from Part One - Fundamentals
Published online by Cambridge University Press: 09 September 2020
In this third chapter we introduce the historically important model of swimming at low Reynolds numbers originally proposed by G. I. Taylor (1951), which is now considered classical. In his paper, Taylor set out to investigate the possibility of swimming in a fluid without inertia at all, a possibility that was at odds with physical intuition at the time. Since waves are the fundamental non-reciprocal kinematics, and since microorganisms were observed to deform their flagella in a wave-like fashion, he focused on the simplest setup possible, namely that of a flexible two-dimensional sheet deforming as a travelling wave of transverse displacements. In this chapter, considering waves with both transverse and longitudinal motion, we show that indeed inertia-less swimming is possible, and that the sheet motion can be used to model both swimming using flagella and pumping using cilia. By computing the rate of working of the wave on the fluid, and its optimisation, we then illustrate how this simple two-dimensional model can be exploited to interpret the two modes of deformation of cilia arrays that are observed experimentally.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.