Skip to main content Accessibility help
×
Hostname: page-component-5f745c7db-rgzdr Total loading time: 0 Render date: 2025-01-06T20:55:21.529Z Has data issue: true hasContentIssue false

13 - Dust and molecules in nova environments

Published online by Cambridge University Press:  10 October 2009

Michael F. Bode
Affiliation:
Liverpool John Moores University
Aneurin Evans
Affiliation:
Keele University
Get access

Summary

Introduction

Dust and molecule formation in the winds of classical novae is now a well-observed, if poorly understood, phenomenon. Although the presence of dust in nova ejecta was not confirmed observationally until the 1970 infrared observations of FH Ser (Geisel, Kleinmann & Low, 1970), the subject has a much longer history. Dust formation in a classical nova was first proposed by McLaughlin (1935) to explain the precipitous deep minimum in the visual light curve of DQ Her; coincidentally, DQ Her was also the first nova to display observational evidence of a molecule (CN; Wilson & Merrill, 1935).

At first sight, the hostile environment of a classical nova is not an obvious place to find molecules and dust. This is because the chemistry that leads to the formation of first diatomic, then polyatomic, molecules, and eventually dust, requires an environment that is well shielded from the increasingly hard radiation field of the stellar remnant.

In this chapter the observational evidence for the presence of dust and molecules in the environments of classical novae is reviewed, together with the current state of our theoretical understanding of chemistry in nova winds, and of the growth and processing of the dust.

Molecules in nova ejecta

Preamble

Although CN holds the distinction of being the first molecule to be observed in the spectrum of a nova, in the optical spectrum of DQ Her in 1933 (Wilson & Merrill, 1935), molecules are in general most easily detected in the near- and mid-infrared, where common diatomic molecules (such as CO, H2, SiO) have rotational–vibrational transitions.

Type
Chapter
Information
Classical Novae , pp. 308 - 334
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×