Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T22:42:01.007Z Has data issue: false hasContentIssue false

7 - Extragalactic jets and lobes – I

Published online by Cambridge University Press:  22 September 2016

Philipp P. Kronberg
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appl, S. & Camenzind, M. 1992, The Stability of Current-Carrying Jets, Astron. Astrophys., 256, 354Google Scholar
Balsara, D. S. & Spicer, D. S. 1999a, Maintaining Pressure Positivity in Magnetohydrodyamic Simulations, J. Comput. Phys., 148, 133CrossRefGoogle Scholar
Balsara, D. S. & Spicer, D. S. 1999b, A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodyamic Simulations, J. Comput. Phys., 149, 270CrossRefGoogle Scholar
Benford, G. 1978, Current-Carrying Beams in Astrophysics – Models for Double Radio Sources and Jets, MNRAS, 183, 29CrossRefGoogle Scholar
Benford, G. 2006, Stability of Magnetic Equilibria in Radio Bubbles, MNRAS, 369, 77CrossRefGoogle Scholar
Benford, G. & Protheroe, R. J. 2008, Fossil AGN Jets as Ultrahigh-Energy Particle Accelerators, MNRAS, 383, 663CrossRefGoogle Scholar
Best, P. N., Eales, S. A., Longair, M. S., Rawlings, S., & Röttgering, H. J. A. 1999, Studies of a Sample of 6C Radio Galaxies at a Redshift of 1 – I. Deep Multifrequency Radio Observations, MNRAS, 303, 616Google Scholar
Bisnovatyi-Kogan, G. S. & Ruzmaikin, A. A. 1976, The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field. II – Selfconsistent Stationary Picture, Ast. Space Sci., 42, 401CrossRefGoogle Scholar
Blandford, R. D. & Rees, M. J. 1974, A ‘Twin-Exhaust’ Model for Double Radio Sources, MNRAS, 169, 395CrossRefGoogle Scholar
Blandford, R. D. & Znajek, R. L. 1977, Electromagnetic Extraction of Energy from Kerr Black Holes, MNRAS, 179, 433CrossRefGoogle Scholar
Bridle, A. H., Hough, D. H., Lonsdale, C. J., Burns, J. O., & Laing, R. A. 1994, Deep VLA Imaging of Twelve Extended 3CR Quasars, Astron. J., 108, 766CrossRefGoogle Scholar
Burbidge, G R. 1956, On Synchrotron Radiation from Messier 87, Astrophys. J., 124, 416CrossRefGoogle Scholar
Camenzind, M. 2005, Numerical Magnetohydrodynamics in Astrophysics, in Cosmic Magnetic Fields, ed. Wielebinski, R. & Beck, R., Lecture Notes in Physics (Berlin: Springer), 664, 255Google Scholar
Colgate, S. A. & Li, H. 1999, Dynamo Dominated Accretion and Energy Flow: The Mechanism of Active Galactic Nuclei, Astrophys. Space Sci., 264, 357CrossRefGoogle Scholar
Colgate, S. A., Li, H., & Pariev, V. I. 2001, The Origin of the Magnetic Fields of the Universe: The Plasma Astrophysics of the Free Energy of the Universe, Phys. Plas., 8, 2425CrossRefGoogle Scholar
Collier, S. J., Horne, K., Kaspi, S., Netzer, H., Peterson, B. M., Wanders, I., et al. 1998, Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XIV. Intensive Optical Spectrophotometric Observations of NGC 7469, Astrophys. J., 500, 162CrossRefGoogle Scholar
Daly, R. A. & Loeb, A. 1990, A Possible Origin of Galactic Magnetic Fields, Astrophys. J., 364, 451CrossRefGoogle Scholar
De Young, D. S. 1971, The Dynamics of Extended Extragalactic Radio Sources, Astrophys. J., 167, 541CrossRefGoogle Scholar
De Young, D. S. 2002, The Physics of Extragalactic Radio Sources, (Chicago: University of Chicago Press)Google Scholar
Diehl, S., Li, H., Fryer, C. L., & Rafferty, D. 2008, Constraining the Nature of X-Ray Cavities in Clusters and Galaxies, Astrophys. J., 687, 173CrossRefGoogle Scholar
Eilek, J. A. & Hughes, P. A. 1991, Particle Acceleration and Magnetic Field Evolution, in Beams and Jets in Astrophysics, ed. Hughes, P. A., Cambridge Astrophysics Series (Cambridge: Cambridge University Press), 428, 19CrossRefGoogle Scholar
Enßlin, T. A. & Heinz, S. 2002, Radio and X-Ray Detectability of Buoyant Radio Plasma Bubbles in Clusters of Galaxies, Astron. Astrophys., 384, L27CrossRefGoogle Scholar
Ettori, S. 2000, β-Model and Cooling Flows in X-Ray Clusters of Galaxies, MNRAS, 318, 1041CrossRefGoogle Scholar
Falke, H., Malkan, M. A., & Biermann, P. L. 1995, The Jet-Disc Symbiosis. II. Interpreting the Radio/UV Correlations in Quasars, Astron. Astrophys., 298, 375Google Scholar
Fermi, E. 1949, On the Origin of Cosmic Radiation, Phys. Rev., 75, 1169CrossRefGoogle Scholar
Frank, J., King, A. R., & Raine, D. J., eds. 1992, Accretion Power in Astrophysics, Cambridge Astrophysics Series 21 (Cambridge: Cambridge University Press)Google Scholar
Frank, J., King, A. R., & Raine, D. J., eds. 1992, Accretion Power in Astrophysics, Cambridge Astrophysics Series 21 (Cambridge: Cambridge University Press)Google Scholar
Hood, A. W. & Priest, E. R. 1979, Kink Instability of Solar Coronal Loops as the Cause of Solar Flares, Solar Phys., 64, 303CrossRefGoogle Scholar
Koide, S., Shibata, K., Kudoh, T., & Meier, D. L. 2002, Extraction of Black Hole Rotational Energy by a Magnetic Field and the Formation of Relativistic Jets, Science, 295, 1688CrossRefGoogle ScholarPubMed
Kronberg, P. P., Colgate, S. A., Li, H., & Dufton, Q. W. 2004, Giant Radio Galaxies and Cosmic-Ray Acceleration. Astrophys. J., 604, L77CrossRefGoogle Scholar
Kronberg, P. P., Dufton, Q. W., Li, H., & Colgate, S. A. 2001, Magnetic Energy of the Intergalactic Medium from Galactic Black Holes, Astrophys. J., 560, 178CrossRefGoogle Scholar
Kruskal, M. D., Johnson, J. L., Gottlieb, M. B., & Goldman, L. M. 1958, Hydromagnetic Instability in a Stellarato, Phys. Fluids, 1, 421CrossRefGoogle Scholar
Lesch, H., Appl, S., & Camenzind, M. 1989, Collective Plasma Processes in Extragalactic Radio Sources, Astron. & Astrophys., 225, 341Google Scholar
Li, H., Colgate, S. A., Wendroff, B., & Liska, R. 2001, Rossby Wave Instability of Thin Accretion Disks. III. Nonlinear Simulations, Astrophys. J., 551, 874CrossRefGoogle Scholar
Li, H., Lagenta, G., Finn, J. M., Li, S. & Colgate, S. A., 2006, Astrophys. J. 643, 92CrossRefGoogle Scholar
Lovelace, R. V. E. 1976, Dynamo Model of Double Radio Sources, Nature, 262, 649CrossRefGoogle Scholar
Lovelace, R. V. E., Li, H., Colgate, S. A., & Nelson, A. F. 1999, Rossby Wave Instability of Keplerian Accretion Disks, Astrophys. J., 513, 805LCrossRefGoogle Scholar
Lucek, S. C. & Bell, A. R. 1996, The Stability, During Formation, of Magnetohydrodynamic Jets Collimated by an Azimuthal Magnetic Field, MNRAS, 281, 245CrossRefGoogle Scholar
Lyubarskii, Yu. E. 1999, Kink Instability of Relativistic Force-Free Jets, MNRAS, 308, 1006CrossRefGoogle Scholar
Marshall, H. L., Miller, B. P., Davis, D. S., Perlman, E. S., Wise, M., Canizares, C. R., & Harris, D. E. 2002, A High-Resolution X-Ray Image of the Jet in M87, Astrophys. J., 564, 683CrossRefGoogle Scholar
Moll, R., Spruit, H. C., & Obergaulinger, M. 2008, Kink Instabilities in Jets from Rotating Magnetic Fields, Astron. & Astrophys., 492, 621CrossRefGoogle Scholar
Nakamura, M. & Meier, D. 2004, Poynting Flux-Dominated Jets in Decreasing-Density Atmospheres. I. The Nonrelativistic Current-driven Kink Instability and the Formation of “Wiggled” Structures, Astrophys. J., 617, 123CrossRefGoogle Scholar
Nakamura, M., Li, H., & Li, S. 2006, Stability Properties of Magnetic Tower Jets, Astrophys. J., 652, 1059CrossRefGoogle Scholar
Nakamura, M., Tregillis, I. L., Li, H., & Li, S. 2008, A Numerical Model of Hercules A by Magnetic Tower: Jet/Lobe Transition, Wiggling, and the Magnetic Field Distribution, Astrophys. J., 686, 843CrossRefGoogle Scholar
O’Neill, S. M., Tregillis, I. L., Jones, T. W., & Ryu, D. 2005, Three Dimensional Simulations of MHD Jet Propagation through Uniform and Stratified External Environments, Astrophys. J., 633, 717CrossRefGoogle Scholar
Pariev, V. I., Colgate, S. A., & Finn, J. M. 2007, A Magnetic α-ω Dynamo in AGN Disks. II. Magnetic Field Generation, Theories, and Simulations, Astrophys. J., 658, 129CrossRefGoogle Scholar
Parker, E. N. 1992, Fast Dynamos, Cosmic Rays, and the Galactic Magnetic Field, Astrophys. J., 401, 137CrossRefGoogle Scholar
Penrose, R. 1969, Gravitational Collapse: The Role of General Relativity, Rev. Nuovo Cimento Soc. Ital. Fis., 1, 252Google Scholar
Peterson, B. M. 1993, Reverberation Mapping of Active Galactic Nuclei, Pub. Astron. Soc. Pacific, 105, 247CrossRefGoogle Scholar
Rees, M. J., 1971, A New Interpretation of Extragalactic Radio Sources, Nature, 229, 312CrossRefGoogle ScholarPubMed
Robinson, K., Dursi, L. J., Ricker, P. M., et al. 2004, Morphology of Rising Hydrodynamic and Magnetohydrodynamic Bubbles from Numerical Simulations, Astrophys. J., 601, 621CrossRefGoogle Scholar
Ryu, D., Ostriker, J. P., Kang, H., & Cen, R. 1993, A Cosmological Hydrodynamic Code Based on the Total Variation Diminishing Scheme, Astrophys. J., 414, 1CrossRefGoogle Scholar
Schlickeiser, R. & Shukla, P. 2003, Cosmological Magnetic Field Generation by the Weibel Instability, Astrophys. J., 599, 57CrossRefGoogle Scholar
Shafranov, V. D. 1958, On Magnetohydrodynamical Equilibrium Configurations, Soviet Phys. JETP, 6, 545Google Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, Black Holes in Binary Systems, Observational Appearance, Astron. & Astrophys., 24, 337Google Scholar
Strom, R. G. & Willis, A. G. 1980, Multifrequency Observations of Very Large Radio Galaxies. II – 3C236, Astron. & Astrophys., 85, 36Google Scholar
Thiele, M. & Camenzind, M. 2002, Knot Production in Magnetized Herbig-Haro Jets, Astron. & Astrophys., 831, L53CrossRefGoogle Scholar
Thompson, C. & Duncan, R. C. 1993, Neutron Star Dynamos and the Origins of Pulsar Magnetism, Astrophys. J., 408, 194CrossRefGoogle Scholar
Weibel, E. S. 1959, Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution, Phys. Rev. Lett., 2, 83CrossRefGoogle Scholar
Willis, A.G. & Strom, R. G. 1978, Multifrequency Observations of Very Large Radio Galaxies. I – 3C 326, Astron. & Astrophys., 62, 375Google Scholar
Wise, M. W., McNamara, B. R., Nulsen, P. E. J., Houck, J. C., & David, L. P. 2007, X-Ray Supercavities in the Hydra A Cluster and the Outburst History of the Central Galaxy’s Active Nucleus, Astrophys. J., 659, 1153CrossRefGoogle Scholar
Zurek, W. H., Siemiginowska, A., & Colgate, S. A. 1994, Star-Disk Collisions and the Origin of the Broad Lines in Quasars, Astrophys. J., 434, 46CrossRefGoogle Scholar
Zurek, W. H., Siemiginowska, A., & Colgate, S. A. 1996, Star-Disk Collisions and the Origin of the Broad Lines in Quasars: Addendum, Astrophys. J., 470, 652CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×