MNRAS 370, 1946.
Granot, J. (2007). Rev. Mexicana Astron. Astrof. 27, 140.
Granot, J. (2008). MNRAS 390, L46.
Granot, J., Cohen-Tanugi, J., & do Couto e Silva, E. (2008). ApJ 677, 92.
Granot, J. & Piran, T. (2012). MNRAS 421, 570.
Greiner, J. et al. (2003). Nature 426, 157.
Gruzinov, A. & Waxman, E. (1999). ApJ 511, 852.
Guetta, D., Granot, J., & Begelman, M.C. (2005a). ApJ 622, 482.
Guetta, D., Piran, T., & Waxman, E. (2005b). ApJ 619, 412.
Guidorzi, C. et al. (2009). A&A 499, 439.
Halpern, J.P. et al. (1999). ApJ 517, L105.
Halpern, J.P. et al. (2000). ApJ 543, 697.
Harrison, F.A. et al. (1999). ApJ 523, L121.
Harrison, F.A. et al. (2001). ApJ 559, 123.
Hascoët, R. et al. (2012). MNRAS 421, 525.
Heise, J., in 't Zand, J., Kippen, R.M., & Woods, P.M. (2001). In Gamma-Ray Bursts in the Afterglow Era, eds: E., Costa, F., Fontera, & J., Hjorth. Berlin: Springer, p. 16.
Hjorth, J. et al. (2003). Nature 423, 847.
Huang, Y.F., Dai, Z.G., & Lu, T. (2002). MNRAS 332, 735.
Huang, Y.F., Wu, X.F., Dai, Z.G., Ma, H.T., & Lu, T. (2004). ApJ 605, 300.
Katz, J.I., & Piran, T. (1997). ApJ 490, 772.
Kippen, R.M. et al. (2003). In Gamma-Ray Bursts and Afterglow Astronomy, AIP Conf. Proc. 662, eds: G. R., Ricker & R. K., Vanderspek, 244.
Kocevski, D. & Butler, N. (2008). ApJ 680 531.
Kouveliotou, C. et al. (1993). ApJ, 413, L101.
Kouveliotou, C. et al. (2004). ApJ 608, 872.
Krolik, J.H. & Pier, E.A. (1991). ApJ 373, 277.
Kulkarni, S.R. et al. (1999). Nature 398, 389.
Kumar, P. & Panaitescu, A. (2000). ApJ 541, L9.
Kumar, P. & Piran, T. (2000). ApJ 535, 152.
Kumar, P. & Granot, J. (2003). ApJ 591, 1075.
Lamb, D.Q. et al. (2004). New Astron. Rev. 48, 423.
Lamb, D.Q., Donaghy, T.Q., & Graziani, C. (2005). ApJ 620, 355.
Lazzati, D., Rossi, E., Ghisellini, G., & Rees, M.J. (2004). MNRAS 347, L1.
Lazzati, D. & Begelman, M.C. (2005). ApJ 629, 903.
Levinson, A. & Eichler, D. (1993). ApJ 418, 386.
Levinson, A. & Eichler, D. (2000). Phys. Rev. Lett. 85, 236.
Lipunov, V.M., Postnov, K.A., & Prokhorov, M.E. (2001). Astron. Rep. 45, 236.
Lithwick, Y. & Sari, R. (2001). ApJ 555, 540.
Lloyd-Ronning, N.M. & Ramirez-Ruiz, E. (2002). ApJ 576, 101.
Loeb, A. & Perna, R. (1998). ApJ 495, 597.
Lyutikov, M., Pariev, V.I., & Blandford, R.D. (2003). ApJ 597, 998.
Malesani, J. et al. (2004). ApJ 609, L5.
Margutti, R. et al. (2009). MNRAS 402, 46.
McGlynn, S. et al. (2007). A&A 466, 895.
Medvedev, M.V. & Loeb, A. (1999). ApJ 526, 697.
Mészáros, P., Rees, M.J., & Wijers, R.A.M.J. (1998). ApJ 499, 301.
Mészáros, P., Ramirez-Ruiz, E., Rees, M.J., & Zhang, B. (2002). ApJ 578, 812.
Mochkovitch, R., Daigne, F., Barraud, C., & Atteia, J.L. (2004). In Gamma-Ray Bursts in the Afterglow Era, ASP Conf. Proc. 312, eds: M., Feroci, F., Fontera, N., Masetti, & L., Piro, 381.
Moderski, R., Sikora, M., & Bulik, T. (2000). ApJ 529, 151.
Nakar, E., Piran, T., & Waxman, E. (2003). JCAP 10, 005.
Nakar, E. & Oren, Y. (2004). ApJ 602, L97.
Nakar, E., Granot, J., & Guetta, D. (2004). ApJ 606, L37.
Nousek, J.A. et al. (2006). ApJ 642, 389.
Panaitescu, A. & Mészáros, P. (1999). ApJ 526, 707.
Paragi, Z. et al. (2010). Nature 463, 516.
Pedersen, H. et al. (1998). ApJ 496, 311.
Peng, F., Königl, A., & Granot, J. (2005). ApJ 626, 966.
Perna, R. & Vietri, M. (2002). ApJ 569, L47.
Perna, R., Sari, R., & Frail, D. (2003). ApJ 594, 379.
Pihlström, Y.M., Taylor, G.B., Granot, J., & Doeleman, S. (2007). ApJ 664, 411.
Piran, T. (2000). Phys. Rep. 333, 529.
Price, P.A. et al. (2001). ApJ 549, L7.
Prochaska, J.X. et al. (2004). ApJ 611, 200.
Racusin, J.L. et al. (2008). Nature 455, 183.
Racusin, J.L. et al. (2009). ApJ 698, 43.
Ramirez-Ruiz, E., Merloni, A., & Rees, M.J. (2001). MNRAS 324, 1147.
Ramirez-Ruiz, E. & Lloyd-Ronning, N.M. (2002). New Astron. 7, 197.
Ramirez-Ruiz, E., Celotti, A., & Rees, M.J. (2002). MNRAS 337, 1349.
Ramirez-Ruiz, E. & Madau, E. (2004). ApJ 608, L89.
Ramirez-Ruiz, E. et al. (2005). ApJ 625, L91.
Reichart, D. et al. (2001). ApJ 552, 57.
Rhoads, J.E. (1997). ApJ 487, L1.
Rhoads, J.E. (1999). ApJ 525, 737.
Rol, E. et al. (2003). A&A 405, L23.
Rossi, E., Lazzati, D., & Rees, M.J. (2002). MNRAS 332, 945.
Rossi, E., Lazzati, D., Salmonson, J.D., & Ghisellini, G. (2004). MNRAS 354, 86.
Ruderman, M. (1975). Ann. NY Acad. Sci. 262, 164.
Rybicki, G.B. & Lightman, A.P. (1976). Radiative Processes in Astrophysics. New York: Wiley Interscience, p. 145.
Rutledge, R.E. & Fox, D.E. (2004). MNRAS 350, 1288.
Sagar, R. et al. (2001). Bull. Astron. Soc. India 29, 1.
Sakamoto, T. et al. (2005). ApJ 629, 311.
Sari, R. & Piran, T. (1995). ApJ 455, L143.
Sari, R. (1997). ApJ 489, L37.
Sari, R. (1998). ApJ 494, L49.
Sari, R. (1999). ApJ 524, L43.
Sari, R., Piran, T., & Halpern, J. (1999). ApJ 519, L17.
Sari, R. & Mésáros, P. (2000). ApJ 535, L33.
Sari, R. & Esin, A.A. (2001). ApJ 548, 787.
Sazonov, S.Y., Lutovinov, A.A., & Sunyaev, R.A. (2004). Nature 430, 646.
Shaviv, N.J. & Dar, A. (1995). ApJ 447, 863.
Soderberg, A.M., Nakar, E., Berger, E., & Kulkarni, S.R. (2006). ApJ 638, 930.
Soderberg, A.M. et al. (2010). Nature 463, 513.
Stanek, K.Z. et al. (2003). ApJ 591, L17.
Stanek, K.Z. et al. (2005). ApJ 626, L5.
Stanek, K.Z. et al. (2007). ApJ 654, L21.
Tan, J.C., Matzner, C.D., & McKee, C.F. (2001). ApJ 551, 946.
Taylor, G.B., Frail, D.A., Beasley, A.J., & Kulkarni, S.R. (1997). Nature 389, 263.
Taylor, G.B., Frail, D.A., Berger, E., & Kulkarni, S.R. (2004). ApJ 609, L1.
Taylor, G.B. et al. (2005). ApJ 622, 986.
Vlahakis, N., Peng, F., & Königl, A. (2003). ApJ 594, L23.
Waxman, E., Kulkarni, S.R., & Frail, D.A. (1998). ApJ 497, 288.
Waxman, E. (2003). Nature 423, 388.
Wigger, C. et al. (2004). ApJ 613, 1088.
Wijers, R.A.M.J. & Galama, T.J. (1999). ApJ 523, 177.
Willingale, R. et al. (2007). ApJ 662, 1093.
Willis, D.R. et al. (2005). A&A 439, 245.
Woods, E. & Loeb, A. (1995). ApJ 453, 583.
Wygoda, N., Waxman, E. & Frail, D.A. (2011). ApJ 738, L23.
Yamazaki, R., Ioka, K., & Nakamura, T. (2002). ApJ 571, L31.
Yamazaki, R., Ioka, K., & Nakamura, T. (2004). ApJ 607, L103.
Zeh, A., Klose, S., & Kann, D.A. (2006). ApJ 637, 889.
Zhang, B. & Mészáros, P. (2002). ApJ 571, 876.
Zhang, B., Dai, X., Lloyd-Ronning, N.M., & Mészáros, P. (2004). ApJ 601, L119.
Zhang, W., Woosley, S.E., & MacFadyen, A.I. (2003). ApJ 586, 356.
Zhang, W. & MacFadyen, A. (2009). ApJ 698, 1261.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×