Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T07:31:21.622Z Has data issue: false hasContentIssue false

Element Abundances In Nearby Galaxies

Published online by Cambridge University Press:  12 August 2009

Donald R. Garnett
Affiliation:
Steward Observatory, University of Arizona, Tucson AZ 85721, USA
C. Esteban
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
R. J. García López
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
A. Herrero
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
F. Sánchez
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

In these lectures I present a highly opinionated review of the observed patterns of metallicity and element abundance ratios in nearby spiral, irregular, and dwarf elliptical galaxies, with connection to a number of astrophysical issues associated with chemical evolution. I also discuss some of the observational and theoretical issues associated with measuring abundances in H II regions and gas and stellar surface densities in disk galaxies. Finally, I will outline a few open questions that deserve attention in future investigations.

Introduction

The measurement of element abundances in galaxies other than our own has a roughly forty-year history, beginning with early attempts to measure helium abundances in giant H II regions in the Magellanic Clouds and M33 (Aller & Faulkner 1962, Mathis 1962) and pioneering studies of heavy element abundances from forbidden lines in extragalactic H II regions (e.g. Peimbert & Spinrad 1970, Searle 1971, Searle & Sargent 1972). Since then this field has grown tremendously, with high quality oxygen abundance data in some 40 nearby spiral galaxies and more than 100 irregular and compact dwarf galaxies. The amount of data for other elements (C, N, Ne, S, and Ar) has also improved tremendously, thanks largely to improvements in visible-wavelength detectors and the launching of spacecraft observatories, such as IUE, HST, and ISO, which have opened up the UV and IR spectral regions for spectroscopy.

Type
Chapter
Information
Cosmochemistry
The Melting Pot of the Elements
, pp. 171 - 216
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×