Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T08:56:22.591Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 October 2017

Alan D. Chave
Affiliation:
Woods Hole Oceanographic Institution, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Computational Statistics in the Earth Sciences
With Applications in MATLAB
, pp. 391 - 434
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchison, J. (1986). The Statistical Analysis of Compositional Data. London: Chapman & Hall.CrossRefGoogle Scholar
Aitchison, J., & Greenacre, M. (2002). Biplots of compositional data. Appl. Stat., 51, 375–92.Google Scholar
Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis, 3rd edn. New York: Wiley.Google Scholar
Anderson, T. W., & Darling, D. (1952). Asymptotic theory of certain goodness of fit criteria based on stochastic processes. Ann. Math. Stat., 23, 193212.CrossRefGoogle Scholar
Anderson, T. W., & Darling, D. (1954). A test of goodness of fit. J. Am. Stat. Assoc., 49, 765–9.CrossRefGoogle Scholar
Andrews, D. F., & Herzberg, A. M. (1985). Data: A Collection of Problems from Many Fields for the Student and Research Worker. New York: Springer.CrossRefGoogle Scholar
Ansari, A. R., & Bradley, R. A. (1960). Rank-sum tests for dispersions. Ann. Math. Stat., 31, 1174–89.CrossRefGoogle Scholar
Arbuthnott, J. (1710). An argument for divine providence, taken from the constant regularity in the births of both sexes. Philos. Trans. R. Soc. Lond., 27, 186–90.Google Scholar
Azzalini, A., & Bowman, A. W. (1990). A look at some data on the Old Faithful geyser. J. R. Stat. Soc., C39, 357–65.Google Scholar
Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proc. R. Soc. Lond., A160, 268–82.Google Scholar
Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond., 53, 370418.Google Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., B57, 289300.CrossRefGoogle Scholar
Benjamini, Y., Krieger, A. M., & Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika, 93, 491507.CrossRefGoogle Scholar
Berry, K. J., Mielke, P. W. Jr., & Johnston, J. E. (2016). Permutation Statistical Methods: An Integrated Approach. New York: Springer.CrossRefGoogle Scholar
Birnbaum, A. (1954). Combining independent tests of significance. J. Am. Stat. Assoc., 49, 559–74.Google Scholar
Blackwell, D. (1947). Conditional expectation and unbiased sequential estimation. Ann. Math. Stat., 18, 105–10.CrossRefGoogle Scholar
Bound, J., Jaeger, D. A., & Baker, R. M. (1995). Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. J. Am. Stat. Assoc., 90, 443–50.Google Scholar
Box, G. E. P. (1949). A general distribution theory for a class of likelihood criteria. Biometrika, 36, 317–46.CrossRefGoogle ScholarPubMed
Brofitt, J. D., & Randles, R. H. (1977). A power approximation for the chi-square goodness-of-fit test: simple hypothesis case. J. Am. Stat. Assoc., 72, 604–7.CrossRefGoogle Scholar
Carroll, R. J., & Welsh, A. H. (1988). A note on asymmetry and robustness in linear regression. Am. Stat., 42, 285–7.CrossRefGoogle Scholar
Carter, M., & van Brunt, B. (2000). The Lebesgue-Stieltjes Integral: A Practical Introduction. New York: Springer.CrossRefGoogle Scholar
Chave, A. D. (2014). Magnetotelluric data, stable distributions and impropriety: an existential combination. Geophys. J. Int., 198, 622–36.CrossRefGoogle Scholar
Chave, A. D. (2015). A note about Gaussian statistics on a sphere. Geophys. J. Int., 203, 893–5.CrossRefGoogle Scholar
Chave, A. D., & Thomson, D. J. (2003). A bounded influence regression estimator based on the statistics of the hat matrix. J. R. Stat. Soc., C52, 307–22.Google Scholar
Chave, A. D., & Thomson, D. J. (2004). Bounded influence estimation of magnetotelluric response functions. Geophys. J. Int., 157, 9881006.CrossRefGoogle Scholar
Chave, A. D., Thomson, D. J., & Ander, M. E. (1987). On the robust estimation of power spectra, coherences and transfer functions. J. Geophys. Res., 92, 633–48.Google Scholar
Clarke, R. D. (1946). An application of the Poisson distribution. J. Inst. Actuaries, 22, 32.Google Scholar
Cochran, W. G. (1934). The distribution of quadratic forms in a normal system, with applications to the analysis of covariance. Math. Proc. Camb. Philos. Soc., 30, 178–91.CrossRefGoogle Scholar
Cochran, W. G. (1952). The χ2 test of goodness of fit. Ann. Math. Stat., 23, 3545.CrossRefGoogle Scholar
Cramér, H. (1945). Mathematical Methods of Statistics. Uppsala: Almqvist & Wiksell.Google Scholar
Csörgő, S., & Faraway, J. J. (1996). The exact and asymptotic distributions of Cramér–von Mises statistics. J. R. Stat. Soc., B58, 221–34.Google Scholar
David, H. A. (1981). Order Statistics, 2nd edn. New York: Wiley.Google Scholar
David, H. A. (2009). A historical note on zero correlation and independence. Am. Stat., 63, 185–6.CrossRefGoogle Scholar
David, H. A., & Nagaraja, H. N. (2003). Order Statistics, 3rd edn. New York: Wiley.CrossRefGoogle Scholar
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge University Press.CrossRefGoogle Scholar
De Groot, M. H., & Schervish, M. J. (2011). Probability and Statistics, 4th edn. London: Pearson.Google Scholar
De Moivre, A. (1711). De mensura sortis. Philos. Trans. R. Soc. Lond., 27, 213–64.Google Scholar
Doob, J. L. (1993). Measure Theory. New York: Springer.Google Scholar
DuMouchel, W. H. (1975). Stable distributions in statistical inference. 2. Information from stably distributed samples. J. Am. Stat. Assoc., 70, 386–93.CrossRefGoogle Scholar
Durbin, J., & Watson, G. S. (1950). Testing for serial correlation in least squares regression, part I. Biometrika, 37, 409–28.Google Scholar
Durbin, J. & Watson, G. S. (1951). Testing for serial correlation in least squares regression, part II. Biometrika, 38, 159–77.CrossRefGoogle Scholar
Durbin, J., & Watson, G. S. (1971). Testing for serial correlation in least squares regression, part III. Biometrika, 58, 119.Google Scholar
Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Stat., 7, 126.CrossRefGoogle Scholar
Efron, B., & Stein, C. (1981). The jackknife estimate of variance. Ann. Stat., 9, 586–96.CrossRefGoogle Scholar
Efron, B., & Tibshirani, R. (1998). An Introduction to the Bootstrap. London: Chapman & Hall.Google Scholar
Ernst, M. D. (2004). Permutation methods: a basis for exact inference. Stat. Sci., 19, 676–85.CrossRefGoogle Scholar
Feller, W. (1948). On the Kolmogorov-Smirnov limit theorems for empirical distributions. Ann. Math. Stat., 19, 177–89.CrossRefGoogle Scholar
Feller, W. (1950). Errata: On the Kolmogorov-Smirnov limit theorems for empirical distributions. Ann. Math. Stat., 21, 301–2.CrossRefGoogle Scholar
Feller, W. (1971). An Introduction to Probability Theory and Its Applications, vol. 2. New York: Wiley.Google Scholar
Fieller, E. C. (1940). The biological standardization of insulin. J. R. Stat. Soc., 7(Suppl.), 164.CrossRefGoogle Scholar
Fieller, E. C. (1944). A fundamental formula in the statistics of biological assays and some applications. Q. J. Pharm. Pharmacol., 17, 117–23.Google Scholar
Fieller, E. C. (1954). Some problems in interval estimation. J. R. Stat. Soc., 16, 175–85.CrossRefGoogle Scholar
Fisher, N. I. (1995). Statistical Analysis of Circular Data. Cambridge University Press.Google Scholar
Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10, 507–21.Google Scholar
Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond., A222, 309–68.Google Scholar
Fisher, R. A. (1928). The general sampling distribution of the multiple correlation coefficient. Proc. R. Stat. Soc., A121, 654–73.Google Scholar
Fisher, R. A. (1932). Statistical Methods for Research Workers, 4th edn. Edinburgh: Oliver & Boyd.Google Scholar
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugenics, 7, 179–88.CrossRefGoogle Scholar
Fisher, R. A. (1953). Dispersion on a sphere. Proc. R. Soc. Lond., A217, 295305.CrossRefGoogle Scholar
Gamble, T. D., Goubau, W. M., & Clarke, J. (1979). Magnetotellurics with a remote reference. Geophysics, 44, 5368.CrossRefGoogle Scholar
Gauss, K. F. (1823). Theoria Combinationis Observationum Erroribus Minimis Oboxiae. Göttingen: Dieterich.Google Scholar
Geary, R. C. (1949). Determination of linear relationships between systematic parts of variables with errors of observation the variances of which are unknown. Econometrica, 17, 3058.CrossRefGoogle Scholar
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., et al. (2013). Bayesian Data Analysis, 3rd edn. Boca Raton, FL: Taylor & Francis.CrossRefGoogle Scholar
Genovese, C., & Wasserman, L. (2002). Operating characteristics and extension of the false discovery rate procedure. J. R. Stat. Soc., B64, 499517.CrossRefGoogle Scholar
Gleser, L. J., & Hwang, J. T. (1987). The nonexistence of 100(1−α)% confidence sets of finite expected diameter in errors-in-variables and related models. Ann. Stat., 15, 1351–62.CrossRefGoogle Scholar
Good, P. I. (2000). Permutation Methods, 2nd edn. New York: Springer.CrossRefGoogle Scholar
Good, P. I. (2005). Permutation, Parametric, and Bootstrap Tests of Hypotheses, 3rd edn. New York: Springer.Google Scholar
Gossett, W. S. (1908). The probable error of a mean. Biometrika, 6, 125.Google Scholar
Gradshteyn, I. S., & Ryzhik, I. M. (1980). Table of Integrals, Series and Products. San Diego: Academic Press.Google Scholar
Guenther, W. C. (1977). Power and sample size for approximate chi-square tests. Am. Stat., 31, 83–5.CrossRefGoogle Scholar
Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust Statistics. New York: Wiley.Google Scholar
Hänggi, P., Roesel, F., & Trautmann, P. (1978). Continued fraction expansion in scattering theory and statistical non-equilibrium mechanics. Z. Naturforsch., 33a, 402–17.Google Scholar
Hand, D. J., Daly, F., McConway, K., Lunn, D., & Ostrowski, E. (1994). A Handbook of Small Data Sets. London: Chapman & Hall.CrossRefGoogle Scholar
Handschin, E., Schweppe, F. C., Kohlas, J., & Fiechter, A. (1975). Bad data analysis of power system state analysis. IEEE Trans. Power Appar. Syst., PAS-94, 329–37.CrossRefGoogle Scholar
Hanley, J. A., Julien, M., & Moodie, E. E. M. (2008). Student’s z, t, and s: what if Gossett had R?. Am. Stat., 62, 64–9.CrossRefGoogle Scholar
Hastie, T., Tibshirani, R., & Friedman, J. (2008). The Elements of Statistical Learning, 2nd edn. New York: Springer.Google Scholar
Herschel, J. F. W. (1850). Quetelet on probabilities. Edinb. Rev., 92, 157.Google Scholar
Hettmansperger, T. P., & McKean, J. W. (1998). Robust Nonparametric Statistical Methods. London: Edward Arnold.Google Scholar
Hirschberg, J., & Lye, J. (2010). A geometric comparison of the delta and Fieller confidence intervals. Am. Stat., 64, 234–41.CrossRefGoogle Scholar
Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (1991). Fundamentals of Exploratory Analysis of Variance. New York: Wiley.CrossRefGoogle Scholar
Hodges, J. L., & Lehmann, E. L. (1956). The efficiency of some nonparametric competitors of the t-test. Ann. Math. Stat., 27, 324–35.CrossRefGoogle Scholar
Hoeffding, W. (1952). The large-sample power of tests based on permutations of observations. Ann. Math. Stat., 23, 169–92.CrossRefGoogle Scholar
Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc., 58, 1330.CrossRefGoogle Scholar
Hogg, R. V., & Craig, A. T. (1995). Introduction to Mathematical Statistics, 5th edn. Saddle River, NJ: Prentice-Hall.Google Scholar
Hotelling, H. (1931). The generalization of Student’s ratio. Ann. Math. Stat., 2, 360–78.CrossRefGoogle Scholar
Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. J. Educ. Psychol., 24, 417–41.CrossRefGoogle Scholar
Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28, 321–77.CrossRefGoogle Scholar
Hotelling, H. (1953). New light on the correlation coefficient and its transforms. Proc. R. Stat. Soc., B15, 193232.CrossRefGoogle Scholar
Hubble, E. (1929). A relation among distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. USA, 15, 168–73.CrossRefGoogle ScholarPubMed
Huber, P. (1964). Robust estimation of a location parameter. Ann. Math. Stat., 35, 73101.CrossRefGoogle Scholar
Huber, P. (2011). Data Analysis: What Can Be Learned from the Past 50 Years. New York: Wiley.CrossRefGoogle Scholar
Jarque, C. M., & Bera, A. K. (1987). A test for normality of observations and regression residuals. Int. Stat. Rev., 55, 163–72.CrossRefGoogle Scholar
Johnson, N. L., Kotz, S., & Balikrishnan, N. (1994). Continuous Univariate Distributions, vol. 1, 2nd edn. New York: Wiley.Google Scholar
Johnson, N. L., Kotz, S., & Balikrishnan, N. (1995). Continuous Univariate Distributions, vol. 2, 2nd edn. New York: Wiley.Google Scholar
Johnson, N. L., Kotz, S., & Balakrishnan, N. (1997). Discrete Multivariate Distributions. New York: Wiley.Google Scholar
Johnson, N. L., Kotz, S., & Kemp, A. W. (1993). Univariate Discrete Distributions, 2nd edn. New York: Wiley.Google Scholar
Jolliffe, I. T. (2002). Principal Component Analysis, 2nd edn. New York: Springer.Google Scholar
Kolmogorov, A. (1933). Sulla determinazione empirica di una legge di distribuzione. Inst. Ital. Attuarai, Giorn., 4, 111.Google Scholar
Kotz, S., & Johnson, N. L. (eds.) (1992). Breakthroughs in Statistics, vol. II: Methodology and Distributions. New York: Springer.Google Scholar
Kotz, S., Balakrishnan, N., & Johnson, N. L. (2000). Continuous Multivariate Distributions, vol 1: Models and Applications, 2nd edn. New York: Wiley.CrossRefGoogle Scholar
Kvam, P. H., & Vidakovic, B. (2007). Nonparametric Statistics with Applications to Science and Engineering. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence properties of the Neider-Mead simplex method in low dimensions. SIAM J. Optim., 9, 112–47.CrossRefGoogle Scholar
Langevin, P. (1905). Magnétisme et théorie des électrons. Ann. Chim. Phys., 5, 71127.Google Scholar
Lanzante, J. R. (2005). A cautionary note on the use of error bars. J. Climate, 18, 3699–703.CrossRefGoogle Scholar
Lehmann, E. L. (1953). The power of rank tests. Ann. Math. Stat., 24, 2343.CrossRefGoogle Scholar
Lehmann, E. L., & Schaffer, J. P. (1988). Inverted distributions. Am. Stat., 42, 191–4.CrossRefGoogle Scholar
Lévy, P. P. (1925). Calcul des Probabilités. Paris: Gauthier-Villars.Google Scholar
Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc., 62, 399402.CrossRefGoogle Scholar
Longley, J. W. (1967). An appraisal of least squares programs for electronic computers from the viewpoint of the user. J. Am. Stat. Assoc., 62, 819–41.CrossRefGoogle Scholar
Love, J. J., & Constable, C. G. (2003). Gaussian statistics for paleomagnetic vectors. Geophys. J. Int., 152, 515–65.CrossRefGoogle Scholar
Mallows, C. L. (1975). On some topics in robustness. Tech. Mem., Bell Telephone Laboratories.Google Scholar
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 18, 5060.CrossRefGoogle Scholar
Mardia, K. V., & Jupp, P. E. (2000). Directional Statistics. New York: Wiley.Google Scholar
Mardia, K. V., Kent, J. T., & Bibby, J. (1979). Multivariate Analysis. London: Academic Press.Google Scholar
Mauchly, J. W. (1940). Significance test for sphericity of a normal n-variate distribution. Ann. Math. Stat., 11, 204–9.CrossRefGoogle Scholar
Meerschaert, M. M. (2012). Fractional calculus, anomalous diffusion and probability. In Fractional Dynamics, ed. Lim, S. C., Klafter, J., & Metler, R.. Singapore: World Science Press.Google ScholarPubMed
Michael, J. R. (1983). The stabilized probability plot. Biometrika, 70, 1117.CrossRefGoogle Scholar
Mitra, S. K. (1958). On the limiting power function of the frequency chi-square test. Ann. Math. Stat., 29, 1221–33.CrossRefGoogle Scholar
Moore, D. S., & McCabe, G. P. (1989). Introduction to the Practice of Statistics. New York: W.H. Freeman.Google Scholar
Mosteller, F. (1946). On some useful “inefficient” statistics. Ann. Math. Stat., 17, 377408.CrossRefGoogle Scholar
Murphy, K. R., Myors, B., & Wolach, A. (2014). Statistical Power Analysis. New York: Routledge.CrossRefGoogle Scholar
Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. J. R. Stat. Soc., A135, 370–84.Google Scholar
Neyman, J., & Pearson, E. S. (1933). On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond., A231, 289337.Google Scholar
Nolan, J. P. (1997). Numerical calculation of stable densities and distribution functions. Comm. Stat. Stoch. Mod., 13, 759–74.Google Scholar
Nolan, J. P. (1998). Parameterizations and modes of stable distributions. Stat. Prob. Lett., 38, 187–95.CrossRefGoogle Scholar
Nolan, J. P. (2001). Maximum likelihood estimation and diagnostics for stable distributions. In Lévy Processes: Theory and Applications, ed. Barnsdorff-Nielsen, O. E., Mikosch, T., & Resnick, S. I.. Basel, Birkhäuser.Google Scholar
Oldham, K. B., & Spanier, J. (1974). The Fractional Calculus. San Diego: Academic Press.Google Scholar
Patnaik, P. B. (1949). The non-central χ2- and F-distributions and their applications. Biometrika, 36, 202–32.Google ScholarPubMed
Pawlowsky-Glahn, V., & Buccianti, A. (eds.) (2011). Compositional Data Analysis: Theory and Applications. New York: Wiley.CrossRefGoogle Scholar
Pawlowsky-Glahn, V., Egozcue, J. J., & Tolosana-Delgado, R. (2015). Modeling and Analysis of Compositional Data. New York: Wiley.CrossRefGoogle Scholar
Pearson, K. (1896). On a form of spurious correlation which may arise when indices are used in the measurement of organs. Philos. Trans. R. Soc. Lond., 60, 489–98.Google Scholar
Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag., 50, 339–57.CrossRefGoogle Scholar
Pesarin, F., & Salmaso, L. (2010). Permutation Tests for Complex Data: Theory, Applications and Software. New York: Wiley.CrossRefGoogle Scholar
Phipson, B., & Smyth, G. K. (2010). Permutation p-values should never be zero: calculating exact p-values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol., 9(1), art. 39.CrossRefGoogle ScholarPubMed
Picinbono, B. (1996). Second order complex random vectors and normal distributions. IEEE Trans. Sig. Proc., 44, 2637–40.CrossRefGoogle Scholar
Pitman, E. J. G. (1937a). Significance tests which may be applied to samples from any population. J. R. Stat. Soc. Suppl., 4, 119–30.Google Scholar
Pitman, E. J. G. (1937b). Significance tests which may be applied to samples from any population. II. The correlation coefficient test. J. R. Stat. Soc. Suppl., 4, 225–32.Google Scholar
Pitman, E. J. G. (1938). Significance tests which may be applied to samples from any population. III. The analysis of variance test. Biometrika, 29, 322–35.Google Scholar
Poisson, S. D. (1837). Recherches sur la Probabilité des Jugements en Matiére Criminelle et en Matiére Civile, Précédées des Regles Générales du Calcul des Probabilités. Paris: Bachelier.Google Scholar
Preisendorfer, R. W. (1988). Principal Component Analysis in Meteorology and Oceanography. Amsterdam: Elsevier.Google Scholar
Rao, C. R. (1945). Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc., 37, 8191.Google Scholar
Rao, C. R. (1947). Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Proc. Camb. Philos. Soc., 44, 50–7.Google Scholar
Rao, C. R. (1951). An asymptotic expansion of the distribution of Wilks’ criterion, Bull. Inter. Stat. Inst., 33, 177–80.Google Scholar
Reiersøl, O. (1941). Confluence analysis by means of lag moments and other methods of confluence analysis. Econometrica, 9, 124.CrossRefGoogle Scholar
Reiersøl, O. (1945). Confluence analysis by means of instrumental sets of variables. Ark. Mat. Astron. Fys., 32, 1119.Google Scholar
Rencher, A. C. (1995). Methods of Multivariate Analysis. New York: Wiley.Google Scholar
Rencher, A. C. (1998). Multivariate Statistical Inference and Applications. New York: Wiley.Google Scholar
Rice, J. A. (2006). Mathematical Statistics and Data Analysis, 3rd edn. Independence, KY: Cengage Learning.Google Scholar
Romano, J. P. (1990). On the behavior of randomization tests without a group invariance assumption. J. Am. Stat. Assoc., 85, 686–92.CrossRefGoogle Scholar
Rousseeuw, P. J. W. (1984). Least median of squares regression. J. Am. Stat. Assoc., 79, 871–80.CrossRefGoogle Scholar
Rousseeuw, P. J. W., & Leroy, A. M. (1987). Robust Regression and Outlier Detection. New York: Wiley.CrossRefGoogle Scholar
Rousseeuw, P. J. W., & Leroy, A. M. (2005). Robust Regression and Outlier Detection, 2nd edn. New York: Wiley.Google Scholar
Rutherford, E., Geiger, H., & Bateman, H. (1910). The probability variations in the distribution of α particles. Philos. Mag., 20, 698707.CrossRefGoogle Scholar
Ryan, T. P. (1997). Modern Regression Methods. New York: Wiley.Google Scholar
Samorodnitsky, G., & Taqqu, M. (1994). Stable Non-Gaussian Random Processes. London: Chapman & Hall.Google Scholar
Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biomed. Bull., 2, 110–14.Google ScholarPubMed
Schenker, J., & Gentleman, J. F. (2001). On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat., 55, 182–6.CrossRefGoogle Scholar
Scheffé, H. (1959). Analysis of Variance. New York: Wiley.Google Scholar
Schreier, P. J., & Scharf, L. L. (2010). Statistical Signal Processing of Complex-Valued Data. Cambridge University Press.CrossRefGoogle Scholar
Schreier, P. J., Scharf, L. L., & Hanssen, A. (2006). A generalized likelihood ratio test for impropriety of complex signals. IEEE Sig. Proc. Lett., 13, 433–6.CrossRefGoogle Scholar
Shaffer, J. P. (1991). The Gauss-Markov theorem and random regressors. Am. Stat., 45, 269–73.Google Scholar
Simpson, J., Olsen, A., & Eden, J. C. (1975). A Bayesian analysis of a multiplicative treatment effect in weather modifications. Technometrics, 17, 161–6.CrossRefGoogle Scholar
Siotani, M., Yoshida, K., Kawakami, H., Nojiro, K., Kawashima, K., et al. (1963). Statistical research on the taste judgement: analysis of the preliminary experiment on sensory and chemical characters of Seishu. Proc. Inst. Stat. Math., 10, 99118.Google Scholar
Smirnov, N. V. (1939). On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Bull. Math. Univ. Moscow. Serie Int., 2, 316.Google Scholar
Spearman, C. E. (1904). The proof and measurement of association between two things. Am. J. Psych., 15, 72101.CrossRefGoogle Scholar
Stephens, M. A. (1970). Use of the Kolmogorov-Smirnov, Cramer-Von Mises and related statistics without extensive tables. J. R. Stat. Soc., B32, 115–22.Google Scholar
Stephens, M. A. (1976). Asymptotic results for goodness-of-fit statistics with unknown parameters. Ann. Stat., 4, 357–69.CrossRefGoogle Scholar
Stigler, S. (1977). Do robust estimators work with real data? Ann. Stat., 5, 1055–98.CrossRefGoogle Scholar
Stuart, A., & Ord, J. K. (1994). Kendall’s Advanced Theory of Statistics, vol. 1: Distribution Theory, 6th edn. London: Edward Arnold.Google Scholar
Stuart, A., Ord, J. K., & Arnold, S. (1999). Kendall’s Advanced Theory of Statistics, vol. 2: Classical Inference and the Linear Model, 6th edn. London: Edward Arnold.Google Scholar
Thomson, A., & Randall-Maciver, R. (1905). Ancient Races of the Thebaid. Oxford University Press.CrossRefGoogle Scholar
Thomson, D. J. (1977). Spectrum estimation techniques for characterization and development of WT4 waveguide, I. Bell. Syst. Tech. J., 56, 1769–815.Google Scholar
Thomson, D. J., & Chave, A. D. (1991). Jackknifed error estimates for spectra, coherences and transfer functions. In Advances in Spectrum Analysis and Array Processing, vol. 1, ed. Haykin, S.. Englewood Cliffs, NJ: Prentice-Hall, pp. 58113.Google Scholar
Thompson, W. R. (1936). On confidence ranges for the median and other expectation distributions for populations of unknown distribution form. Ann. Math. Stat., 7, 122–8.CrossRefGoogle Scholar
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc., B58, 267–88.Google Scholar
Uchaikin, V. V., & Zolotarev, V. M. (1999). Chance and Stability. Waterbury, VT: VSP Press.CrossRefGoogle Scholar
Van Den Bos, A. (1995). A multivariate complex normal distribution: a generalization. IEEE Trans. Inform. Theory, 41, 537–9.CrossRefGoogle Scholar
Von Bortkiewicz, L. J. (1898). Das Gesetz der kleinen Zahlen. Leipzig: B.G. Teubner.Google Scholar
Von Luxburg, U., & Franz, V. H. (2009). A geometric approach to confidence sets for ratios: Fieller’s theorem and the general linear model. Stat. Sinica, 29, 1095–117.Google Scholar
Von Mises, R. (1918). Über die “Ganszzahligkeit” der Atomgewichte und verwandte Fragen. Phys. Z., 19, 490500.Google Scholar
Von Neumann, J. (1951). Various techniques used in connection with random digits: Monte Carlo methods. App. Math. Ser. Nat. Bur. Stand., 12, 36–8.Google Scholar
Wald, A. (1940). The fitting of straight lines if both variables are subject to error. Ann. Math. Stat., 11, 284300.CrossRefGoogle Scholar
Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc., 54, 426–82.CrossRefGoogle Scholar
Walden, A. T., & Rubin-Delanchy, P. (2009). On testing for impropriety of complex-valued Gaussian vectors. IEEE Trans. Sig. Proc., 57, 825–34.CrossRefGoogle Scholar
Wasserman, L. (2004). All of Statistics: A Concise Course in Statistical Inference. New York: Springer.CrossRefGoogle Scholar
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p-values: context, process and purpose. Am. Stat., 70, 129–33.CrossRefGoogle Scholar
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bull., 1, 80–3.CrossRefGoogle Scholar
Wilcoxon, F. (1946). Individual comparisons of grouped data by ranking methods. J. Econ. Entomol., 39, 269–70.CrossRefGoogle ScholarPubMed
Wilks, S. S. (1932). Certain generalizations in the analysis of variance. Biometrika, 24, 471–94.CrossRefGoogle Scholar
Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat., 9, 60–2.CrossRefGoogle Scholar
Wishart, J. (1928). The generalized product moment distribution in samples from a normal multivariate population. Biometrika, 20, 3252.CrossRefGoogle Scholar
Yohai, V. J. (1987). High breakdown-point and high efficiency robust estimates for regression. Ann. Stat., 15, 642–56.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alan D. Chave, Woods Hole Oceanographic Institution, Massachusetts
  • Book: Computational Statistics in the Earth Sciences
  • Online publication: 06 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316156100.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alan D. Chave, Woods Hole Oceanographic Institution, Massachusetts
  • Book: Computational Statistics in the Earth Sciences
  • Online publication: 06 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316156100.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alan D. Chave, Woods Hole Oceanographic Institution, Massachusetts
  • Book: Computational Statistics in the Earth Sciences
  • Online publication: 06 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316156100.013
Available formats
×