Published online by Cambridge University Press: 11 August 2009
Abstract
As we investigate the manifestly multi-dimensional nature of core collapse supernovae, the connection between microscopic physics and macroscopic fluid motion must not be forgotten. As an example, we discuss nuclear electron capture and its impact on the supernova shock. Though electron capture on nuclei with masses larger than 60 is the most important nuclear interaction to the dynamics of stellar core collapse, in prior simulations of core collapse it has been treated in a highly parameterized fashion, if not ignored. With a realistic treatment of electron capture on heavy nuclei come significant changes in the hydrodynamics of core collapse and bounce. We discuss these as well as their ramifications for the post-bounce evolution in core collapse supernovae.
Introduction
The many observations of asymmetries in core collapse supernovae, coupled with the failure of spherically symmetric simulations of the neutrino reheating paradigm to produce explosions, has persuaded the community that multidimensional effects like convection and other fluid instabilities must be vital elements of the supernova mechanism (Wilson & Mayle 1993, Herant et al. 1994, Burrows et al. 1995, Fryer & Warren 2002) though, even with these convective enhancements, explosions are not guaranteed (Janka & Müller 1996, Mezzacappa et al. 1998, Buras et al. 2003). This view has been reinforced in recent years by the failure of more accurate spherically symmetric multigroup Boltzmann simulations to produce explosions (Rampp & Janka 2000, Mezzacappa et al. 2001, Liebendörfer et al. 2001, Thompson et al. 2003).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.