Published online by Cambridge University Press: 11 August 2009
Abstract
Near-infrared (NIR) spectroscopy of several stripped-envelope core-collapse supernovae (SNe) are presented. NIR spectra of these objects are quite rich, exhibiting a large number of emission features. Particularly important are strong lines of He I and C I, which probe the outermost ejecta and constrain the pre-collapse mass-loss. Interestingly, the SN 1998bw-like broad-line Type Ic SN 2002ap does not exhibit the strong C I features seen in other Type Ic SNe. NIR spectra also exhibit strong, relatively isolated lines of Mg I, Si I, Ca II, and O I that provide clues into the kinematics and mixing in the ejecta. Finally, late-time NIR spectra of two Type Ic events: SN 2000ew and SN 2002ap show strong first-overtone carbon monoxide (CO) emission, providing the first observational evidence that molecule formation may not only be common in Type II SNe, but perhaps in all core-collapse events.
Introduction
Near-infrared (NIR) spectroscopy is a powerful tool for the study of supernovae (SNe), offering new insights into the kinematic, chemical, and evolutionary properties of these events. Here we present applications of NIR spectroscopy for the study of three stripped-envelope supernovae, the Type Ib SN 2001B, the Type Ic SN 2000ew and the broad-line Type Ic SN 2002ap. All of the data presented here were obtained using TIFKAM on the 2.4 m Hiltner telescope at MDM Observatory, except for the SN 2002ap data set which also includes spectra obtained at Lick Observatory, IRTF, and Subaru. The reduced spectra are presented in Figures 6.1–6.3.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.