Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T12:56:23.206Z Has data issue: false hasContentIssue false

35 - The interplay between nuclear electron capture and fluid dynamics in core collapse supernovae

Published online by Cambridge University Press:  11 August 2009

W. R. Hix
Affiliation:
Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 USA Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA Joint Institute for Heavy Ion Research, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
O. E. B. Messer
Affiliation:
Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 Center for Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
A. Mezzacappa
Affiliation:
Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Peter Höflich
Affiliation:
University of Texas, Austin
Pawan Kumar
Affiliation:
University of Texas, Austin
J. Craig Wheeler
Affiliation:
University of Texas, Austin
Get access

Summary

Abstract

As we investigate the manifestly multi-dimensional nature of core collapse supernovae, the connection between microscopic physics and macroscopic fluid motion must not be forgotten. As an example, we discuss nuclear electron capture and its impact on the supernova shock. Though electron capture on nuclei with masses larger than 60 is the most important nuclear interaction to the dynamics of stellar core collapse, in prior simulations of core collapse it has been treated in a highly parameterized fashion, if not ignored. With a realistic treatment of electron capture on heavy nuclei come significant changes in the hydrodynamics of core collapse and bounce. We discuss these as well as their ramifications for the post-bounce evolution in core collapse supernovae.

Introduction

The many observations of asymmetries in core collapse supernovae, coupled with the failure of spherically symmetric simulations of the neutrino reheating paradigm to produce explosions, has persuaded the community that multidimensional effects like convection and other fluid instabilities must be vital elements of the supernova mechanism (Wilson & Mayle 1993, Herant et al. 1994, Burrows et al. 1995, Fryer & Warren 2002) though, even with these convective enhancements, explosions are not guaranteed (Janka & Müller 1996, Mezzacappa et al. 1998, Buras et al. 2003). This view has been reinforced in recent years by the failure of more accurate spherically symmetric multigroup Boltzmann simulations to produce explosions (Rampp & Janka 2000, Mezzacappa et al. 2001, Liebendörfer et al. 2001, Thompson et al. 2003).

Type
Chapter
Information
Cosmic Explosions in Three Dimensions
Asymmetries in Supernovae and Gamma-Ray Bursts
, pp. 307 - 314
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bethe, H. A., Brown, G. E., Applegate, J., & Lattimer, J. M. 1979, Nucl. Phys. A, 324, 487CrossRef
Bravo, E. & García-Senz, D. 1999, MNRAS, 307, 984CrossRef
Bruenn, S. W. 1985, ApJS, 58, 771CrossRef
Buras, R., Rampp, M., Janka, H.-T., & Kifonidis, K. 2003, Phys. Rev. Lett., 90, 241101CrossRef
Burrows, A., Hayes, J., & Fryxell, B. A. 1995, ApJ, 450, 830CrossRef
El Eid, M. F. & Hillebrandt, W. 1980, A&AS, 42, 215
Fryer, C. L. & Warren, M. S. 2002, ApJ, 574, L65CrossRef
Heger, A., Langanke, K., Martínez-Pinedo, G., & Woosley, S. E. 2001, Phys. Rev. Lett., 86, 1678CrossRef
Herant, M., Benz, W., Hix, W. R., Fryer, C. L., & Colgate, S. A. 1994, ApJ, 435, 339CrossRef
Hix, W. R. 1995, PhD thesis, HARVARD UNIVERSITY
Hix, W. R., Messer, O. E. B., Mezzacappa, A., Liebendoerfer, M., Sampaio, J. M., Langanke, K., Martinez-Pinedo, G., & Dean, D. J. 2003, Phys. Rev. Lett., submitted
Hix, W. R. & Thielemann, F.-K. 1999, ApJ, 511, 862CrossRef
Janka, H.-T. & Müller, E. 1996, A&A, 306, 167
Langanke, K., Kolbe, E., & Dean, D. J. 2001a, Phys. Rev. C, 63, 32801CrossRef
Langanke, K. & Martínez-Pinedo, G. 2000, Nucl. Phys. A, 673, 481CrossRef
Langanke, K., Martínez-Pinedo, G., & Sampaio, J. M. 2001b, Phys. Rev. C, 64, 55801CrossRef
Langanke, K., Martinez-Pinedo, G., Sampaio, J. M., Dean, D. J., Hix, W. R., Messer, O. E. B., Mezzacappa, A., Liebendoerfer, M., Janka, H.-T., & Rampp, M. 2003, Phys. Rev. Lett., 90, 241102CrossRef
Lattimer, J. & Swesty, F. D. 1991, Nucl. Phys. A, 535, 331CrossRef
Liebendörfer, M., Messer, O. E. B., Mezzacappa, A., Bruenn, S. W., Cardall, C. Y., & Thielemann, F.-K. 2003, ApJS, submitted
Liebendörfer, M., Mezzacappa, A., Thielemann, F.-K., Messer, O. E. B., Hix, W. R., & Bruenn, S. W. 2001, Phys. Rev. D, 63, 103004CrossRef
Mezzacappa, A., Calder, A. C., Bruenn, S. W., Blondin, J. M., Guidry, M. W., Strayer, M. R., & Umar, A. S. 1998, ApJ, 493, 848 and 495, 911
Mezzacappa, A., Liebendörfer, M., Messer, O., Hix, W., Thielemann, F.-K., & Bruenn, S. 2001, Phys. Rev. Lett., 86, 1935CrossRef
Mezzacappa, A. & Messer, O. E. B. 1998, J. Comp. Appl. Math, 109, 281CrossRef
Thompson, T. A., Burrows, A., & Pinto, P. A. 2003, ApJ, 592, 434CrossRef
Rampp, M. & Janka, H.-T. 2000, ApJ, 539, L33CrossRef
Wilson, J. R. & Mayle, R. W. 1993, Phys. Rep., 227, 97CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The interplay between nuclear electron capture and fluid dynamics in core collapse supernovae
    • By W. R. Hix, Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 USA Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA Joint Institute for Heavy Ion Research, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA, O. E. B. Messer, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 Center for Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA, A. Mezzacappa, Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
  • Edited by Peter Höflich, University of Texas, Austin, Pawan Kumar, University of Texas, Austin, J. Craig Wheeler, University of Texas, Austin
  • Book: Cosmic Explosions in Three Dimensions
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536236.035
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The interplay between nuclear electron capture and fluid dynamics in core collapse supernovae
    • By W. R. Hix, Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 USA Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA Joint Institute for Heavy Ion Research, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA, O. E. B. Messer, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 Center for Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA, A. Mezzacappa, Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
  • Edited by Peter Höflich, University of Texas, Austin, Pawan Kumar, University of Texas, Austin, J. Craig Wheeler, University of Texas, Austin
  • Book: Cosmic Explosions in Three Dimensions
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536236.035
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The interplay between nuclear electron capture and fluid dynamics in core collapse supernovae
    • By W. R. Hix, Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 USA Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA Joint Institute for Heavy Ion Research, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA, O. E. B. Messer, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 Center for Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA, A. Mezzacappa, Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
  • Edited by Peter Höflich, University of Texas, Austin, Pawan Kumar, University of Texas, Austin, J. Craig Wheeler, University of Texas, Austin
  • Book: Cosmic Explosions in Three Dimensions
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536236.035
Available formats
×